
EPTCS 423

Proceedings of the

19th International Workshop on the

ACL2 Theorem Prover and Its

Applications

Austin, TX, 12-13 May, 2025

Edited by: Ruben Gamboa and Panagiotis Manolios

Published: 25th July 2025

DOI: 10.4204/EPTCS.423

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . ii

A Formalization of Elementary Linear Algebra: Part I . 1

David Russinoff

A Formalization of Elementary Linear Algebra: Part II . 19

David Russinoff

A Proof of the Schröder-Bernstein Theorem in ACL2 . 36

Grant Jurgensen

RV32I in ACL2 . 46

Carl Kwan

On Automating Proofs of Multiplier Adder Trees using the RTL Books . 51

Mayank Manjrekar

Extended Abstract: Partial-encapsulate and Its Support for Floating-point Operations in ACL2 56

Matt Kaufmann and J Strother Moore

Extended Abstract: Mutable Objects with Several Implementations . 60

Matt Kaufmann, Yahya Sohail and Warren A. Hunt Jr.

A Formalization of the Yul Language and Some Verified Yul Code Transformations 65

Alessandro Coglio and Eric McCarthy

A Formalization of the Correctness of the Floodsub Protocol . 84

Ankit Kumar and Panagiotis Manolios

An ACL2s Interface to Z3. 104

Andrew T. Walter and Panagiotis Manolios

An Enumerative Embedding of the Python Type System in ACL2s . 124

Samuel Xifaras, Panagiotis Manolios, Andrew T. Walter and William Robertson

Gamboa and Manolios (Eds):

ACL2 Workshop 2025

EPTCS 423, 2025, pp. ii–iii, doi:10.4204/EPTCS.423.0

© Gamboa and Manolios

This work is licensed under the

Creative Commons Attribution License.

Preface

Ruben Gamboa

University of Wyoming

ruben@uwyo.edu

Panagiotis Manolios

Northeastern University

pete@ccs.neu.edu

ACL2 is an industrial-strength automated reasoning system, the latest in the Boyer-Moore family of

theorem provers. The 2005 ACM Software System Award was awarded to Boyer, Kaufmann, and Moore

for their work in ACL2 and the other theorem provers in the Boyer-Moore family.

This volume contains the proceedings of the 19th International Workshop on the ACL2 Theorem

Prover and its Applications (ACL2 2025), which was held in Austin, Texas, on May 12-13, 2025. ACL2

Workshops have been held regularly since 1999, typically in 18-month intervals.

These proceedings include nine long papers and two extended abstracts, all of which were reviewed

by at least three members of the program committee. The workshop also included several “rump session”

talks—short unpublished presentations that discussed ongoing research—as well as two invited talks,

the first from Swarat Chaudhuri of the University of Texas, and the second from Warren Hunt of the

University of Texas and Anna Slobodova of Arm.

At the workshop, awards were given for best student paper. This award resulted in a tie between two

papers:

• Ankit Kumar, “A Formalization of the Correctness of the Floodsub Protocol”

• Andrew Walter, “An ACL2s Interface to Z3”

As program chairs we are grateful for the other leaders of this workshop: the organizing chairs, Matt

Kaufmann and Eric Smith; the arrangements chairs, Carl Kwan and Maxine Xin; and the registration

chair, David Rager. We also wish to thank the program committee for all of their hard work:

• Harsh Raju Chamarthi, Rivos Inc.

• Alessandro Coglio, Kestrel Institute and Provable Inc.

• Jared Davis, Amazon.com Services LLC

• Ruben Gamboa, University of Wyoming & Kestrel Institute

• Shilpi Goel, Amazon Web Services

• David Greve

• Mark Greenstreet, The University of British Columbia

• David Hardin, Collins Aerospace

• Warren Hunt, The University of Texas at Austin

• Mitesh Jain, Rivos Inc.

• Matt Kaufmann, The University of Texas at Austin (retired)

• Mayank Manjrekar, ARM Ltd.

• Panagiotis Manolios, Northeastern University

• Eric McCarthy, Kestrel Institute and Provable Inc.

http://dx.doi.org/10.4204/EPTCS.423.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Gamboa and Manolios iii

• Sandip Ray, University of Florida

• Jose-Luis Ruiz-Reina, University of Seville

• David Russinoff, ARM Ltd.

• Anna Slobodova, ARM Ltd.

• Eric Smith, Kestrel Institute

• Sudarshan Srinivasan, North Dakota State University

• Rob Sumners, Advanced Micro Devices

• Sol Swords

• Freek Verbeek, Open University of The Netherlands

• Max von Hippel, Benchify

• Bill Young, The University of Texas at Austin

Ruben Gamboa and Panagiotis Manolios

Program chairs

May 2025

Gamboa and Manolios (Eds):

ACL2 Workshop 2025

EPTCS 423, 2025, pp. 1–18, doi:10.4204/EPTCS.423.1

© D.M. Russinoff

This work is licensed under the

Creative Commons Attribution License.

A Formalization of Elementary Linear Algebra: Part I

David M. Russinoff

david@russinoff.com

This is the first installment of an exposition of an ACL2 formalization of elementary linear algebra,

focusing on aspects of the subject that apply to matrices over an arbitrary commutative ring with

identity, in anticipation of a future treatment of the characteristic polynomial of a matrix, which

has entries in a polyniomial ring. The main contribution of this paper is a formal theory of the

determinant, including its characterization as the unique alternating n-linear function of the rows of

an n× n matrix, multiplicativity of the determinant, and the correctness of cofactor expansion.

1 Introduction

This is the first installment of an exposition of an ACL2 formalization of elementary linear algebra,

covering the basic algebra of matrices and the theory of determinants. Part II [14], also included in this

workshop, addresses row reduction and its application to matrix invertibility and simultaneous systems

of linear equations. Additional topics to be covered in future installments include vector spaces, linear

transformations, polynomials, eigenvectors. and diagonalization.

This ordering of topics departs from the typical syllabus of an introductory course in the subject.

Most elementary linear algebra textbooks treat the solution of simultaneous linear equations in the first

chapter, perhaps to reassure the student of the practical utility of the theory. Consequently, (since this

process depends on the existence of a multiplicative inverse) the entries of a matrix are assumed at the

outset to range over a field (often the real numbers) rather than a more general commutative ring. This

assumption, however, is not required for the main results of matrix algebra or the properties of the deter-

minant; in fact, there are numerous applications for which it does not hold [1]. Indeed, several chapters

later, one finds that the theory of eigenvalues is based on the fundamental notion of the characteristic

polynomial of a matrix over a field F , which is properly defined as the determinant of a matrix with

entries in the polynomial ring F[t]. In most cases, this problem is simply ignored [5, 6, 10]. A rare

exception is a comparatively rigorous treatment by Hoffman and Kunze [4], on which our formalization

is partly based (and from which this author learned the subject as a college sophomore). In Chapter 5,

(anticipating the introduction of the characteristic polynomial) they define the determinant of a matrix

over an arbitrary commutative ring with unity and ask the reader to determine for himself which of the

results of the preceding chapters, though stated and proved for matrices over a field, apply more generally

to commutative rings.

Neither of these strategies will serve our purpose. Unconstrained by pedagogical considerations, we

pursue a more principled development, separating those aspects of the theory that are valid for general

commutative rings from those that depend on the existence of a multiplicative inverse. The former topics

are treated in this paper; the latter in Part II. All supporting proof scripts reside in the shared ACL2

directory books/projects/linear/.

In Section 2, we introduce the notion of an abstract commutative ring with unity by means of an

encapsulated set of constrained functions and associated theorems corresponding to the standard ring

axioms. Section 3 covers the algebra of matrices and the transpose operator. The main contribution of this

paper is a formal theory of determinants, based on the classical definition, which appeals to the properties

http://dx.doi.org/10.4204/EPTCS.423.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 A Formalization of Linear Algebra: Part I

of the symmetric group. This consideration was a factor in our broader plan of a formalization of algebra

beginning with the theory of finite groups [11, 12, 13], on which the present work critically depends.

In Section 4, we define the determinant and derive its main properties, including its uniqueness as an

alternating n-linear function of the rows of an n×n matrix. Multiplicativity is derived as a consequence

of this result, which is further exploited in Section 5 to establish the correctness of cofactor expansion

and the properties of the classical adjoint. The proofs of uniqueness and its consequences illustrate the

use of encapsulation and functional instantiation as a substitute for higher order logical reasoning in the

first order logic of ACL2.

Previous work on matrix algebra within the ACL2 community includes a formalization by Gamboa et

al. based on ACL2 arrays [2], another by Hendrix with matrices defined as simple list structures [3], and

Kwan’s proofs of correctness of several numerical algorithms [7, 8]. Our matrix representation scheme

is essentially that of Hendrix (which was also adopted by Kwan), but since we require entries ranging

over an abstract ring rather than the acl2-number type, ours is constructed independently. Only the first

of these cited references provides a general definition of the determinant, with no proofs of its properties.

A variety of linear algebra formalizations have been based on other theorem provers [9, 15, 16, 17, 18],

but we are not aware of any that has produced the full list of results reported above.

2 Commutative Rings

In ring.lisp, the axioms of a commutative ring with unity are formalized by an encapsulation, partially

displayed below:

(encapsulate (((rp *) => *) ;ring element recognizer

((r+ * *) => *) ((r* * *) => *) ;addition and multiplication

((r0) => *) ((r1) => *) ;identities

((r- *) => *)) ;additive inverse

(local (defun rp (x) (rationalp x)))

(local (defun r+ (x y) (+ x y)))

(local (defun r* (x y) (* x y)))

(local (defun r0 () 0))

(local (defun r1 () 1))

(local (defun r- (x) (- x)))

;; Closure:

(defthm r+closed (implies (and (rp x) (rp y)) (rp (r+ x y))))

(defthm r*closed (implies (and (rp x) (rp y)) (rp (r* x y))))

;; Commutativity:

...

}

This introduces six constrained functions: rp is a predicate that recognizes an element of the ring;

r+ and r* are the binary addition and multiplication operations; the constants (r0) and (r1) are the

identity elements of these operations, respectively; and r- is the unary addition inverse. Note that these

functions are locally defined to be the corresponding functions pertaining to the rational numbers (an

arbitrary choice—the recognizer (integerp x) would have worked just as well as (rationalp x)).

The exported theorems (mostly omitted above) are the usual ring axioms: closure, commutativity, and

associativity of both operations; properties of the identities and the additive inverse; and the distributive

law. Informally, we shall refer to the ring R that is characterized by these axioms, and elements of R are

sometimes called scalars. When our intention is clear, we may abbreviate (r0) and (r1) as 0 and 1,

respectively.

D.M. Russinoff 3

The file also contains some trivially derived variants of the axioms, along with definitions of several

functions pertaining to lists of ring elements and proofs of their basic properties:

• rlistp is a predicate that recognizes a vector, i.e., a proper list of scalars, which we call an rlist;

• rlistnp recognizes an rlist of a specified length;

• rlist0p recognizes an rlist of which every member is (r0);

• rlistn0 returns an rlist of a specified length of which every member is (r0);

• rlist-sum and rlist-prod compute the sum and product, respectively, of the members of an

rlist;

• rlist-scalar-mul multiplies each member of an rlist by a given scalar and returns a list of the

products;

• rdot computes the dot product of two rlists of the same length, i.e., the sum of the products of

corresponding members;

• rdot-list returns the list of dot products of an rlist with the members of a list of rlists.

The reader may anticipate that a function name containing the character r, suggesting ring, is likely to

have an analog in Part II with r replaced by f, suggesting field.

3 Matrices

The ACL2 events reported in this section are taken from the file rmat.lisp, which begins with the

definition of an m×n matrix a over the ring R as a proper list of m rlists, each of length n:

(defun rmatp (a m n)

(if (zp m)

(null a)

(and (consp a)

(rlistnp (car a) n)

(rmatp (cdr a) (1- m) n))))

Each member of a is a row; a column is constructed by extracting an entry from each row:

(defun row (i a) (nth i a))

(defun col (j a)

(if (consp a)

(cons (nth j (car a)) (col j (cdr a)))

()))

The entry of a in row i and column j:

(defun entry (i j a) (nth j (nth i a)))

The basic operation of replacing row k of a with an rlist r:

(defun replace-row (a k r)

(if (zp k)

(cons r (cdr a))

(cons (car a) (replace-row (cdr a) (1- k) r))))

4 A Formalization of Linear Algebra: Part I

If two m×n matrices are not equal, then some pair of corresponding entries are different. The function

entry-diff conducts a search and returns the row and column in which this occurs:

(defthmd rmat-entry-diff-lemma

(implies (and (posp m) (posp n) (rmatp a m n) (rmatp b m n) (not (equal a b)))

(let* ((pair (entry-diff a b)) (i (car pair)) (j (cdr pair)))

(and (natp i) (< i m) (natp j) (< j n)

(not (equal (entry i j a) (entry i j b)))))))

If we can prove that corresponding entries of a and b are equal, then we may invoke this result to conclude

that a = b.

The recursive definitions of the sum of two matrices, (rmat-add a b), and the product of a scalar

and a matrix, (rmat-scalar-mul c a), are trival. We shall also find it convenient to define the sum of

the entries of a matrix in row-major order:

(defun rmat-sum (a)

(if (consp a)

(r+ (rlist-sum (car a)) (rmat-sum (cdr a)))

(r0)))

Matrix multiplication is a more complicated operation, deferred to Subsection 3.2.

3.1 Transpose

The transpose of a matrix is the list of its columns:

(defun transpose-mat-aux (a j n)

(if (and (natp j) (natp n) (< j n))

(cons (col j a) (transpose-mat-aux a (1+ j) n))

()))

(defund transpose-mat (a) (transpose-mat-aux a 0 (len (car a))))

We list some simple consequences of the definition:

(defthm transpose-rmat-entry

(implies (and (posp m) (posp n) (rmatp a m n) (natp j) (< j n) (natp i) (< i m))

(equal (entry j i (transpose-mat a))

(entry i j a))))

(defthm transpose-rmat-2

(implies (and (posp m) (posp n) (rmatp a m n))

(equal (transpose-mat (transpose-mat a))

a)))

(defthmd col-transpose-rmat

(implies (and (posp m) (posp n) (rmatp a m n) (natp j) (< j m))

(equal (col j (transpose-mat a))

(row j a))))

The replacement of a column is now readily defined using the transpose:

(defund replace-col (a k r) (transpose-mat (replace-row (transpose-mat a) k r)))

Our proof of associativity of matrix multiplication uses the observation that the entries of an m×n

matrix a have the same sum, as computed by rmat-sum, as those of its transpose. This is trivially true if

either m or n is 0. Otherwise, we derive the (m-1)x(n-1) matrix (strip-mat a) by deleting the first

row and the first column of a, and prove the following:

D.M. Russinoff 5

(defthmd sum-rmat-strip-mat

(implies (and (posp m) (posp n) (rmatp a m n))

(equal (rmat-sum a)

(r+ (entry 0 0 a)

(r+ (r+ (rlist-sum (cdr (row 0 a)))

(rlist-sum (cdr (col 0 a))))

(rmat-sum (strip-mat a)))))))

The desired lemma follows by induction, using sum-rmat-strip-mat to rewrite both sides of the equa-

tion and col-transpose-rmat to complete the proof:

(defthmd sum-rmat-transpose

(implies (and (natp m) (natp n) (rmatp a m n))

(equal (rmat-sum (transpose-mat a))

(rmat-sum a))))

3.2 Multiplication

The product of matrices a and b is defined when the number of columns of a is the number of rows of b.

The product has the same number of rows as a and the same number of columns as b. Each row of the

product is the list of dot products of the corresponding row of a and the columns of b:

(defund rmat* (a b)

(if (consp a)

(cons (rdot-list (car a) (transpose-mat b))

(rmat* (cdr a) b))

()))

(defthm rmatp-rmat*

(implies (and (rmatp a m n) (rmatp b n p) (posp m) (posp n) (posp p))

(rmatp (rmat* a b) m p)))

(defthmd rmat*-entry

(implies (and (posp m) (posp n) (posp p) (rmatp a m n) (rmatp b n p)

(natp i) (< i m) (natp j) (< j p))

(equal (entry i j (rmat* a b))

(rdot (row i a) (col j b)))))

The formula for the transpose of a product is an immediate consequence of transpose-rmat-entry,

rmat*-entry, and rmat-entry-diff-lemma:

(defthmd transpose-rmat*

(implies (and (posp m) (posp n) (posp p) (rmatp a m n) (rmatp b n p))

(equal (transpose-mat (rmat* a b))

(rmat* (transpose-mat b) (transpose-mat a)))))

For i < n, row i of the n×n identity matrix is the unit vector (runit i n), the rlist of length n with 1

at index i and 0 elsewhere:

(defun runit (i n)

(if (zp n) ()

(if (zp i) (cons (r1) (rlistn0 (1- n)))

(cons (r0) (runit (1- i) (1- n))))))

(defun id-rmat-aux (i n)

(if (and (natp i) (natp n) (< i n))

6 A Formalization of Linear Algebra: Part I

(cons (runit i n) (id-rmat-aux (1+ i) n))

()))

(defund id-rmat (n) (id-rmat-aux 0 n))

The entries of the identity matrix are given by the Kronecker delta function:

(defun rdelta (i j) (if (= i j) (r1) (r0)))

(defthmd entry-id-rmat

(implies (and (natp n) (natp i) (natp j) (< i n) (< j n))

(equal (entry i j (id-rmat n)) (rdelta i j))))

It follows that the identity matrix is its own transpose, which in turn implies its defining properties:

(defthmd transpose-id-rmat

(implies (natp n) (equal (transpose-mat (id-rmat n)) (id-rmat n))))

(defthmd id-rmat-right

(implies (and (posp m) (posp n) (rmatp a m n))

(equal (rmat* a (id-rmat n)) a)))

(defthmd id-rmat-left

(implies (and (posp m) (posp n) (rmatp a m n))

(equal (rmat* (id-rmat m) a) a)))

To prove associativity of multiplication, let a, b, and c be matrices of dimensions m×n, n×p, and

p×q, respectively, so that both products (rmat a (rmat* b c)) and (rmat* (rmat* a b) c) are

m×q matrices. It will suffice to show that corresponding entries agree:

(entry i j (rmat* a (rmat* b c))) = (entry i j (rmat* (rmat* a b) c)). (1)

The usual informal proof proceeds by expanding the matrix products as well as the resulting dot products.

In standard notation (e.g., writing air for (entry i r a)), the resulting goal is

n−1

∑
r=0

p−1

∑
s=0

airbrscs j =
p−1

∑
s=0

n−1

∑
r=0

airbrscs j.

The proof is completed by simply observing that the sum on the right is a rearrangement of the three-way

products that appear in the sum on the left. Our objective is a formal proof that captures the intuition

underlying this observation.

We shall show that these products are the entries of the n×p matrix (rmat12 a b c i j), defined

as follows:

(defun rlist-mul-list (x l)

(if (consp l)

(cons (rlist-mul x (car l))

(rlist-mul-list x (cdr l)))

()))

(defun rlist-scalar-mul-list (x l)

(if (consp l)

(cons (rlist-scalar-mul (car x) (car l))

(rlist-scalar-mul-list (cdr x) (cdr l)))

()))

(defund rmat12 (a b c i j)

(rlist-scalar-mul-list (row i a) (rlist-mul-list (col j c) b)))

To compute the entries of this matrix, first we compute its rth row:

D.M. Russinoff 7

(nth r (rmat12 a b c i j))

= (rlist-scalar-mul (nth r (row i a)) (nth r (rlist-mul-list (col j c) b)))

= (rlist-scalar-mul (entry i r a) (rlist-mul (col j c) (nth r b)))

Now the sth entry of the rth row:

(entry r s (rmat12 a b c i j))

= (nth s (nth r (rmat12 a b c i j)))

= (nth s (rlist-scalar-mul (entry i r a) (rlist-mul (col j c) (nth r b))))

= (entry i r a) * (nth s (rlist-mul (col j c) (nth r b)))

= (entry i r a) * ((nth s (col j c)) * (nth s (nth r b)))

= (entry i r a) * ((entry s j c) * (entry r s b))

= (entry i r a) * (entry r s b) * (entry s j c)

Next we compute (rmat-sum (rmat12 a b c i j)). As a first step, it is easily shown by induction

that if x is an rlist of length n and l is a matrix with n rows, then

(rmat-sum (rlist-scalar-mul-list x l)) = (rdot x (rlist-sum-list l)).

We apply this result to the definition of rmat-sum, substituting (row i a) for x and (rlist-mul-list
(col j c) b) for l. This yields the following expression for rmat-sum (rmat12 a b c i j)):

(rdot (row i a) (rlist-sum-list (rlist-mul-list (col j c) b))).

Note that (rlist-sum-list (rlist-mul-list (col j c) b)) and (col j (rmat* b c)) are

both rlists of length n. To prove equality, it suffices to show that corresponding members are equal:

(nth k (rlist-sum-list (rlist-mul-list (col j c) b)))

= (rlist-sum (nth k (rlist-mul-list (col j c) b)))

= (rlist-sum (rlist-mul (col j c) (nth k b)))

= (rdot (col j c) (nth k b))

= (rdot (col j c) (row k b))

= (rdot (row k b) (col j c))

= (entry k j (rmat* b c))

= (nth k (col j (rmat* b c)))

Thus, (rlist-sum-list (rlist-mul-list (col j c) b)) = (col j (rmat* b c)). It follows
that

(rmat-sum (rmat12 a b c i j)) = (rdot (row i a) (col j (rmat* b c)))

= (entry i j (rmat* a (rmat* b c))):

The p×n matrix corresponding to the right side of Equation (1) is similarly defined:

(defund rmat21 (a b c i j)

(rlist-scalar-mul-list (col j c)

(rlist-mul-list (row i a) (transpose-mat b))))

Minor variations in the above derivations yield an expression for the entries of this matrix,

(entry r s (rmat21 a b c i j)) = (r* (entry i s a) (r* (entry s r b) (entry r j c))),

and the sum of these entries:

(rmat-sum (rmat21 a b c i j)) = (entry i j (rmat* (rmat* a b) c)).

Thus, (entry r s (rmat21 a b c i j)) = (entry s r (rmat12 a b c i j)), and hence

(transpose-mat (rmat12 a b c i j)) = (rmat21 a b c i j).

Finally, Equation (1) follows from sum-rmat-transpose, and associativity holds:

(defthmd rmat*-assoc

(implies (and (rmatp a m n) (rmatp b n p) (rmatp c p q)

(posp m) (posp n) (posp p) (posp q))

(equal (rmat* a (rmat* b c))

(rmat* (rmat* a b) c))))

8 A Formalization of Linear Algebra: Part I

4 Determinants

In rdet.lisp, we formalize the classical definition of the determinant of an n×n matrix over the ring R,

based on the symmetric group (sym n) as defined in books/projects/groups/symmetric.lispand

documented in [13]. The elements of this group are the members of the list (slist n) of permutations

of the list (ninit n) = (0 1 ... n-1). Such a permutation p may be viewed as a bijection of

(ninit n) that maps an index j to (nth j p). The composition of permutations p and q is computed

by the group operation, (comp-perm p q n). Note that (ninit n) itself is the group identity.

A transposition is a permution, denoted by (transpose i j n), that simply interchanges two dis-

tinct indices i and j. Every permutation may be represented as a composition of a list of transpositions,

and while neither this list nor its length is unique, its length is either always even or always odd for a

given permutation p; p is said to be even or odd accordingly.

A permutation p is applied to an arbitrary list l of length n by the following function:

(defun permute (l p)

(if (consp p)

(cons (nth (car p) l) (permute l (cdr p)))

()))

A critical property of permute pertains to a product of permutations:

(defthm permute-comp-perm

(implies (and (true-listp l) (consp l) (in x (sym (len l))) (in y (sym (len l))))

(equal (permute (permute l x) y)

(permute l (comp-perm x y (len l))))))

Each permutation p in (sym n) contributes a term (rdet-term a p n) to the determinant of an

n×n matrix a, computed as follows:

(1) For each i < n, select the entry of (row i a) in column (nth i p);

(2) Compute the product of these n entries;

(3) Negate the product if p is an odd permutation.

(defun rdet-prod (a p n)

(if (zp n)

(r1)

(r* (rdet-prod a p (1- n))

(entry (1- n) (nth (1- n) p) a))))

(defund rdet-term (a p n)

(if (even-perm-p p n)

(rdet-prod a p n)

(r- (rdet-prod a p n))))

The determinant of a is the the sum over (slist n) of these signed products:

(defun rdet-sum (a l n)

(if (consp l)

(r+ (rdet-term a (car l) n) (rdet-sum a (cdr l) n))

(r0)))

(defund rdet (a n) (rdet-sum a (slist n) n))

D.M. Russinoff 9

4.1 Properties

To compute the determinant of the identity matrix, note that if p is any permutation other than the identity

(ninit n), we can find i< n such that (nth i p) 6= i, and hence (entry i (nth i p) (id-rmat

n)) = 0, which implies (rdet-term (id-rmat n) p n) = 0. On the other hand, (nth i (ninit

n)) = i for all i, which implies (rdet-term (id-rmat n) (ninit n) n) = 1. Thus,

(defthm rdet-id-rmat (implies (posp n) (equal (rdet (id-rmat n) n) (r1))))

The determinant is invariant under transpose-mat. This follows from the observation that the term

contributed to the determinant of the transpose of a by a permutation p is the same as the term contributed

to the determinant of a by the inverse of p:

(defthmd rdet-transpose

(implies (and (posp n) (rmatp a n n))

(equal (rdet (transpose-mat a) n) (rdet a n))))

If every entry of the kth row of a is 0, then for all p, the kth factor of (rdet-prod a p n) is 0, and it

follows that the determinant of a is 0:

(defthmd rdet-row-0

(implies (and (rmatp a n n) (posp n) (natp k) (< k n) (= (nth k a) (rlistn0 n)))

(equal (rdet a n) (r0))))

Furthermore, the determinant is alternating, i.e., if two rows of a are equal, then its determinant is 0. To

prove this, suppose rows i and j are equal, where i 6= j. Given a permutation p, let p’ = (comp-perm p

(transpose i j n) n). The factors of (rdet-prod a p’ n) are the same as those of (rdet-prod

a p n). But p and p’ have opposite parities, and therefore (rdet-term a p’ n) is the negative

of (rdet-term a p n). Consequently, the sum of terms contributed by the odd permutations is the

negative of the sum of terms contributed by the even permutations, and we have

(defthmd rdet-alternating

(implies (and (rmatp a n n) (posp n)

(natp i) (< i n) (natp j) (< j n) (not (= i j))

(= (row i a) (row j a)))

(equal (rdet a n) (r0))))

The determinant is also n-linear, i.e., linear as a function of each row. This property is specified in terms

of the replace-row operation. For a given row i and permutation p, the term contributed by p to the

determinant of (replace-row a i x) is a linear function of x:

(defthm rdet-term-replace-row

(implies (and (rmatp a n n) (posp n) (member p (slist n))

(rlistnp x n) (rlistnp y n) (rp c)

(natp i) (< i n))

(let ((a1 (replace-row a i x))

(a2 (replace-row a i y))

(a3 (replace-row a i (rlist-add (rlist-scalar-mul c x) y))))

(equal (rdet-term a3 p n)

(r+ (r* c (rdet-term a1 p n)) (rdet-term a2 p n))))))

The desired result follows by summing over all permutations:

(defthm rdet-n-linear

(implies (and (rmatp a n n) (posp n) (natp i) (< i n)

(rlistnp x n) (rlistnp y n) (rp c))

(equal (rdet (replace-row a i (rlist-add (rlist-scalar-mul c x) y)) n)

(r+ (r* c (rdet (replace-row a i x) n))

(rdet (replace-row a i y) n)))))

10 A Formalization of Linear Algebra: Part I

4.2 Uniqueness

We shall show that rdet is the unique n-linear alternating function on n×n matrices that satisfies (rdet

(id-rmat n) n) = 1. To that end, we introduce a constrained function rdet0 as follows:

(encapsulate (((rdet0 * *) => *))

(local (defun rdet0 (a n) (rdet a n)))

(defthm rp-rdet0

(implies (and (rmatp a n n) (posp n))

(rp (rdet0 a n))))

(defthmd rdet0-n-linear

(implies (and (rmatp a n n) (posp n) (natp i) (< i n)

(rlistnp x n) (rlistnp y n) (rp c))

(equal (rdet0 (replace-row a i (rlist-add (rlist-scalar-mul c x) y)) n)

(r+ (r* c (rdet0 (replace-row a i x) n))

(rdet0 (replace-row a i y) n)))))

(defthmd rdet0-adjacent-equal

(implies (and (rmatp a n n) (posp n)

(natp i) (< i (1- n)) (= (row i a) (row (1+ i) a)))

(equal (rdet0 a n) (r0)))))

Our main objective is to prove that

(rdet0 a n) = (r* (rdet a n) (rdet0 (id-rmat n))). (2)

If we then prove that a given function (f a n) satisfies the constraints on rdet0, then we may conclude

by functional instantiation that (f a n) = (r* (rdet a n) (f (id-rmat n) n)). From this it will

follow that if f has the additional property (f (id-rmat n) n) = 1, then (f a n) = (rdet a n).

Note that instead of assuming that rdet0 is alternating, we have imposed the weaker constraint

rdet0-adjacent-equal, which says that the value is 0 if two adjacent rows are equal. This relaxes

the proof obligations for functional instantiation, which will be critical for the proof of correctness of

cofactor expansion (Section 5). However, it is a consequence of the above constraints that rdet0 is

alternating. To establish this, we first show by a sequence of applications of rdet0-n-linear and

rdet0-adjacent-equal that transposing two adjacent rows negates the value of rdet0. It is also

easily shown that an arbitrary transposition may be expressed as a composition of an odd number of

transpositions of adjacent rows, and it follows that the value is negated by transposing any two rows:

(defthmd rdet0-permute-transpose

(implies (and (rmatp a n n) (posp n)

(natp i) (natp j) (< i j) (< j n))

(equal (rdet0 (permute a (transpose i j n)) n)

(r- (rdet0 a n)))))

Since every permutation is a product of transpositions, this yields the following generalization:

(defthmd rdet0-permute-rows

(implies (and (rmatp a n n) (posp n) (in p (sym n)))

(equal (rdet0 (permute a p) n)

(if (even-perm-p p n)

(rdet0 a n)

(r- (rdet0 a n))))))

Now suppose (row i a) = (row j a), where 0 ≤ i < j < n. By rdet0-adjacent-equal, we

may also assume i + 1 < j. Let a’ = (permute (transpose (1+ i) j n) a). Then

D.M. Russinoff 11

(nth (1+ i) a’) = (nth j a) = (nth i a) = (nth i a’).

By rdet0-adjacent-equal, (rdet0 a’) = 0, and by rdet0-permute-transpose,

(rdet0 a n) = (r- (rdet0 a’ n) = (r- 0) = 0.

Thus, rdet0 is an alternating function:

(defthmd rdet0-alternating

(implies (and (rmatp a n n) (posp n) (natp i) (natp j) (< i n) (< j n)

(not (= i j)) (= (row i a) (row j a)))

(equal (rdet0 a n) (r0))))

Our proof of Equation (2) involves arbitrary lists of length k ≤ n of natural numbers less than n,

which we call k-tuples. We begin with the following definitions:

• (tuplep x k n) is a predicate that recognizes a k-tuple;

• (extend-tuple x n) returns the list of n (k+1)-tuples constructed from a given k-tuple x by

appending each natural number less than n;

• (extend-tuples l n) returns the list of all (k+1)-tuples constructed in this way from the mem-

bers of a list l of k-tuples.

The list of all k-tuples is defined recursively:

(defun all-tuples (k n)

(if (zp k)

(list ())

(extend-tuples (all-tuples (1- k) n) n)))

Let a be a fixed n×n matrix. We associate a value (reval-tuple x k a n) with each k-tuple x as

follows. First we construct an rlist of length k, (extract-entries x a), the jth member of which is

(entry j (nth j x) a):

(defun extract-entries (x a)

(if (consp x)

(cons (nth (car x) (car a))

(extract-entries (cdr x) (cdr a)))

()))

We define (runits x n) to be the list of unit vectors corresponding to the members of x:

(defun runits (x n)

(if (consp x)

(cons (runit (car x) n) (runits (cdr x) n))

()))

The value (reval-tuple x k a n) is the product of the members of (extract-entries x a) to-

gether with the value of rdet0 applied to the matrix derived from a by replacing its first k rows with

(runits x n):

(defun reval-tuple (x k a n)

(r* (rlist-prod (extract-entries x a))

(rdet0 (append (runits x n) (nthcdr k a)) n)))

We also define the sum of the values of (reval-tuple x k a n) as x ranges over a list l of k-tuples:

12 A Formalization of Linear Algebra: Part I

(defun rsum-tuples (l k a n)

(if (consp l)

(r+ (reval-tuple (car l) k a n) (rsum-tuples (cdr l) k a n))

(r0)))

We would like to compute (rsum-tuples (all-tuples k n) k a n). Since the only member of

(all-tuples 0 n) is NIL, the case k = 0 is trivial:

(rsum-tuples (all-tuples 0 n) 0 a n) = (reval-tuple () 0 a n) = (rdet0 a n). (3)

For the case k = n, we observe that (nthcdr n a) = NIL and that if the members of x are not distinct,

then the matrix (runits x n) has two equal rows and by rdet0-alternating, (rdet0 (runits x

n) n) = 0. Thus, in the computation of (rsum-tuples (all-tuples n n) n a n), we need only

consider the n-tuples that are permutations. If p is in (sym n), then by rdet0-permute-rows,

(rdet0 (runits p n) n)

= (rdet0 (permute (id-rmat n) p) n)

= (if (even-perm-p n n) (rdet0 (id-rmat n) n) (r- (rdet0 (id-rmat n) n)))

and (extract-entries p a) = (rdet-prod a p n). Consequently,

(reval-tuple p n a n) = (r* (rdet-term a p n) (rdet0 (id-rmat n) n)).

Summing over (slist n), we have

(rsum-tuples (all-tuples n n) n a n) = (r* (rdet a n) (rdet0 (id-rmat n) n)). (4)

For 0 ≤ k < n and (tuplep x k n), repeated application of rdet0-n-linear yields

(rsum-tuples (extend-tuple x) (1+ k) a n) = (reval-tuple x k a n).

Summing over (all-tuples k n), we have the recurrence formula

(rsum-tuples (all-tuples (1+ k) n) (1+ k) a n) = (rsum-tuples (all-tuples k n) k a n).

By induction, (rsum-tuples (all-tuples k n) k a n) is independent of k. In particular,

(rsum-tuples (all-tuples n n) n a n) = (rsum-tuples (all-tuples 0 n) 0 a n).

Equation (2) follows from this result together with Equations (3) and (4):

(defthmd rdet-unique

(implies (rmatp a n n)

(equal (rdet0 a n)

(r* (rdet a n) (rdet0 (id-rmat n) n)))))

4.3 Multiplicativity

If we had further constrained the function rdet0 to satisfy (rdet0 (id-rmat n) n) = 1, then we could

have replaced the conclusion of rdet-unique with the simpler equation (rdet0 a n) = (rdet a n).

One reason behind our weaker specification is that it allows us to prove the multiplicativity property,

(rdet (rmat* a b) n) = (r* (rdet a n) (rdet b n), by functional instantiation. We define

(defun rdet-rmat* (a b n) (rdet (rmat* a b) n))

D.M. Russinoff 13

Our goal is the functional instance of rdet-unique derived by substituting

(lambda (a n) (rdet-rmat* a b n))

for rdet0. This requires that we prove the analogs of the two nontrivial constraints on rdet0. The first is

a consequence of rdet-n-linear and the definitions of rmat*, rdot-list, and rlist-scalar-mul:

(defthmd rdet-rmat*-n-linear

(implies (and (rmatp a n n) (rmatp b n n) (posp n) (natp k) (< k n)

(rlistnp x n) (rlistnp y n) (rp c))

(equal (rdet-rmat* (replace-row a k (rlist-add (rlist-scalar-mul c x) y))

b n)

(r+ (r* c (rdet-rmat* (replace-row a k x) b n))

(rdet-rmat* (replace-row a k y) b n)))))

The second follows from rdet-alternating and the observation that if (row k a) = (row (1+ k)

a), then (row k (rmat* a b)) = (row (1+ k) (rmat* a b)):

(defthmd rdet-rmat*-adjacent-equal

(implies (and (rmatp a n n) (rmatp b n n) (posp n)

(natp k) (< k (1- n)) (= (row k a) (row (1+ k) a)))

(equal (rdet-rmat* a b n) (r0))))

Functional instantiation of rdet-unique yields

(rdet-rmat* a b n) = (r* (rdet a n) (rdet-rmat* (id-rmat n) b n)).

Expanding rdet-rmat* and applying id-rmat-left, we have

(defthmd rdet-multiplicative

(implies (and (rmatp a n n) (rmatp b n n) (posp n))

(equal (rdet (rmat* a b) n)

(r* (rdet a n) (rdet b n)))))

5 Cofactors

Given an n×n matrix a, we define the (n-1)×(n-1) submatrix (minor i j a) to be the result of

deleting the ith row and the jth column of a:

(defun delete-row (k a)

(if (zp k) (cdr a)

(cons (car a) (delete-row (1- k) (cdr a)))))

(defund delete-col (k a) (transpose-mat (delete-row k (transpose-mat a))))

(defund minor (i j a) (delete-col j (delete-row i a)))

Its entries may be computed as follows:

(defthmd entry-rmat-minor

(implies (and (rmatp a n n) (natp n) (> n 1) (natp i) (natp j) (< i n) (< j n)

(natp r) (natp s) (< r (1- n)) (< s (1- n)))

(equal (entry r s (minor i j a))

(entry (if (>= r i) (1+ r) r) (if (>= s j) (1+ s) s) a))))

The cofactor of an entry of a is the determinant of its minor with an attached sign determined by the

parity of the sum of its indices:

(defund rdet-cofactor (i j a n)

(if (evenp (+ i j))

(rdet (minor i j a) (1- n))

(r- (rdet (minor i j a) (1- n)))))

14 A Formalization of Linear Algebra: Part I

5.1 Cofactor Expansion

The cofactor expansion of the determinant of a by a column is computed by multiplying each entry of

the column by its cofactor and summing the products:

(defun expand-rdet-col-aux (a i j n)

(if (zp i) (r0)

(r+ (r* (entry (1- i) j a) (rdet-cofactor (1- i) j a n))

(expand-rdet-col-aux a (1- i) j n))))

(defund expand-rdet-col (a j n) (expand-rdet-col-aux a n j n))

Cofactor expansion by a row is similarly defined:

(defun expand-rdet-row-aux (a i j n)

(if (zp j) (r0)

(r+ (r* (entry i (1- j) a) (rdet-cofactor i (1- j) a n))

(expand-rdet-row-aux a i (1- j) n))))

(defund expand-rdet-row (a i n) (expand-rdet-row-aux a i n n))

It follows from entry-rmat-minor and transpose-rmat-entry that

(transpose-mat (minor i j a)) = (minor j i (transpose-mat a)),

which, in combination with rdet-transpose, implies

(rdet-cofactor j i (transpose-mat a) n) = (rdet-cofactor i j a n).

Consequently, cofactor expansion by column i is equivalent to expansion of the transpose by row i:

(defthmd expand-rdet-row-transpose

(implies (and (rmatp a n n) (natp n) (> n 1) (natp i) (< i n))

(equal (expand-rdet-row (transpose-mat a) i n)

(expand-rdet-col a i n))))

We shall prove, by functional instantiation of rdet-unique, that the result of cofactor expansion by a

column has the same value as the determinant, and it will follow that the same is true for expansion by a

row. Once again, this requires proving analogs of the constraints on rdet0.

It is clear that replacing row i of a does not alter (rdet-cofactor i j a b). On the other hand,

for k 6= i, (rdet-cofactor i j a n) is a linear function of (row k a):

(defthmd rdet-cofactor-n-linear

(implies (and (rmatp a n n) (natp n) (> n 1) (natp i) (< i n) (natp j) (< j n)

(natp k) (< k n) (not (= k i)) (rlistnp x n) (rlistnp y n) (rp c))

(equal (rdet-cofactor

i j (replace-row a k (rlist-add (rlist-scalar-mul c x) y)) n)

(r+ (r* c (rdet-cofactor i j (replace-row a k x) n))

(rdet-cofactor i j (replace-row a k y) n)))))

It follows that cofactor expansion by column j is n-linear:

(defthmd expand-rdet-col-n-linear

(implies (and (rmatp a n n) (natp n) (> n 1) (natp j) (< j n)

(natp k) (< k n) (rlistnp x n) (rlistnp y n) (rp c))

(equal (expand-rdet-col

(replace-row a k (rlist-add (rlist-scalar-mul c x) y)) j n)

(r+ (r* c (expand-rdet-col (replace-row a k x) j n))

(expand-rdet-col (replace-row a k y) j n)))))

D.M. Russinoff 15

Now suppose adjacent rows k and k + 1 are equal. Then for any index i other than k or k + 1, (minor

i j a) has two equal adjacent rows, and therefore (rdet-cofactor i j a n) = 0. Meanwhile,

(minor k j) = (minor (1+ k) j)

and

(entry k j a) = (entry (1+ k) j a),

but k + j and (k + 1) + j have opposite parities, and hence

(rdet-cofactor k j a n) + (rdet-cofactor (1+ k) j a n) = 0.

Therefore, (expand-rdet-col a j n) = 0:

(defthmd expand-rdet-col-adjacent-equal

(implies (and (rmatp a n n) (> n 1) (natp j) (< j n)

(natp k) (< k (1- n)) (= (row k a) (row (1+ k) a)))

(equal (expand-rdet-col a j n) (r0))))

Thus, the constraints on rdet0 are satisfied, and by functional instantiation of rdet-unique, we have

the following:

(defthmd expand-rdet-col-val

(implies (and (rmatp a n n) (posp n) (> n 1) (natp k) (< k n))

(equal (expand-rdet-col a k n)

(r* (rdet a n) (expand-rdet-col (id-rmat n) k n)))))

It remains to show that (expand-rdet-col (id-rmat n) k n) = 1. By row-rmat-minor (see

rdet.lisp), we have the following expression for a row of (minor i j (id-rmat n)):

(defthmd nth-minor-id-rmat

(implies (and (natp n) (> n 1) (natp i) (< i n) (natp j) (< j n)

(natp r) (< r (1- n)))

(equal (nth r (minor i j (id-rmat n)))

(delete-nth j (runit (if (< r i) r (1+ r)) n)))))

The following is a consequence of the definitions of runit and delete-nth:

(defthmd delete-nth-runit

(implies (and (posp n) (natp j) (< j n) (natp k) (< k n))

(equal (delete-nth j (runit k n))

(if (< j k) (runit (1- k) (1- n))

(if (> j k) (runit k (1- n))

(rlistn0 (1- n)))))))

Consequently, if i 6= j, then we find a zero row of (minor i j (id-rmat n)), and by rdet-row-0,

its determinant is 0. On the other hand, (minor j j (id-rmat n)) = (id-rmat (1- n)) and the

corresponding cofactor is 1, as is the cofactor expansion:

(defthmd expand-rdet-col-id-rmat

(implies (and (rmatp a n n) (natp n) (> n 1) (natp j) (< j n))

(equal (expand-rdet-col (id-rmat n) j n) (r1))))

Combining this with expand-rdet-col-val, we have the correctness theorem for column expansion:

16 A Formalization of Linear Algebra: Part I

(defthmd expand-rdet-col-rdet

(implies (and (rmatp a n n) (posp n) (> n 1) (natp k) (< k n))

(equal (expand-rdet-col a k n) (rdet a n))))

It follows from rdet-transpose, expand-rdet-row-transpose, and transpose-rmat-2 that the

same holds for row expansion:

(defthmd expand-rdet-row-rdet

(implies (and (rmatp a n n) (posp n) (> n 1) (natp k) (< k n))

(equal (expand-rdet-row a k n) (rdet a n))))

As a consequence of expand-rdet-row-rdet, we have a recursive version of rdet, based on co-

factor expansion with respect to row 0:

(mutual-recursion

(defund rdet-rec-cofactor (j a n)

(if (zp n) ()

(if (evenp j) (rdet-rec (minor 0 j a) (1- n))

(r- (rdet-rec (minor 0 j a) (1- n))))))

(defun expand-rdet-rec-aux (a j n)

(if (zp j) (r0)

(r+ (r* (entry 0 (1- j) a) (rdet-rec-cofactor (1- j) a n))

(expand-rdet-rec-aux a (1- j) n))))

(defund expand-rdet-rec (a n) (expand-rdet-rec-aux a n n))

(defun rdet-rec (a n)

(if (zp n) (r0)

(if (= n 1) (entry 0 0 a)

(expand-rdet-rec a n)))))

The equivalence follows from expand-rdet-row-rdet by induction (see rdet.lisp for details):

(defthmd rdet-rec-rdet

(implies (and (rmatp a n n) (posp n))

(equal (rdet-rec a n) (rdet a n))))

5.2 Classical Adjoint

We shall define the cofactor matrix of an n×n matrix a to be the n×n matrix with entries

(entry i j (cofactor-rmat a b)) = (rdet-cofactor i j a n).

To define this matrix, we first define a function that computes its ith row:

(defun cofactor-rmat-row-aux (i j a n)

(if (and (natp n) (> n 1) (natp j) (< j n))

(cons (rdet-cofactor i j a n) (cofactor-rmat-row-aux i (1+ j) a n))

()))

(defund cofactor-rmat-row (i a n) (cofactor-rmat-row-aux i 0 a n))

(defun cofactor-rmat-aux (i a n)

(if (and (natp n) (natp i) (< i n))

(cons (cofactor-rmat-row i a n) (cofactor-rmat-aux (1+ i) a n))

()))

(defund cofactor-rmat (a n) (cofactor-rmat-aux 0 a n))

D.M. Russinoff 17

The classical adjoint of a is the transpose of its cofactor matrix:

(defund adjoint-rmat (a n) (transpose-mat (cofactor-rmat a n)))

The following is an equivalent formulation:

(defthmd cofactor-rmat-transpose

(implies (and (rmatp a n n) (natp n) (> n 1))

(equal (cofactor-rmat (transpose-mat a) n)

(adjoint-rmat a n))))

Note that the dot product of (row i a) with (cofactor-rmat-row i a n) is a rearrangement of the

sum (expand-rdet-row a i n):

(defthmd rdot-cofactor-rmat-row-expand-rdet-row

(implies (and (rmatp a n n) (natp n) (> n 1) (natp i) (< i n))

(equal (rdot (row i a) (cofactor-rmat-row i a n))

(expand-rdet-row a i n))))

Combining this with expand-rdet-row-rdet, we have the following expression for the determinant:

(defthmd rdot-cofactor-rmat-row-rdet

(implies (and (rmatp a n n) (natp n) (> n 1) (natp i) (< i n))

(equal (rdot (row i a) (cofactor-rmat-row i a n))

(rdet a n))))

Next we consider the result of substituting (replace-row a i (row k a)) for a in rdot-cofactor-

rmat-row-rdet, where k 6= i. Since this matrix has two identical rows, its determinant is 0, and we

have

(defthmd rdot-cofactor-rmat-row-rdet-0

(implies (and (rmatp a n n) (natp n) (> n 1) (natp i) (< i n)

(natp k) (< k n) (not (= k i)))

(equal (rdot (row k a) (cofactor-rmat-row i a n))

(r0))))

Thus, we have the following for general k:

(defthmd rdot-cofactor-rmat-row-rdelta

(implies (and (rmatp a n n) (natp n) (> n 1) (natp i) (< i n) (natp k) (< k n))

(equal (rdot (row k a) (cofactor-rmat-row i a n))

(r* (rdelta i k) (rdet a n)))))

Since (cofactor-rmat-row i a n) = (col i (adjoint-mat a n)), this yields an expression for

the n×n matrix product of a and its adjoint:

(defthmd rmat*-adjoint-rmat

(implies (and (rmatp a n n) (natp n) (> n 1))

(equal (rmat* a (adjoint-rmat a n))

(rmat-scalar-mul (rdet a n) (id-rmat n)))))

In Part II, where we consider matrices with entries ranging over a field, we shall use this last equation

in deriving a criterion for the existence of a multiplicative inverse of a matrix. We shall also apply the

results of this subsection to a proof of Cramer’s Rule for solving a system of n linear equations in n

unknowns.

18 A Formalization of Linear Algebra: Part I

References

[1] William Brown (1993): Matrices over Commutative Rings. M. Dekker.

[2] Ruben Gamboa, John Cowles & Jeff Van Baalen (2003): Using ACL2 Arrays to Formalize Matrix Algebra.

In: ACL2 2003: 4th International Workshop on the ACL2 Theorem Prover and its Applications, Boulder,

Colorado.

[3] Joe Hendrix (2003): Matrices in ACL2. In: ACL2 2003: 4th International Workshop on the ACL2 Theorem

Prover and its Applications, Boulder, Colorado.

[4] Kenneth Hoffman & Ray Kunze (1961): Linear Algebra. Allyn Prentice-Hall.

[5] Bernard Kolman (1977): Elementary Linear Algebra, 2nd edition. MacMillan.

[6] Jin Ho Kwak & Sungpyo Kong (1997): Linear Algebra. Birkhäuser. doi:10.1007/978-1-4757-1200-1.

[7] Carl Kwan & Warren Hunt (2024): Automatic Verification of Right-greedy Numerical Linear Algebra Algo-

rithms. In: Proceedings of the 24th Conference on Formal Methods in Computer-Aided Design (FMCAD

2024), doi:10.34727/2024/isbn.978-3-85448-065-5.

[8] Carl Kwan & Warren Hunt (2024): Formalizing the Cholesky Factorization Theorem. In: Proceedings for the

Fifteenth Conference on Interactive Theorem Proving (ITP 2024), doi:10.4230/LIPIcs.ITP.2024.25.

[9] Maths in Lean: Linear Algebra. Available at https://leanprover-community.github.io/theories/

linear_algebra.html.

[10] Steven Roman (2005): Advanced Linear Algebra, 2nd edition. Springer, doi:10.1007/

978-1-4757-2178-2.

[11] David M. Russinoff (2022): A Formalization of Finite Froup Theory. In: ACL2 2022: 17th International

Workshop on the ACL2 Theorem Prover and its Applications, Austin, Texas, doi:10.4204/EPTCS.359.10.

[12] David M. Russinoff (2023): A Formalization of Finite Froup Theory: Part II. In: ACL2 2023: 18th Inter-

national Workshop on the ACL2 Theorem Prover and its Applications, Austin, Texas, doi:10.4204/EPTCS.

393.4.

[13] David M. Russinoff (2023): A Formalization of Finite Froup Theory: Part III. In: ACL2 2023: 18th Inter-

national Workshop on the ACL2 Theorem Prover and its Applications, Austin, Texas, doi:10.4204/EPTCS.

393.5.

[14] David M. Russinoff (2025): A Formalization of Elementary Linear Algebra: Part II. In: ACL2 2025: 19th

International Workshop on the ACL2 Theorem Prover and its Applications, Austin, Texas.

[15] ZhengPu Shi & Gang Chen (2022): Integration of Multiple Formal Matrix Models in Coq. In Wei Dong &

Jean-Pierre Talpin, editors: Dependable Software Engineering Theories, Tools, and Applications, Springer

Nature Switzerland, doi:10.1007/978-3-031-21213-0_11.

[16] ZhengPu Shi & Gang Chen (2024): Formal Verification of Executable Matrix Inversion via Adjoint Matrix

and Gaussian Elimination. In: Proceedings of the 26th International Symposium on Principles and Practice

of Declarative Programming, doi:10.1145/3678232.3678242.

[17] Zhiping Shi, Yan Zhang, Zhenke Liu, Ximan Kank, Yong Guan, Jie Zhang & Xiaoyu Song (2014): Formal-

ization of matrix theory in Hol4. In: Advances in Mechanical Engineering, 6, doi:10.1155/2014/195276.

[18] Christian Sternagel & Rene Thiemann (2010): Executable Matrix Operations on Matrices of Arbitrary Di-

mensions. In: Archive of Formal Proofs. Available at https://www.isa-afp.org/entries/Matrix.

html.

https://doi.org/10.1007/978-1-4757-1200-1
https://doi.org/10.34727/2024/isbn.978-3-85448-065-5
https://doi.org/10.4230/LIPIcs.ITP.2024.25
https://leanprover-community.github.io/theories/linear_algebra.html
https://leanprover-community.github.io/theories/linear_algebra.html
https://doi.org/10.1007/978-1-4757-2178-2
https://doi.org/10.1007/978-1-4757-2178-2
https://doi.org/10.4204/EPTCS.359.10
https://doi.org/10.4204/EPTCS.393.4
https://doi.org/10.4204/EPTCS.393.4
https://doi.org/10.4204/EPTCS.393.5
https://doi.org/10.4204/EPTCS.393.5
https://doi.org/10.1007/978-3-031-21213-0_11
https://doi.org/10.1145/3678232.3678242
https://doi.org/10.1155/2014/195276
https://www.isa-afp.org/entries/Matrix.html
https://www.isa-afp.org/entries/Matrix.html

Gamboa and Manolios (Eds):

ACL2 Workshop 2025

EPTCS 423, 2025, pp. 19–35, doi:10.4204/EPTCS.423.2

© D.M. Russinoff

This work is licensed under the

Creative Commons Attribution License.

A Formalization of Elementary Linear Algebra: Part II

David M. Russinoff

david@russinoff.com

This is the second installment of an exposition of an ACL2 formalization of elementary linear algebra.

It extends the results of Part I, which covers the algebra of matrices over a commutative ring, but

focuses on aspects of the theory that apply only to matrices over a field: elementary row reduction

and its application to the computation of matrix inverses and the solution of simultaneous systems of

linear equations.

1 Introduction

This is the second installment of an exposition of an ACL2 formalization of elementary linear algebra.

Part I [6], which is also included in this workshop, covers the algebra of matrices over a commutative

ring with unity and their determinants. In this sequel, we focus on aspects of the theory of matrices

that apply only to matrices over a field, i.e., depend on the existence of a multiplicative inverse operator.

These include row reduction and its application to matrix invertibility and the solution of systems of

linear equations. In an anticipated Part III, all of these results will be applied to the study of abstract

vector spaces and linear transformations.

The proof scripts supporting both papers reside in the same directory, books/projects/linear/.

As described in [6], the abstract definition of a ring is formalized in the file ring.lisp by a set of

constrained encapsulated functions: a predicate rp that recognizes ring elements, the binary addition and

multiplication operations r+ and r*, the corresponding identity constants r0 and r1, and the additive

inverse operator r-. The notion of a field is similarly defined by an encapsulation in the file field.lisp,

in which these functions are renamed fp, f+, f*, etc.:

(encapsulate (((fp *) => *) ;field element recognizer

((f+ * *) => *) ((f* * *) => *) ;addition and multiplication

((f0) => *) ((f1) => *) ;identities

((f- *) => *) ((f/ *) => *)) ;inverses

(local (defun fp (x) (rationalp x)))

(local (defun f+ (x y) (+ x y)))

(local (defun f* (x y) (* x y)))

(local (defun f0 () 0))

(local (defun f1 () 1))

(local (defun f- (x) (- x)))

(local (defun f/ (x) (/ x)))

;; Closure:

...

;; Multiplicative inverse:

(defthm fpf/

(implies (and (fp x) (not (equal x (f0)))) (fp (f/ x))))

(defthm f*inv

(implies (and (fp x) (not (equal x (f0)))) (equal (f* x (f/ x)) (f1)))))

http://dx.doi.org/10.4204/EPTCS.423.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

20 A Formalization of Linear Algebra: Part II

The only other difference between the two encapsulations is the inclusion here of the multiplicative

inverse f/ along with two constraining axioms, appended to the constraints adapted from the ring axioms.

Informally we shall refer to the field F that is characterized by this encapsulation. When our intention

is clear, the identity elements (f0) and (f1) will be abbreviated as 0 and 1. Clearly, all properties of

rings hold for fields as well. Thus, all definitions and theorems that appear in ring.lisp, rmat.lisp,

and rdet.lisp have analogs in the corresponding files field.lisp, fmat.lisp, and fdet.lisp. In

particular, the predicate flistnp recognizes a list of specified length of elements of F, called an flist;

fmatp recognizes a matrix over F; and fdet computes its determinant. In principle, all results in the latter

set of files could be derived by functional instantiation from the corresponding events in the former, but

we found it more expedient to reproduce the proofs, simply by selectively replacing occurrences of the

character r with f. An additional file, reduction.lisp, contains the results reported in this paper.

In describing these results, we assume the reader is familiar with Part I and is aware of the renaming

convention.

In Section 2, we define the notion of a reduced row-echelon matrix and develop a procedure that

converts an arbitrary matrix to reduced row-echelon form. An equivalent procedure, based on matrix

multiplication, is also defined. This leads to a criterion for invertibility of a square matrix and a method

for computing inverses. A second method of matrix inversion, based on determinants and the classical

adjoint, is derived from the results of Part I.

Section 3 addresses the solution of systems of linear equations, mainly as an application of row

reduction. We derive algorithmic tests for solvability and uniqueness of the solution, as well as a formula

that computes the solution in the uniquely solvable case. For the special case of an invertible square

coefficient matrix, we prove Cramer’s Rule, an alternative formula based on determinants. In the general

solvable case, we show that the solution set is infinite and establish a test that identifies solutions. In

Part III, this will lead to a formula that generates a basis for the solution space of a homogeneous system

of equations.

All of these results, which are stated and proved in the context of an abstract field, may be applied

to any concrete field of interest through functional instantiation. Eventually, we plan to apply the theory

to algebraic number fields. Of course, in their abstract formulation based on constrained functions,

the definitions are not executable. For the immediate purposes of illustration and testing, however, all

functions defined in field.lisp, fmat.lisp, fdet.lisp, and reduction.lisp have been adapted

to the field of rational numbers as executable functions, which are listed in the file rational.lisp.

2 Row Reduction

2.1 Reduced Row-Echelon Form

A reduced row-echelon matrix may be characterized as follows:

(1) Every all-zero row is preceded by every nonzero row;

(2) The first nonzero entry of each nonzero row is 1, and every other entry in the same column is 0;

(3) The column of the leading 1 in the ith nonzero row is an increasing function of i.

The formalization of this definition requires several auxiliary functions. First, we define the index of the

leading nonzero entry of a nonzero row r:

(defun first-nonzero (r)

(if (consp r)

D.M. Russinoff 21

(if (= (car r) (f0))

(1+ (first-nonzero (cdr r)))

0)

()))

In the following, we assume that a is an m×n matrix. Starting with row k, where 0 ≤ k ≤ m, find the row

of a with nonzero entry of least index, or return NIL if all rows beyond the first k are 0:

(defun row-with-nonzero-at-least-index (a m k)

(if (and (natp k) (natp m) (< k m))

(let ((i (row-with-nonzero-at-least-index a (1- m) k)))

(if (or (flist0p (nth (1- m) a))

(and i (<= (first-nonzero (nth i a)) (first-nonzero (nth (1- m) a)))))

i

(1- m)))

()))

Given j < n and k < m, check that (entry k j a) = 1 and that all other entries in column k are 0:

(defun column-clear-p (a k j m)

(if (zp m) t

(and (= (nth j (nth (1- m) a)) (if (= (1- m) k) (f1) (f0)))

(column-clear-p a k j (1- m)))))

Given k ≤ m, check that the first k rows of a form a reduced row-echelon matrix:

(defun row-echelon-p-aux (a m k)

(if (zp k) t

(and (row-echelon-p-aux a m (1- k))

(let ((i (row-with-nonzero-at-least-index a m (1- k))))

(or (null i)

(and (= i (1- k))

(column-clear-p a i (first-nonzero (nth i a)) m)))))))

Finally, check that a is a reduced row-echelon matrix:

(defund row-echelon-p (a) (row-echelon-p-aux a (len a) (len a)))

2.2 Conversion to Reduced Row-Echelon Form

We shall develop a procedure that converts an arbitrary m×n matrix a to reduced row-echelon form by a

sequence of elementary row operations of three types:

(1) Multiply row k by a scalar c:

(defund ero1 (a c k) (replace-row a k (flist-scalar-mul c (nth k a))))

(2) Add a scalar multiple of row j to row k, where j 6= k:

(defund ero2 (a c j k)

(replace-row a k (flist-add (flist-scalar-mul c (nth j a)) (nth k a))))

(3) Interchange rows j and k, where j 6= k:

(defund ero3 (a j k) (replace-row (replace-row a k (nth j a)) j (nth k a)))

22 A Formalization of Linear Algebra: Part II

Under the assumption that (entry k j a) = 1, the following function applies ero2 to clear all other

entries in column j by adding the appropriate multiple of row k to each of the other rows:

(defun clear-column (a k j m)

(if (zp m) a

(if (= (1- m) k)

(clear-column a k j (1- m))

(clear-column (ero2 a (f- (nth j (nth (1- m) a))) k (1- m))

k j (1- m)))))

Assume the first k rows of a are in reduced row-echelon form, i.e., (row-echelon-p-aux a m k)

= T, where k < m, and that i = (row-with-nonzero-at-least-index a m k) 6= NIL. Let j =

(first-nonzero (nth i a)). The following function performs the next step of the reduction, pro-

ducing a matrix a’ satisfying (row-echelon-p-aux a’ m (1+ k)):

(defund row-reduce-step (a m k i j)

(clear-column (ero3 (ero1 a (f/ (nth j (nth i a))) i)

i k)

k j m))

The function row-reduce converts a to a reduced row-echelon matrix, using an auxiliary function that

completes the conversion under the assumption (row-echelon-p-aux a m k), where 0 ≤ k ≤ m:

(defun row-reduce-aux (a m k)

(let ((i (row-with-nonzero-at-least-index a m k)))

(if (and (natp k) (natp m) (< k m) i)

(row-reduce-aux (row-reduce-step a m k i (first-nonzero (nth i a)))

m (1+ k))

a)))

(defund row-reduce (a) (row-reduce-aux a (len a) 0))

The following confirms that this procedure produces the desired result:

(defthmd row-echelon-p-row-reduce

(implies (and (natp m) (natp n) (fmatp a m n))

(row-echelon-p (row-reduce a))))

We also note that row reduction does not alter a reduced row-echelon matrix:

(defthmd row-reduce-row-echelon-p

(implies (and (posp m) (posp n) (fmatp a m n) (row-echelon-p a))

(equal (row-reduce a) a)))

As an example, consider the following 4×5 matrix (a0):

DM !>(defun a0 () ’((0 -3 -6 4 9) (-1 -2 -1 3 1) (-2 -3 0 3 -1) (1 4 5 -9 -7)))

In the first step in the row reduction of (a0), row 1 is divided by its leading nonzero entry, -1, and

interchanged with row 0. The other entries in column 0 are then cleared:

DM !>(row-reduce-step (a0) 4 0 1 0)

((1 2 1 -3 -1)

(0 -3 -6 4 9)

(0 1 2 -3 -3)

(0 2 4 -6 -6))

D.M. Russinoff 23

Row reduction of (a0) requires three executions of row-reduce-step:

DM !>(row-reduce (a0))

((1 0 -3 0 5)

(0 1 2 0 -3)

(0 0 0 1 0)

(0 0 0 0 0))

We define the row rank of a to be the number of nonzero rows of (row-reduce a):

(defun num-nonzero-rows (a)

(if (consp a)

(if (flist0p (car a)) 0 (1+ (num-nonzero-rows (cdr a))))

0))

(defun row-rank (a) (num-nonzero-rows (row-reduce a)))

Note that (row-reduce (a0)) has 3 nonzero rows:

DM !>(row-rank (a0))

3

Obviously, the row rank of an m×n matrix cannot exceed m:

(defthmd row-rank<=m

(implies (and (fmatp a m n) (posp m) (posp n))

(<= (row-rank a) m)))

Nor can the row rank exceed n. To see this, consider the list of indices of the leading 1s of the nonzero

rows of a reduced row-echelon matrix a:

(defun lead-inds (a)

(if (and (consp a) (not (flist0p (car a))))

(cons (first-nonzero (car a)) (lead-inds (cdr a)))

()))

DM !>(lead-inds (row-reduce (a0)))

(0 1 3)

Clearly, the length of (lead-inds a) is the number of nonzero rows of a. Furthermore, (lead-inds

a) is a strictly increasing sublist of (ninit t). It follows that (len (lead-inds a)) ≤ n. Conse-

quently, the row rank of a is bounded by n:

(defthmd row-rank<=n

(implies (and (fmatp a m n) (posp m) (posp n))

(<= (row-rank a) n)))

We also note that if (row-rank a) = n, then (lead-inds a) is an increasing sublist of (ninit n) of

length n, which implies that the two lists are equal:

(defthmd lead-inds-ninit

(implies (and (fmatp a m n) (posp m) (posp n)

(row-echelon-p a) (= (row-rank a) n))

(equal (lead-inds a) (ninit n))))

Along with row reduction, there is an obvious analogous notion of column reduction and a corre-

sponding definiton of the column rank of a matrix, which may alternatively be defined as the row rank of

its transpose. As we shall show in Part III in the context of vector spaces, the row and column ranks of a

matrix are always equal.

24 A Formalization of Linear Algebra: Part II

2.3 Row Reduction as Matrix Multiplication

Once we have identified the sequence of operations required to derive the reduced row-echelon form of

an m × n matrix a, an alternative derivation may be achieved by applying the same operations to the m

× m identity matrix and right-multiplying the result by a. To this end, a row operation is encoded as a

list of length 3 or 4; the first member indicates the operation type (1, 2, or 3 as listed in the preceding

subsection), and the others are the parameters of the operation. The following predicate characterizes an

encoding of a row operation on a matrix of m rows:

(defund row-op-p (op m)

(and (true-listp op)

(case (car op)

(1 (and (= (len op) 3) (fp (cadr op)) (not (= (cadr op) (f0)))

(natp (caddr op)) (< (caddr op) m)))

(2 (and (= (len op) 4) (fp (cadr op))

(natp (caddr op)) (< (caddr op) m)

(natp (cadddr op)) (< (cadddr op) m)

(not (= (caddr op) (cadddr op)))))

(3 (and (= (len op) 3) (natp (cadr op)) (< (cadr op) m)

(natp (caddr op)) (< (caddr op) m))))))

The function apply-row-op applies an encoded row operation to a matrix:

(defund apply-row-op (op a)

(case (car op)

;(apply-row-op (list 1 c k) a) = (ero1 a c k)

(1 (ero1 a (cadr op) (caddr op)))

;(apply-row-op (list 2 c j k) a) = (ero2 a c j k)

(2 (ero2 a (cadr op) (caddr op) (cadddr op)))

;(apply-row-op (list 3 j k) a) = (ero3 a j k)

(3 (ero3 a (cadr op) (caddr op)))))

A list of row operations is identified in the obvious way:

(defun row-ops-p (ops m)

(if (consp ops)

(and (row-op-p (car ops) m)

(row-ops-p (cdr ops) m))

(null ops)))

The function apply-row-ops applies a list of operations in sequence from left to right:

(defun apply-row-ops (ops a)

(if (consp ops)

(apply-row-ops (cdr ops) (apply-row-op (car ops) a))

a))

By examining the definitions of row-reduce and its auxiliary functions, we construct the list of en-

codings of the operations that reduce a matrix a to reduced row-echelon form. The next four functions

encode the lists of operations performed by clear-column, row-reduce-step, row-reduce-aux, and

row-reduce, respectively:

D.M. Russinoff 25

(defun clear-column-ops (a k j m)

(if (zp m) ()

(if (= k (1- m))

(clear-column-ops a k j (1- m))

(cons (list 2 (f- (nth j (nth (1- m) a))) k (1- m))

(clear-column-ops (ero2 a (f- (nth j (nth (1- m) a))) k (1- m))

k j (1- m))))))

(defund row-reduce-step-ops (a m k i j)

(cons (list 1 (f/ (nth j (nth i a))) i)

(cons (list 3 i k)

(clear-column-ops (ero3 (ero1 a (f/ (nth j (nth i a))) i) i k)

k j m))))

(defun row-reduce-aux-ops (a m k)

(let* ((i (row-with-nonzero-at-least-index a m k))

(j (and i (first-nonzero (nth i a)))))

(if (and (natp k) (natp m) (< k m) i)

(append (row-reduce-step-ops a m k i j)

(row-reduce-aux-ops (row-reduce-step a m k i j) m (1+ k)))

(defund row-reduce-ops (a) (row-reduce-aux-ops a (len a) 0))

The correctness of this encoding procedure is confirmed by the following:

(defthmd apply-row-reduce-ops

(implies (and (fmatp a m n) (posp m) (posp n))

(equal (apply-row-ops (row-reduce-ops a) a)

(row-reduce a))))

Returning to the example of Subsection 2.2, we find that the first step in the row reduction of (a0)

involves five elementary operations:

DM !>(row-reduce-step-ops (a0) 4 0 1 0)

((1 -1 1) (3 1 0) (2 -1 0 3) (2 2 0 2) (2 0 0 1))

DM !>(apply-row-ops ’((1 -1 1) (3 1 0) (2 -1 0 3) (2 2 0 2) (2 0 0 1)) (a0))

((1 2 1 -3 -1)

(0 -3 -6 4 9)

(0 1 2 -3 -3)

(0 2 4 -6 -6))

The reader may wish to compute (row-reduce-ops (a0)), a list of length 15, and check that the

lemma apply-row-reduce-ops holds in this case.

The m×m elementary matrix corresponding to a row operation is defined to be the result of applying

the operation to the m×m identity matrix:

(defund elem-mat (op m) (apply-row-op op (id-fmat m)))

Application of a row operation is equivalent to left multiplication by the corresponding elementary ma-

trix:

(defthmd elem-mat-row-op

(implies (and (fmatp a m n) (row-op-p op m) (posp m) (posp n))

(equal (fmat* (elem-mat op m) a) (apply-row-op op a))))

26 A Formalization of Linear Algebra: Part II

The product of the list of elementary matrices associated with the row reduction of a matrix is computed

recursively by the function row-reduce-mat:

(defund row-ops-mat (ops m)

(if (consp ops)

(fmat* (row-ops-mat (cdr ops) m) (elem-mat (car ops) m))

(id-fmat m)))

(defund row-reduce-mat (a) (row-ops-mat (row-reduce-ops a) (len a)))

It follows from elem-mat-row-op by induction that applying a sequence ops of row operations to a is

equivalent to multiplication of a by (row-ops-mat ops m):

(defthmd fmat*-row-ops-mat

(implies (and (fmatp a m n) (posp m) (posp n)

(row-ops-p ops m))

(equal (fmat* (row-ops-mat ops m) a)

(apply-row-ops ops a))))

In particular, by apply-row-reduce-ops, row reduction of a is equivalent to multiplication by (row-

reduce-mat a):

(defthmd row-ops-mat-row-reduce

(implies (and (fmatp a m n) (posp m) (posp n))

(equal (fmat* (row-reduce-mat a) a) (row-reduce a))))

In our example, the product of the 15 elementary matrices corresponding to (row-reduce-ops (a0))

is

DM !>(row-reduce-mat (a0))

((3/5 -3/5 -1/5 0)

(-3/5 8/5 -4/5 0)

(-1/5 6/5 -3/5 0)

(0 5 -2 1))

The conclusion of the lemma row-ops-mat-row-reducemay be readily verified for this case.

2.4 Invertibility

In this subsection, we focus on square matrices. Given an n×n matrix a, we seek an inverse of a, i.e., an

n×n matrix b such that

(fmat* a b) = (fmat* b a) = (id-fmat n).

If such a matrix exists, then it is unique in the strong sense that it is the only left or right inverse of a. For

example, if (fmat* c a) = (id-fmat n), then

c = (fmat* c (id-fmat n))

= (fmat* c (fmat* a b))

= (fmat* (fmat* c a) b))

= (fmat* (id-fmat n) b))

= b,

and the same conclusion similarly follows from the assumption (fmat* a c) = (id-fmat n). Thus,

we have

D.M. Russinoff 27

(defthm inverse-unique

(implies (and (fmatp a n n) (fmatp b n n) (fmatp c n n) (posp n)

(= (fmat* a b) (id-fmat n)) (= (fmat* b a) (id-fmat n))

(or (= (fmat* a c) (id-fmat n)) (= (fmat* c a) (id-fmat n))))

(equal c b)))

Every elementary matix has an inverse:

(defund invert-row-op (op)

(case (car op)

(1 (list 1 (f/ (cadr op)) (caddr op)))

(2 (list 2 (f- (cadr op)) (caddr op) (cadddr op)))

(3 op)))

(defthmd fmat*-elem-invert-row-op

(implies (and (row-op-p op n) (posp n))

(and (equal (fmat* (elem-mat (invert-row-op op) n) (elem-mat op n))

(id-fmat n))

(equal (fmat* (elem-mat op n) (elem-mat (invert-row-op op) n))

(id-fmat n)))))

Consequently, every product of elementary matrices has an inverse:

(defun invert-row-ops (ops)

(if (consp ops)

(append (invert-row-ops (cdr ops)) (list (invert-row-op (car ops))))

()))

(defthmd invert-row-ops-mat

(implies (and (row-ops-p ops n) (posp n))

(and (equal (fmat* (row-ops-mat (invert-row-ops ops) n)

(row-ops-mat ops n))

(id-fmat n))

(equal (fmat* (row-ops-mat ops n)

(row-ops-mat (invert-row-ops ops) n))

(id-fmat n)))))

We shall show that a has an inverse iff (row-rank a) = n and that in this case, the inverse of a is

(row-reduce-mat a). Thus, we define

(defund invertiblep (a n) (= (row-rank a) n))

and

(defund inverse-mat (a) (row-reduce-mat a))

First we note that as a consequence of lead-inds-ninit, if (invertiblep a n), then (row-reduce

a) = (id-fmat n):

(defthm row-echelon-p-id-fmat

(implies (and (fmatp a n n) (posp n) (row-echelon-p a) (= (num-nonzero-rows a) n))

(equal a (id-fmat n)))

Now let

28 A Formalization of Linear Algebra: Part II

p = (inverse-mat a) = (row-reduce-mat a) = (row-ops-mat (row-reduce-ops a) n),

q = (row-ops-mat (invert-row-ops (row-reduce-ops a)) n),

and

r = (fmat* p a) = (row-reduce a).

By invert-row-ops-mat, (fmat* p q) = (fmat* q p) = (id-fmat n). Suppose (row-rank

r) = n. By row-echelon-p-id-fmat, (fmat* p a) = r = (id-fmat n), and by inverse-unique,

a = q. Thus, (invertiblep a n) is a sufficient condition for the existence of an inverse:

(defthmd invertiblep-sufficient

(implies (and (fmatp a n n) (posp n) (invertiblep a n))

(let ((p (inverse-mat a)))

(and (fmatp p n n)

(equal (fmat* a p) (id-fmat n))

(equal (fmat* p a) (id-fmat n))))))

To prove the necessity of (invertiblep a n), suppose (fmatp b n n) and (fmat* a b) = (id-

fmat n). Then

(fmat* r (fmat* b q)) = (fmat* (fmt* p a) (fmat* b q))

= (fmat* p (fmat* (fmat* a b) q))

= (fmat* p q)

= (id-fmat n).

If (invertiblep a n) = NIL, then the last row of r is zero, and the same must be true of (id-fmat

n), a contradiction.

(defthmd invertiblep-necessary

(implies (and (fmatp a n n) (fmatp b n n) (posp n) (= (fmat* a b) (id-fmat n)))

(invertiblep a n)))

We note several consequences of the preceding results. First, an invertible matrix is the inverse of its

inverse:

(defthmd inverse-inverse-mat

(implies (and (fmatp a n n) (posp n) (invertiblep a n))

(and (invertiblep (inverse-mat a) n)

(equal (inverse-mat (inverse-mat a)) a))))

Cancellation laws hold for invertible matrices, e.g.,

(defthmd invertiblep-cancel

(implies (and (fmatp a m n) (fmatp b m n) (fmatp p m m) (posp m) (posp n)

(invertiblep p m))

(iff (equal (fmat* p a) (fmat* p b))

(equal a b))))

A matrix product is invertible iff each factor is invertible:

D.M. Russinoff 29

(defthmd invertiblep-factor

(implies (and (fmatp a n n) (fmatp b n n) (posp n) (invertiblep (fmat* a b) n))

(and (invertiblep a n) (invertiblep b n))))

(defthmd inverse-fmat*

(implies (and (fmatp a n n) (fmatp b n n) (posp n)

(invertiblep a n) (invertiblep b n))

(and (invertiblep (fmat* a b) n)

(equal (inverse-mat (fmat* a b))

(fmat* (inverse-mat b) (inverse-mat a))))))

Finally, we shall show that a is invertible iff its determinant is nonzero. First note that if a has inverse b

and (fdet a) = 0, then by fdet-multiplicative,

(fdet (id-fmat n) n) = (fdet (fmat* a b)) = (f* (fdet a) (fdet b)) = 0,

a contradiction. Thus,

(defthmd invertiblep-fdet-not-zero

(implies (and (fmatp a n n) (posp n) (invertiblep a n))

(not (equal (fdet a n) (f0)))))

On the other hand, assume (fdet a n) 6= 0. By fmat*-adjoint-fmat,

(fmat* a (adjoint-fmat a n)) = (fmat-scalar-mul (fdet a n) (id-fmat n)),

which implies

(fmat* a (fmat-scalar-mul (f/ (fdet a n)) (adjoint-fmat a n)))

= (fmat-scalar-mul (f/ (fdet a n)) (fmat* a (adjoint-fmat a n)))

= (fmat-scalar-mul (f/ (fdet a n)) (fmat-scalar-mul (fdet a n) (id-fmat n)))

= (id-fmat n),

and by invertiblep-necessary, a is invertible. This also establishes an alternative method for com-

puting the inverse:

(defthmd fdet-not-invertiblep-zero

(implies (and (fmatp a n n) (natp n) (> n 1) (not (equal (fdet a n) (f0))))

(and (invertiblep a n)

(equal (inverse-mat a)

(fmat-scalar-mul (f/ (fdet a n)) (adjoint-fmat a n))))))

3 Simultaneous Systems of Linear equations

Let a be an m×n matrix with (entry i j a) = ai,j for 0 ≤ i< m and 0 ≤ j< n, and let b = (b0 . . .bm−1)
be an flist of length m. We seek an flist x = (x0 . . .xn−1) of length n such that for 0 ≤ i < m,

ai,0x0 + . . .+ai,n−1xn−1 = bi.

We shall refer to a as the coefficient matrix of this system of m linear equations in n unknowns. To express

the system as a matrix equation, we define the column matrix corresponding to a given flist:

(defund col-mat (x) (transpose-mat (list x)))

30 A Formalization of Linear Algebra: Part II

The above equations are naturally expressed by the matrix equation in the following definition:

(defund solutionp (x a b) (equal (fmat* a (col-mat x)) (col-mat b)))

Let bc = (col-mat b), xc = (col-mat x), p = (row-reduce-mat a), ar = (fmat* p a), and br

= (fmat* p bc). Left-multiplying the above equation by p yields the equivalent equation

(fmat* ar xc) = br. (1)

Thus, we have

(defthmd reduce-linear-equations

(implies (and (fmatp a m n) (posp m) (posp n) (flistnp b m) (flistnp x n))

(let* ((bc (col-mat b)) (xc (col-mat x))

(p (row-reduce-mat a)) (ar (fmat* p a)) (br (fmat* p bc)))

(iff (solutionp x a b)

(equal (fmat* ar xc) br)))))

Our objective, therefore, is to compute an n×1 column matrix xc that solves Equation (1), in which ar

is an m×n reduced row-echelon matrix and br is an m×1 column matrix.

Let q = (num-nonzero-rows ar) = (row-rank a). We shall show that the existence of a solu-

tion to this equation is determined by whether the last m − q entries of br are all 0. This is true iff the

following search returns NIL:

(defun find-nonzero (br q m)

(if (and (natp q) (natp m) (< q m))

(if (= (entry (1- m) 0 br) (f0))

(find-nonzero br q (1- m))

(1- m))

()))

Thus, we define

(defun solvablep (a b)

(null (find-nonzero (fmat* (row-reduce-mat a) (col-mat b))

(row-rank a)

(len a))))

Suppose first that (find-nonzero br q m) = k 6= NIL, so that (solvablep a b) = NIL. Then (row

k ar) = (flistn0 n) and (entry k 0 br) 6= 0. It follows that (entry k 0 (fmat* ar xc)) 6=
(nth k 0 br), and hence (fmat* ar xc) 6= br. Combining this with reduce-linear-equations,

we conclude that the system of equations has no solution:

(defthmd linear-equations-unsolvable-case

(implies (and (fmatp a m n) (posp m) (posp n) (flistnp b m) (flistnp x n)

(not (solvablep a b)))

(not (solutionp x a b))))

Thus, we may assume (solvablep a b) = T. As a first step toward the solution, consider the

matrices aq and bq consisting of the first q rows of ar and br, respectively, computed by the following:

(defun first-rows (q a)

(if (zp q) ()

(cons (car a) (first-rows (1- q) (cdr a)))))

It is easily shown that aq is a reduced row-echelon q×n matrix of row rank q and that (fmat* ar xc)

= br iff (fmat* aq xc) = bq. Our objective, therefore, is to solve the equation (fmat* aq xc) = bq.

D.M. Russinoff 31

3.1 Uniquely Solvable Case

By row-rank<=n, q ≤ n. We first consider the case q = n. By row-echelon-p-id-fmat, aq =

(id-fmat n) and (fmat* aq xc) = bq iff xc = bq. Combining this observation with first-rows-

linear-equations and reduce-linear-equations, we conclude that there exists a unique solution

in this case:;

(defthmd linear-equations-unique-solution-case

(let* ((br (fmat* (row-reduce-mat a) (col-mat b)))

(bq (first-rows n br)))

(implies (and (fmatp a m n) (posp m) (posp n) (flistnp b m) (flistnp x n)

(solvablep a b) (= (row-rank a) n))

(iff (solutionp x a b)

(equal x (col 0 bq))))))

Our results on cofactor expansion lead to an alternative method of solving a system of n linear

equations in n unknowns in the case of a unique solution, known as Cramer’s rule. Suppose m = n = q,

so that a is an invertible n×n matrix. Our objective is to compute, as a function of a and b, for each i <

n, the ith component (nth i x) of the unique x such that

(fmat* a xc) = bc. (2)

We refer to the analogs of the results of [6, Sec. 5] that appear in fdet.lisp. In particular, we shall sub-

stitute a’ = (replace-row (transpose-mat a) i b) for a in fdot-cofactor-fmat-row-fdet.

Clearly, (row i a’) = b. By cofactor-fmat-transpose,

(cofactor-fmat-row i a’ n) = (cofactor-fmat-row i (transpose-mat a) n)

= (row i (cofactor-fmat (transpose-mat a) n))

= (row i (adjoint-fmat a n)),

and by fdet-transpose,

(fdet a’ n) = (fdet (transpose-fmat (replace-col a i b)) n)

= (fdet (replace-col a i b) n).

Thus, the substitution yields the following:

(fdot b (row i (adjoint-fmat a n))) = (fdet (replace-col a i b) n)).

Multiplying Equation (2) by (adjoint-fmat a n) yields

(fmat* (adjoint-fmat a n) (fmat* a xc)) = (fmat* (adjoint-fmat a n) bc).

But

(fmat* (adjoint-fmat a n) (fmat* a xc))

= (fmat* (fmat* (adjoint-fmat a n) a) xc)

= (fmat* (flist-scalar-mul (fdet a n) (id-fmat n)) xc)

= (flist-scalar-mul (fdet a n) (fmat* (id-fmat n) xc))

= (flist-scalar-mul (fdet a n) xc),

and hence

(flist-scalar-mul (fdet a n) xc) = (fmat* (adjoint-fmat a n) bc).

Equating the entries of these matrices in row i and column 0, we have

32 A Formalization of Linear Algebra: Part II

(f* (fdet a n) (nth i x)) = (fdot b (row i (adjoint-fmat a n)))

= (fdet (replace-col a i b) n),

which yields Cramer’s rule:

(defthmd cramer

(implies (and (fmatp a n n) (natp n) (> n 1) (invertiblep a n)

(flistnp b n) (flistnp x n) (solutionp x a b)

(natp i) (< i n))

(equal (nth i x)

(f* (f/ (fdet a n))

(fdet (replace-col a i b) n)))))

3.2 General Solvable Case

In the remainder of this section, we treat the general case (solvablep a b) = T with arbitrary q =

(row-rank a) ≤ n. The desired equation (fmat* aq xc) = bq holds iff for 0 ≤ i < q,

(nth i (fmat* aq xc)) = (nth i bq)

or equivalently,

(fdot (row i aq) x) = (car (nth i bq)). (3)

We shall split the dot product (fdot (nth i aq) x) into two sums, corresponding to the list (lead-

inds aq) of leading indices and the list of remaining indices, which we call the free indices:

(defund free-inds (a n) (set-difference-equal (ninit n) (lead-inds a)))

In general, given a sublist inds of (ninit n) and two flists r and x of length n, the following function

extracts and sums the terms of the dot product of r and x that correspond to the indices inds:

(defun fdot-select (inds r x)

(if (consp inds)

(f+ (f* (nth (car inds) r) (nth (car inds) x))

(fdot-select (cdr inds) r x))

(f0)))

In particular, (fdot (row i aq) x) may be expressed as the following sum:

(f+ (fdot-select (lead-inds aq) (row i aq) x)

(fdot-select (free-inds aq n) (row i aq) x))))).

Now since (row i aq) has a 1 at index (nth i (lead-inds aq)) and a 0 at all other lead indices,

the first of these two sums reduces to the single term (nth (nth i (lead-inds aq)) x), and hence

Equation (3) may be expressed as

(nth (nth i (lead-inds aq)) x)

= (f+ (car (nth i bq))

(f- (fdot-select (free-inds aq n) (row i aq) x))).

Thus, x is a solution of our system of equations iff this condition holds for all i < q. This is checked

recursively by the following function:

D.M. Russinoff 33

(defun solution-test-aux (x aq bq lead-inds free-inds k)

(if (zp k) t

(and (equal (nth (nth (1- k) lead-inds) x)

(f+ (car (nth (1- k) bq))

(f- (fdot-select free-inds (nth (1- k) aq) x))))

(solution-test-aux x aq bq lead-inds free-inds (1- k)))))

(defund solution-test (x a b n)

(let* ((ar (row-reduce a))

(br (fmat* (row-reduce-mat a) (col-mat b)))

(q (num-nonzero-rows ar))

(aq (first-rows q ar))

(bq (first-rows q br))

(lead-inds (lead-inds aq))

(free-inds (free-inds aq n)))

(solution-test-aux x aq bq lead-inds free-inds q)))

This provides a test to be applied to a candidate solution:

(defthmd linear-equations-solvable-case

(implies (and (fmatp a m n) (posp m) (posp n) (flistnp b m) (flistnp x n)

(solvablep a b))

(iff (solutionp x a b)

(solution-test x a b n))))

If q = (len (lead-inds aq)) = n, then (free-inds aq n) = NIL, the equation

(nth (nth i l) x) = (f+ (car (nth i bq)) (f- (fdot-select f (nth i aq) x)))

reduces to

(nth i x) = (car (nth i bq),

(solution-test-aux x aq bq l f q) reduces to x = (col 0 bq), and the last theorem reduces

to the earlier result linear-equations-unique-solution-case.

Otherwise, (free-inds aq n) 6= NIL and the components of x corresponding to the indices in

(lead-inds aq) are determined by the components corresponding to (free-inds aq n), which are

unconstrained. Thus, there is a single solution corresponding to every assignment of values to the latter

set of components, and hence infinitely many solutions. We shall revisit this result in Part III, where

we show that in the homogeneous case, b = (flistn0 n), the solutions form a vector space of dimen-

sion n − q. A basis for this solution space will be provided by a formula derived from the function

solution-test. .

4 Future Work

This formalization of linear algebra is a work in progress. In Part I, we developed the algebra of matrices

over a commutative ring with unity and the theory of determinants. In this sequel, we have restricted our

attention to matrices over a field in order to address the process of row reduction and its applications. To

allow our results to be applied to an arbitrary ring or field, we have characterized each by an encapsulated

set of constrained functions.

34 A Formalization of Linear Algebra: Part II

There is progress to report on a planned Part III, which begins with another encapsulation that formal-

izes the notion of an abstract finite-dimensional vector space over the field F. The constrained functions

of this encapsulation naturally include a predicate that recognizes vectors in the space, the operations of

vector addition and scalar multiplication, and the constant 0 vector. Two additional functions embody

the requirement of finite dimensionality: (1) a constant list of vectors of unspecified length that serves

as a canonical basis, and (2) a function that returns the coordinates of a given vector with respect to this

basis. Thus, whenever we define a concrete vector space, we are obligated to identify a basis for it. This

establishes a tight connection between vector spaces and matrices: a list of vectors may be identified by

the matrix of coordinates of its members. As an unexpected application of row reduction, this connection

provides an algorithmic definition of the basic notion of linear independence without use of quantifiers:

a list of vectors is linearly independent iff the row rank of its coordinate matrix is the length of the list.

The reader may have noticed that the definition of the basic notion of row equivalence is omitted

from our treatment of row reduction. Recall that two matrices are said to be row equivalent if one may be

derived from the other by a sequence of elementary row operations. This definition could be formalized

in ACL2 using the support for existential quantification provided by defun-sk, and the properties of an

equivalence relation could be derived from the results of Section 2. We could also prove the important

theorem that distinct reduced row-echelon matrices cannot be row equivalent. However, since its most

expedient proof is based on vector spaces (in particular, the row space of a matrix), this result is postponed

to Part III. Note that it provides an alternative definition of row equivalence that avoids quantification:

two matrices a and b are row equivalent iff (row-reduce a) = (row-reduce b). Since we prefer this

algorithmic formulation, the entire topic is deferred to Part III.

Other topics to be addressed in the sequel include linear transformations and diagonalization. As dis-

cussed in Part I, a factor in our decision to develop the algebra of matrices over an arbitrary commutative

ring rather than a field is that this allows us to define the characteristic polynomial of a square matrix

over the field F as the determinant of a certain matrix over the polynomial ring F[t]. A related objective

is the proof of the Cayley-Hamilton Theorem (every square matrix over a commutative ring is a root of

its own characteristic polynomial), which has wide-ranging applications in other areas of mathematics.

This project is part of a broader effort in the formalization of algebra, which began with group

theory [3, 4, 5] and will continue beyond linear algebra. Our next targeted area of investigation will

be Galois theory, which we hope eventually to apply to the study of algebraic number fields. These

intended applications guided our choices of formalization schemes for the basic algebraic structures.

Since we are interested in infinite rings and fields, the encapsulation approach seems to be the only

viable representation scheme for these structures provided by the ACL2 logic. The disadvantages of

not being able to refer to such a structure as an ACL2 object are obvious. On the other hand, since the

groups of primary interest are finite, our investigation of group theory is limited to the finite case. Under

this restriction, a group is conveniently represented as an object characterized by a predicate defined as

an ACL2 function. There are, however, infinite groups of interest, which are not accommodated by our

theory. For example, the general linear group of invertible matrices over a field, which is in general an

infinite structure, would otherwise have provided an interesting example and another connection between

group theory and linear algebra.

Although we have no immediate plans to apply this theory beyond the realm of pure mathematics,

its potential utility in the formal verification of hardware and software applications is limitless. Linear

algebra is central to the rapidly advancing fields of machine learning and neural networks [1], providing

essential tools for data reprersentation and manipulation. Along with finite group theory, it is also im-

portant to a variety of cryptographic algorithms [2]. It is our hope that ACL2 users who are interested in

pursuing such applications may find our results useful.

D.M. Russinoff 35

References

[1] Sahar Halim (2020): Application of Linear Algebra in Machine Learning. International Research Journal of

Engineering and Technology 7(2).

[2] Yuling Qian (2023): Application of Modern Algebra in Cryptography. Theoretical and Natural Science 10(1),

doi:10.54254/2753-8818/10/20230304.

[3] David M. Russinoff (2022): A Formalization of Finite Froup Theory. In: ACL2 2022: 17th International

Workshop on the ACL2 Theorem Prover and its Applications, Austin, Texas, doi:10.4204/EPTCS.359.10.

[4] David M. Russinoff (2023): A Formalization of Finite Froup Theory: Part II. In: ACL2 2023: 18th Interna-

tional Workshop on the ACL2 Theorem Prover and its Applications, Austin, Texas, doi:10.4204/EPTCS.393.4.

[5] David M. Russinoff (2023): A Formalization of Finite Froup Theory: Part III. In: ACL2 2023: 18th Interna-

tional Workshop on the ACL2 Theorem Prover and its Applications, Austin, Texas, doi:10.4204/EPTCS.393.5.

[6] David M. Russinoff (2025): A Formalization of Elementary Linear Algebra: Part I. In: ACL2 2025: 19th

International Workshop on the ACL2 Theorem Prover and its Applications, Austin, Texas.

https://doi.org/10.54254/2753-8818/10/20230304
https://doi.org/10.4204/EPTCS.359.10
https://doi.org/10.4204/EPTCS.393.4
https://doi.org/10.4204/EPTCS.393.5

Gamboa and Manolios (Eds):
ACL2 Workshop 2025
EPTCS 423, 2025, pp. 36–45, doi:10.4204/EPTCS.423.3

© G. Jurgensen
This work is licensed under the
Creative Commons Attribution License.

A Proof of the Schröder-Bernstein Theorem in ACL2

Grant Jurgensen
Kestrel Institute

Palo Alto, California
grant@kestrel.edu

The Schröder-Bernstein theorem states that, for any two sets P and Q, if there exists an injection
from P to Q and an injection from Q to P, then there must exist a bijection between the two sets.
Classically, it follows that the ordering of the cardinal numbers is antisymmetric. We describe a
formulation and verification of the Schröder-Bernstein theorem in ACL2 following a well-known
proof, introducing a theory of chains to define a non-computable witness.

1 Introduction

In this paper we present a formulation and verification of the Schröder-Bernstein theorem in ACL2.
To our knowledge, this is the first proof of the theorem in the Boyer-Moore family of theorem provers,
although it has been verified in a number of other theorem provers, including Isabelle [8], Rocq (formerly
Coq) [4], Lean [1], Metamath [7], and Mizar [9].

This paper is organized as follows. In Section 2, we outline the mathematical background and the
general proof which will serve as the basis for the ACL2 formalization. In Section 3.1, we describe the
formulation of the theorem’s premises in ACL2. In Section 3.2, we describe our approach to defining
function inverses and present a macro to quickly introduce inverses and their essential theorems. In Sec-
tion 3.3, we present a theory of chains, mirroring the concept to be defined in the informal proof sketch.
Finally, Section 3.4 defines the non-computable bijective function and summarizes the intermediate lem-
mas and final theorems which conclude the proof of the Schröder-Bernstein theorem.

The full proof and surrounding theory can be found in the ACL2 community books under
projects/schroeder-bernstein.

2 The Informal Proof

Given two injective functions f : P → Q and g : Q → P, the Schröder-Bernstein theorem states there
must exist a bijection h : P → Q. Before presenting the formalization within ACL2, we begin with a
proof sketch based upon [3], which in turn closely follows Julius König’s original proof [6].

2.1 A Theory of Chains

This proof proceeds from a theory of chains. For convenience, let us assume sets P and Q are disjoint 1 .
We define a chain C ⊆ P∪Q as a set of elements which are mutually reachable via repeated application
of f and g, or their inverses. So the element p ∈ P is a member of the following chain.

{. . . , f−1(g−1(p)), g−1(p), p, f (p), g(f (p)), . . .}

1To generalize the argument to arbitrary sets, we need only tag elements reflecting their association with one of the two sets.
Indeed, we employ this strategy in the ACL2 formalization.

http://dx.doi.org/10.4204/EPTCS.423.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/acl2/acl2/tree/master/books/projects/schroeder-bernstein

G. Jurgensen 37

Similarly, q ∈ Q belongs to the chain:

{. . . , g−1(f−1(q)), f−1(q), q, g(q), f (g(q)), . . .}
Every chain falls in one of a number of categories:

1. Cyclic chains: After some finite number of steps, the chain cycles back to a previous element.

2. Infinite chains: All acyclic chains are (countably) infinite. Infinite chains all extend infinitely in
the “rightward” direction and may be further subdivided into two categories:

(a) Non-stoppers: Such chains extend infinitely in the leftward direction in addition to the right-
ward direction.

(b) Stoppers: Such chains do not extend infinitely leftward and may therefore be said to possess
an initial element. On such an element, neither f−1 nor g−1 is defined (i.e., the element is
not in the image of f or g).

An ordering on chain elements is implied above which follows the order in which the elements of
the two example chains were enumerated. This simple ordering may be more rigorously defined as the
reflexive-transitive closure of the relation defined by the following two inference rules.

p ∈ P
p ⊑ f (p)

q ∈ Q
q ⊑ g(q)

This order is neither symmetric nor antisymmetric in general and is therefore a preorder. (On infinite
chains, however, the order is antisymmetric and therefore a partial order. On cyclic chains, it is symmetric
and therefore an equivalence relation.) Let chain(x) denote the chain to which x belongs. We note that,
for arbitrary x,y ∈ P∪Q, the equality chain(x) = chain(y) holds if and only if x ⊑ y or y ⊑ x. It follows
that the set of chains partition P∪Q.

Note that an initial element is minimal with respect to this ordering. That is, value i is initial if and
only if x ⊑ i implies x = i for arbitrary x. This definition is equivalent to the one given above.

An initial element may reside either in P or Q. We further subdivide the category of stopper chains,
referring to chains with initial elements in P as “P-stoppers” and those with initial elements in Q as
“Q-stoppers”.
Lemma 1. The initial element of a chain is unique.

Proof. This fact follows immediately from the minimality of initial elements. Let x and y be initial within
the same chain. As noted above, we have x ⊑ y or y ⊑ x since the two share a chain. Without loss of
generality, assume x ⊑ y. Then by the minimality of initial element y, we have x = y.

2.2 Definition and Proof of the Bijection

With the above theory of chains established, we are able to define our bijection. Let stoppersQ denote
the set of Q-stoppers. Then we define our proposed bijection h:

h(p) =

{
g−1(p) if chain(p) ∈ stoppersQ

f (p) otherwise

The decision to use this particular definition of h is, in part, arbitrary. When chain(p) is cyclic or a
non-stopper, either f or g−1 are possible definitions. We choose to bias toward the use of f , which will
be more convenient in the subsequent ACL2 formalization.

We begin with a few prerequisite lemmas before proceeding to establish bijectivity.

38 A Proof of the Schröder-Bernstein Theorem in ACL2

Lemma 2. Let p ∈ P and chain(p) ∈ stoppersQ. Then p is in the image of g.

Proof. By the definition of a Q-stopper, the initial element of chain(p) resides in Q. Since the initial
element is unique (Lemma 1) and p /∈ Q, p must not be initial. Therefore, it is by definition in the image
of g.

Lemma 3. Let q ∈ Q and chain(q) /∈ stoppersQ. Then q is in the image of f .

Proof. If chain(q) has an initial element, then the initial element must be in P. Since q /∈ P, it is not
initial. If chain(q) does not have an initial element, then clearly q is again not initial. By definition then,
q is in the image of f .

These lemmas establish when we may safely take the inverse of f and g. Lemma 2 in particular
shows that the first case of our bijection h is well-defined.

Lemma 4. Let p ∈ P. Then chain(h(p)) = chain(p).

Proof. Either h(p) = g−1(p) or h(p) = f (p). By definition, p is in the same chain as f (p) as well as
g−1(p), if it is defined.

Lemma 5 (Injectivity of h). Let p0, p1 ∈ P, where h(po) = h(p1). Then p0 = p1.

Proof.
Case 1: h(p0) is in a Q-stopper.

By equality, h(p1) is also in a Q-stopper. By Lemma 4, so are p0 and p1. By definition, we have
h(p0) = g−1(p0) and h(p1) = g−1(p1). From h(p0) = h(p1), we get g−1(p0) = g−1(p1). Applying g
yields p0 = p1.
Case 2: h(p0) is not in a Q-stopper.

h(p1), p0, and p1 are also not in Q-stoppers. By definition, we then have h(p0) = f (p0) and h(p1) =
f (p1). From h(p0) = h(p1), we get f (p0) = f (p1). By injectivity of f , we have p0 = p1.

Lemma 6 (Surjectivity of h). Let q ∈ Q. Then there exists p ∈ P such that h(p) = q.

Proof.
Case 1: q is in a Q-stopper.

Then g(q) is also in a Q-stopper by definition. Let p = g(q). Then:

h(p) = h(g(q))

= g−1(g(q))

= q

Case 2: q is not in a Q-stopper.
By Lemma 3, f−1(q) is well-defined. Since q is not in a Q-stopper, neither is f−1(q). Let p= f−1(q).

Then:

h(p) = h(f−1(q))

= f (f−1(q))

= q

G. Jurgensen 39

Theorem 1 (Schröder-Bernstein). h is bijective.

Proof. By Lemma 5 and Lemma 6.

3 ACL2 Formalization

3.1 Setup

To verify the Schröder-Bernstein theorem within ACL2, we closely follow the informal proof outlined in
the previous section. We begin by introducing our “sets” as well as their injections. Since ACL2 is first-
order 2 , we do not explicitly quantify over either. Instead, we introduce arbitrary predicates (representing
the sets) and the injections between them via an encapsulate event 3 .

(encapsulate
(((f *) => *)
((g *) => *)
((p *) => *)
((q *) => *))

(local (define p (x) (declare (ignore x)) t))
(local (define q (x) (declare (ignore x)) t))

(local (define f (x) x))
(local (define g (x) x))

(defrule q-of-f-when-p
(implies (p x)

(q (f x))))

(defrule injectivity-of-f
(implies (and (p x)

(p y)
(equal (f x) (f y)))

(equal x y))
:rule-classes nil)

(defrule p-of-g-when-q
(implies (q x)

(p (g x))))

2ACL2 offers limited second-order functionality through apply$ [5]. However, apply$ only operates on objects corre-
sponding to a proper subset of ACL2’s functions syntactically determined to be “tame.” We might also have used SOFT [2] to
simulate second-order functions.

3This ACL2 code snippet, as well as many of the following, are modified slightly for brevity. In particular, we elide proof
hints, xargs, and returns specifications.

40 A Proof of the Schröder-Bernstein Theorem in ACL2

(defrule injectivity-of-g
(implies (and (q x)

(q y)
(equal (g x) (g y)))

(equal x y))
:rule-classes nil))

Functions p and q correspond to the sets P and Q and are totally unconstrained. Although we interpret
them as predicates, there is no need to constrain them to be strictly boolean-valued. Similarly, the ACL2
functions f and g correspond to the mathematical functions f and g in our informal proof. For these
functions, we introduce two constraints each. First, since ACL2 functions are total, we require a theorem
confirming the output of the function is in the codomain given that the input is in the intended domain
(theorems q-of-f-when-p and p-of-g-when-q). Second, we establish the function’s injectivity within
said domain (theorems injectivity-of-f and injectivity-of-g). In general, subsequent theorems
concerning f and g only characterize the functions applied to their respective domains.

3.2 Function Inverses

Before we can define our bijective witness, we must define a variety of auxiliaries, starting with our
function inverses. Of course, the inverses of arbitrary functions are not computable. So, we must de-
fine our inverses via defchoose events. To quickly introduce such inverses and their essential theo-
rems, we define a macro, definverse. As an example of what definverse produces, the declaration
(definverse f :domain p :codomain q) emits the following definitions:

(define is-f-inverse (inv x)
(and (p inv)

(q x)
(equal (f inv) x)))

(defchoose f-inverse (inv) (x)
(is-f-inverse inv x))

(define in-f-imagep (x)
(is-f-inverse (f-inverse x) x))

While f−1 is only defined on the image of f , the ACL2 function f-inverse is total. However, recall
that a function introduced by defchoose will be unconstrained when the predicate on which it is defined
is unsatisfiable. So the value of (f-inverse x) is unspecified when x is outside the image of f. Thus,
we are only able to characterize (f-inverse x) when (in-f-imagep x) can be established.

In addition to the definitional events above, a number of theorems are also generated pertaining to
the domain and codomain of the inverse function as well as the identity of the left and right compositions
of the original function with its inverse. From the same example, we have:

(defrule in-f-imagep-of-f-when-p
(implies (p x)

(in-f-imagep (f x))))

G. Jurgensen 41

(defrule p-of-f-inverse-when-in-f-imagep
(implies (in-f-imagep x)

(p (f-inverse x))))

;; Left inverse
(defrule f-inverse-of-f-when-p

(implies (p x)
(equal (f-inverse (f x))

x)))
;; Right inverse
(defrule f-of-f-inverse-when-in-f-imagep

(implies (in-f-imagep x)
(equal (f (f-inverse x))

x)))

We define the inverses of both f and g with this definverse macro.

3.3 The Theory of Chains

To define chains, we begin by defining chain elements, recognized by the chain-elemp predicate. A
chain element is represented as a tagged value residing in either p or q, depending on the tag. This
tagging is required to avoid the assumption of disjointedness present in the informal proof. We refer to
a chain element’s tag as its polarity. The ACL2 predicate (polarity x) holds when chain element x
belongs to p. Otherwise, a valid chain element belongs to q.

(define chain-elemp (x)
(and (consp x)

(booleanp (car x))
(if (car x)

(and (p (cdr x)) t)
(and (q (cdr x)) t))))

;; Construct a chain element
(define chain-elem (polarity val)

(cons (and polarity t) val))

;; Get the polarity of a chain element
(define polarity ((elem consp))

(and (car elem)
t))

;; Get the value of a chain element
(define val ((elem consp))

(cdr elem))

Since chains may be infinite, we cannot construct them explicitly by enumerating their elements.
Instead, we define a non-computable equivalence, chain=, which relates chain elements belonging to

42 A Proof of the Schröder-Bernstein Theorem in ACL2

the same chain 4 .

(define chain= ((x consp) (y consp))
(if (and (chain-elemp x)

(chain-elemp y))
(or (chain<= x y)

(chain<= y x))
(equal x y)))

When x and y are not chain elements, we fall back to regular equality to ensure that the function is
an equivalence relation for all inputs. The chain<= function, which appears in our definition of chain=,
corresponds to the ordering relation ⊑ discussed in Section 2. Formally, we define it using the following
existential quantification.

(define-sk chain<= ((x consp) y)
(exists n

(equal (chain-steps x (nfix n))
y)))

Here, (chain-steps x n) yields the chain element obtained from taking n steps “right” along the
chain (applying either f or g, depending on the polarity), starting from the element x. We define it as
follows.

(define chain-step ((elem consp))
(let ((polarity (polarity elem)))

(chain-elem (not polarity)
(if polarity

(f (val elem))
(g (val elem))))))

(define chain-steps ((elem consp) (steps natp))
(if (zp steps)

elem
(chain-steps (chain-step elem) (- steps 1))))

Beyond comparing whether two elements reside in the same chain, we must also characterize initial
chain elements and Q-stoppers.

(define initialp ((elem consp))
(if (polarity elem)

(not (in-g-imagep (val elem)))
(not (in-f-imagep (val elem)))))

(define initial-wrt ((initial consp) (elem consp))
(and (chain-elemp initial)

(initialp initial)
(chain<= initial elem)))

4It would be straightforward to identify chains with some canonical element of the chain, chosen arbitrarily via a defchoose
with the :strengthen t keyword argument. This step is, however, unnecessary for our proof of the Schröder-Bernstein
theorem.

G. Jurgensen 43

(defchoose get-initial (initial) (elem)
(initial-wrt initial elem))

(define exists-initial ((elem consp))
(initial-wrt (get-initial elem) elem))

In Section 2, we provided two equivalent definitions of initial elements. In the ACL2 formalization,
we opt for the first definition, based on membership within the images of f and g (i.e., the existence
of an inverse). The alternative definition, based on the minimality of initial elements, might have been
employed via a Skolem function like so:

(define-sk initialp-alt ((elem consp))
(forall x

(implies (and (chain-elemp x)
(chain<= x elem))

(equal elem x)))))

Such a definition is appealing in its conceptual simplicity. However, the introduction of yet another
quantifier and Skolem function beyond those already required would further burden the proofs with
necessary :use hints. Instead, we prefer to adopt the original definition and prove the minimality of
initial elements as a consequence:

(defrule chain<=-of-arg1-and-initial
(implies (and (chain-elem-p x)

(initial-p initial))
(equal (chain<= x initial)

(equal x initial)))

Similarly, initial-wrt (pronounced “initial with respect to”) might have been defined in terms of
chain=. But, as implied by the above, (chain<= initial x) and (chain= initial x) are equiva-
lent when initial is initial. Therefore, we choose the stronger definition.

Finally, we may define membership of a chain element within a Q-stopper.

(define in-q-stopper ((elem consp))
(and (exists-initial elem)

(not (polarity (get-initial elem)))))

3.4 The Bijective Witness

Our bijective witness is now easily defined, following the piecewise definition h from the informal proof.

(define sb-witness (x)
(if (in-q-stopper (chain-elem t x))

(g-inverse x)
(f x)))

We prove key theorems regarding when a chain element is necessarily in the image of f or g, mirror-
ing Lemma 2 and Lemma 3 of the proof sketch.

(defrule in-g-imagep-when-in-q-stopper
(implies (and (in-q-stopper elem)

(polarity elem))
(in-g-imagep (val elem))))

44 A Proof of the Schröder-Bernstein Theorem in ACL2

(defrule in-f-imagep-when-not-in-q-stopper
(implies (and (chain-elemp elem)

(not (in-q-stopper elem))
(not (polarity elem)))

(in-f-imagep (val elem))))

Similarly, we prove the analogue of Lemma 4, which shows sb-witness preserves chain member-
ship.

(defrule chain=-of-sb-witness
(implies (p x)

(chain= (chain-elem t x)
(chain-elem nil (sb-witness x)))))

Finally, we prove the following three theorems which establish the bijectivity of sb-witness and
therefore conclude our verification of the Schröder-Bernstein theorem.

(defrule q-of-sb-witness-when-p
(implies (p x)

(q (sb-witness x))))

(defrule injectivity-of-sb-witness
(implies (and (p x)

(p y)
(equal (sb-witness x)

(sb-witness y)))
(equal x y)))

(define-sk exists-sb-inverse (x)
(exists inv

(and (p inv)
(equal (sb-witness inv) x))))

(defrule surjectivity-of-sb-witness
(implies (q x)

(exists-sb-inverse x)))

4 Conclusion

We have presented a formulation and verification of the Schröder-Bernstein theorem within ACL2. We
started with an informal illustration of one of the theorem’s well-known proofs. We then demonstrated
how this proof mapped into the logic of ACL2. We introduced our generic “sets” via predicates, locally
encapsulated with their two generic injections. We then defined function inverses as well as our theory
of chains using Skolem functions. For the former, we introduced the definverse macro to quickly
define function inverses. Finally, we presented the bijective witness, some key intermediate lemmas cor-
responding to steps in the informal proof, and then the three theorems which together establish bijectivity
within the domain, thereby completing the proof of the Schröder-Bernstein theorem.

G. Jurgensen 45

References
[1] Mario Carneiro: Mathlib Documentation: Schröder-Bernstein theorem, well-ordering of cardinals.

https://leanprover-community.github.io/mathlib4_docs/Mathlib/SetTheory/Cardinal/
SchroederBernstein.html. Accessed: 2025-01-21.

[2] Alessandro Coglio (2015): Second-Order Functions and Theorems in ACL2. International Workshop on the
ACL2 Theorem Prover and Its Applications, pp. 17–33, doi:10.4204/EPTCS.192.3.

[3] Michael George: Lecture Notes, CS 2800. Available at https://www.cs.cornell.edu/courses/cs2800/
2017fa/lectures/lec14-cantor.html. Accessed: 2025-01-07.

[4] Hugo Herbelin (1999): GitHub Repository: rocq-archive/schroeder. https://github.com/
rocq-archive/schroeder. Accessed: 2025-01-21.

[5] Matt Kaufmann & J Strother Moore (2018): Limited Second-Order Functionality in a First-Order Setting.
Journal of Automated Reasoning 64, pp. 391–422, doi:10.1007/s10817-018-09505-9.

[6] Julius König (1906): Sur la Théorie des Ensembles. Comptes Rendus Hebdomadaires des Séances de
l’Académie des Sciences 143, pp. 110 – 112.

[7] Norman Megill & Jim Kingdon: MetaMath Proof Explorer: Theorem sbth. https://us.metamath.org/
mpeuni/sbth.html. Accessed: 2025-01-21.

[8] Lawrence C. Paulson (1995): Set Theory for Verification: II. Induction and Recursion. Journal of Automated
Reasoning 15, pp. 167–215, doi:10.1007/BF00881916.

[9] Piotr Rudnicki & Andrzej Trybulec (1997): Fixpoints in Complete Lattices. Formalized Mathematics 6(1), pp.
109–115. Available at http://fm.mizar.org/1997-6/pdf6-1/knaster.pdf.

https://leanprover-community.github.io/mathlib4_docs/Mathlib/SetTheory/Cardinal/SchroederBernstein.html
https://leanprover-community.github.io/mathlib4_docs/Mathlib/SetTheory/Cardinal/SchroederBernstein.html
https://doi.org/10.4204/EPTCS.192.3
https://www.cs.cornell.edu/courses/cs2800/2017fa/lectures/lec14-cantor.html
https://www.cs.cornell.edu/courses/cs2800/2017fa/lectures/lec14-cantor.html
https://github.com/rocq-archive/schroeder
https://github.com/rocq-archive/schroeder
https://doi.org/10.1007/s10817-018-09505-9
https://us.metamath.org/mpeuni/sbth.html
https://us.metamath.org/mpeuni/sbth.html
https://doi.org/10.1007/BF00881916
http://fm.mizar.org/1997-6/pdf6-1/knaster.pdf

Gamboa and Manolios (Eds):
ACL2 Workshop 2025
EPTCS 423, 2025, pp. 46–50, doi:10.4204/EPTCS.423.4

© Carl Kwan
This work is licensed under the
Creative Commons Attribution License.

RV32I in ACL2

Carl Kwan
The University of Texas at Austin

carlkwan@cs.utexas.edu

We present a simple ACL2 simulator for the RISC-V 32-bit base instruction set architecture, written
in the operational semantics style. Like many other ISA models, our RISC-V state object is a single-
threaded object and we prove read-over-write, write-over-write, writing-the-read, and state well-
formedness theorems. Unlike some other models, we separate the instruction decoding functions
from their semantic counterparts. Accordingly, we verify encoding / decoding functions for each
RV32I instruction, the proofs for which are entirely automatic.

RISC-V is a popular open-source instruction set architecture (ISA) designed to be simple, flexible,
and scalable. Unlike proprietary ISAs, RISC-V is free to use and modify, facilitating wide adoption
across industries. A 2022 report suggests “there are more than 10 billion RISC-V cores in the market,
and tens of thousands of engineers working on RISC-V initiatives globally” [12]. This motivates our
development of a formal RISC-V simulator: to analyze and ensure the correctness of RISC-V hardware
and software designs.

We present an executable ACL2 formal model of the 32-bit RISC-V base instruction set architecture
(RV32I) [4], formalized by way of operational semantics [11, 10], and consisting of:

• a state object, formalized as an ACL2 single-threaded object (stobj) [5, 1];

• instruction semantic functions for all 37 RV32I (non-environment) instructions;

• step / run functions for simulating one or more fetch-decode-execute cycles;

• standard read-over-write, write-over-write, writing-the-read, and state well-formedness theorems;

• instruction encoding / decoding functions, and their inversion proofs;

• memory conversion theorems for execution using a byte-addressable model and proving theorems
in word-addressable contexts.

Figure 1 summarizes the executable components in our model. Our stobj state object rv32 consists of:
• 32 registers, one of which is hardwired to 0 and 31 general-purpose registers;

• 1 program counter register to hold the address of the current instruction;

• 232 bytes of addressable memory;

• a model state parameter ms used for debugging (not an official part of the RISC-V specification).
We prove a standard collection of theorems involving the behaviour of rv32 under its access and update
functions. These are the read-over-write, write-over-write, writing-the-read, and state well-formedness
theorems. A more comprehensive treatment of these theorems can be found in the description of the
ACL2 x86 simulator [6, p. 37], so we discuss only one example of read-over-write in this document.
Reading a byte of memory in rv32 at address i is made by (rm08 i rv32); updating rv32 at the same
memory address with value v is performed by (wm08 i v rv32), which returns a new state object. The
following read-over-write theorem roughly states that if we read a byte from a 32-bit memory address i
after updating memory address i with a 8-bit value v, then we obtain v (regardless of what value was at
address i previously):

http://dx.doi.org/10.4204/EPTCS.423.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Carl Kwan 47

State objectSemantic
functions

Step
function

Decoding
Functions

Encoding
Functions

dispatch fetch

dispatch execute

update

dispatch decode

dispatch decode

inverses

Figure 1: Overview of the ACL2 RV32I model.

(defthm rm08-wm08 (implies (and (n32p i) (n08p v)) (equal (rm08 i (wm08 i v rv32)) v)))

Similar theorems, for every standardized theorem sort, are proven for every parameter of rv32.
The RISC-V specification intends a byte-addressable memory model; however, because RV32I in-

structions (and many other 32-bit extensions) are standardized to 32-bits and required to be aligned on
a four-byte boundary, it is sometimes easier to reason about memory as if it were word-addressable.
Our base model uses a byte-addressable memory model, but we also formalize and verify functions for
accessing memory as if it were word-addressable. For example, rm32 is a function defined similarly to
rm08, but directly obtains 4 bytes using state access functions. The following theorem states that reading
a word from memory at address addr is equivalent to reading 4 successive bytes using rm08 starting at
addr and concatenating the result:

(defthmd rm32-from-successive-bytes
(equal (rm32 addr rv32) ;; read a word at addr

(n32 (logior (rm08 addr rv32) ;; read a byte at addr
(ash (rm08 (+ 1 addr) rv32) 8) ;; read a byte at addr + 1 and shift 8 bits
(ash (rm08 (+ 2 addr) rv32) 16) ;; read a byte at addr + 2 and shift 16 bits
(ash (rm08 (+ 3 addr) rv32) 24))))) ;; read a byte at addr + 3 and shift 24 bits

This enables us to treat the memory in our rv32 state object as if it were word-addressable, but remain
logically consistent to a byte-addressable model.

To simulate the execution of an RV32I instruction, we define instruction semantic functions, which
directly update the rv32 state object. These functions are called by a “step” function (see snippet below)
that performs the “fetch” stage by obtaining the instruction to be executed from the memory of rv32:

(define rv32-step ((rv32 rv32p)) ;; Takes an rv32 machine state object
(b* ((PC (xpc rv32)) ;; Fetch PC

(instr (rm32 PC rv32)) ;; Fetch instruction (32-bit value) from memory
(opcode (get-opcode instr)) ;; Decode opcode from instruction
(funct3 (get-funct3 instr)) ;; Decode funct3 from instruction
(funct7 (get-funct7 instr))) ;; Decode funct7 from instruction

(case opcode ;; Pattern match on opcode
(#b0110011 ;; opcode for R-type instructions
(case funct3 ;; Pattern match on funct3
(#x0 ;; funct3 for integer ADD / SUB instructions
(case funct7 ;; Pattern match on funct7
(#x0 (rv32-add rv32)) ;; funct7 for ADD instruction, offload to rv32-add semantic function

... ;; Pattern matching and semantic function calls for other instructions

Note that the step function offloads the decoding of the instruction’s opcode, funct3, and funct7 (if

48 RV32I in ACL2

031

funct7 rs2 rs1 funct3 rd opcode

Figure 2: RV32I R-type instruction format.

applicable), which are fields that uniquely determine the instruction to be executed, to a layer of de-
coding functions (e.g. get-opcode, etc.). Actual execution is dispatched to the instruction semantic
functions. Similarly to rv32-step, semantic functions also offload the decoding of any registers, mem-
ory addresses, or immediate values involved to more decoding functions. Finally, semantic functions
update the rv32 state accordingly.

There are 6 core instruction formats (R-type, I-type, S-type, B-type, U-type, and J-type). The format
for one of them (R-type) is visualized by Figure 2. These formats dictate the role of the particular bits
within an instruction. We formalize decoding functions for obtaining the appropriate bits as part of the
decode stage, e.g. the function call (get-opcode instr) obtains bits 0–7 from the 32-bit value instr.
Other types of instructions may have differing fields and field sizes, for which we also formalize decoding
functions. Conversely, we also formalize encoding functions for each RV32I instruction, e.g. (asm-add
rs1 rs2 rd) assembles the 32-bit instruction which stores the sum of the values from registers rs1
and rs2 into the destination register rd. A combination of GL [13] and simple rewrite rules enables
us to prove “inverse” properties, e.g. the following theorem “recovers” the destination register from an
asm-add call:

(defthm get-rd-of-asm-add (equal (get-rd (asm-add rs1 rs2 rd)) (n05 rd)))

Theorems of this sort are proven for every field (i.e. funct7, rs2, rs1, funct3, rd, opcode, and all
imm variations) of every RV32I instruction. Thus, even though calls are performed using get-opcode,
get-funct3, and get-funct7 early within our “step” function, proving the correctness of RV32I in-
structions does not rely on opening these decoding functions. Similarly, calls within instruction semantic
functions are made to some subset of get-rs1, get-rs2, get-rd, and various “get immediate” func-
tions, but these decoding functions are almost always disabled. This approach enables us to readily verify
the effects of every RV32I instruction on the rv32 state. For example, the following theorem determines
a priori the state of an rv32 object with a PC pointing to the beginning of an “add” instruction after one
fetch-decode-execute cycle:

(defthm rv32-step-asm-add-correctness
(implies (and (rv32p rv32) ;; rv32 is well-formed

(< (xpc rv32) *2^32-5*) ;; PC within memory bounds
(not (equal (n05 k) 0)) ;; dest reg is not x0
(equal (rm32 (xpc rv32) rv32) (asm-add i j k))) ;; ADD instruction at PC

(equal (rv32-step rv32) ;; execute 1 CPU cycle
(!xpc (+ (xpc rv32) 4) ;; update PC

(!rgfi (n05 k)
(n32+ (rgfi (n05 i) rv32) (rgfi (n05 j) rv32)) ;; reg[k] <- reg[i] + reg[j]
rv32)))))

The upshot is that we now have a verified (with respect to a cycle of the RISC-V CPU) encoding /
semantic function pair for each RISC-V instruction, the proofs for which are entirely automatic.

Some previous machine models in the operational semantics tradition perform all the decoding at
the top-level within the step and instruction semantic functions (e.g. a single semantic function may
decode by bit twiddling without dispatching to another function) making theorems about a single cycle
dependent entirely on opening a single complicated function. This can hinder verification efforts for

Carl Kwan 49

programs whose inputs are abstracted away or not yet known (e.g. free variables representing immediate
values). A slight novelty in this model is that we offload all the decoding to a decoding-specific "layer"
of functions; explicitly, we call instruction decoding functions within the step function (see code snippet
for rv32-step above) and the instruction semantic functions. We prove relevant theorems for these
decoding functions so that future RV32I program verification efforts are more amenable. It is much
easier to prove theorems about pure machine code / bitvectors without the burden of a CPU structure; the
ACL2 code for get-rd-of-asm-add above is an example of such a theorem. Similarly, it is much easier
to prove theorems about a pure CPU structure without having to worry about bit twiddling; for example,
proving the theorem rv32-step-asm-add-correctness in the previous paragraph does not involve
opening any instruction encoding / decoding functions but instead relies on the encoding / decoding
inversion rules. Connecting the two layers enables us to prove the desired theorems about the full fetch-
decode-execute cycle by reducing to theorems already proven about the individual layers.

Our RV32I model is highly inspired by similar ACL2 work for the Y86 [2], CHERI-Y86 [9], and
x86 [6] ISAs. This work is also partially motivated by the recent development of zero-knowledge virtual
machines (i.e. virtual machines which enable one party to prove properties about a program trace to an-
other party without revealing certain information, such as the program inputs) for RISC-V programs [8].
One future direction is to develop a verified assembler for RISC-V assembly into machine code. Note
that our instruction encoding functions, (e.g. asm-add) is very near to an assembly function that might
parse a string specifying a RISC-V instruction (e.g. integer addition) and return the output of our encod-
ing function. Furthermore, we are interested in theorems such as rv32-step-asm-add-correctness
because it may be easier to formalize a more general theorem for an assembler with respect to a CPU
cycle when instructions involve free variables, such as in the function call (asm-add i j k). This is in
contrast to code proofs, where symbolic execution involving explicit constants can be common. Another
direction for future work is to continue modelling other 32- or 64-bit RISC-V extensions. On one hand,
our experience in formalizing and verifying the base RV32 instructions involved many repetitive tasks,
suggesting future RISC-V extensions to this model and accompanying theorems can be easily synthe-
sized, by way of macros or otherwise. On another hand, our current memory is modelled as a single
stobj array, which is manageable for RV32 but not for RV64. We must improve the resource usage of
our memory model, perhaps by using abstract stobjs similar to how the bigmem [7, 3] project is im-
plemented, before tackling the RISC-V 64-bit instruction set. While there is much future work to be
done, we are optimistic that the application of our model to the formal analysis and verification of as-
semblers, programs, hardware, virtual machines, and other artifacts will result in more reliable RISC-V
infrastructure.

References

[1] Stobj. https://www.cs.utexas.edu/~moore/acl2/manuals/current/manual/?topic=ACL2____
STOBJ. Accessed 2024-04-15.

[2] (2025): ACL2 Y86 Models. https://github.com/acl2/acl2/tree/master/books/models/y86.
Accessed 2025-01-29.

[3] (2025): Bigmem. https://www.cs.utexas.edu/~moore/acl2/manuals/latest/?topic=BIGMEM__
__BIGMEM. Accessed 2025-01-29.

[4] Derek Atkins, Arvind, Krste Asanović, Rimas Avižienis, Jacob Bachmeyer, Christopher F. Batten, Allen J.
Baum, Abel Bernabeu, Alex Bradbury, Scott Beamer, Hans Boehm, Preston Briggs, Christopher Celio,
Chuanhua Chang, David Chisnall, Paul Clayton, Palmer Dabbelt, L Peter Deutsch, Ken Dockser, Paul Don-
ahue, Aaron Durbin, Roger Espasa, Greg Favor, Andy Glew, Shaked Flur, Stefan Freudenberger, Marc

https://www.cs.utexas.edu/~moore/acl2/manuals/current/manual/?topic=ACL2____STOBJ
https://www.cs.utexas.edu/~moore/acl2/manuals/current/manual/?topic=ACL2____STOBJ
https://github.com/acl2/acl2/tree/master/books/models/y86
https://www.cs.utexas.edu/~moore/acl2/manuals/latest/?topic=BIGMEM____BIGMEM
https://www.cs.utexas.edu/~moore/acl2/manuals/latest/?topic=BIGMEM____BIGMEM

50 RV32I in ACL2

Gauthier, Andy Glew, Jan Gray, Gianluca Guida, Michael Hamburg, John Hauser, John Ingalls, David
Horner, Bruce Hoult, Bill Huffman, Alexandre Joannou, Olof Johansson, Ben Keller, David Kruckemyer,
Tariq Kurd, Yunsup Lee, Paul Loewenstein, Daniel Lustig, Yatin Manerkar, Luc Maranget, Ben Marshall,
Margaret Martonosi, Phil McCoy, Nathan Menhorn, Christoph Müllner, Joseph Myers, Vijayanand Na-
garajan, Rishiyur Nikhil, Jonas Oberhauser, Stefan O’Rear, Markku-Juhani O. Saarinen, Albert Ou, John
Ousterhout, Daniel Page, David Patterson, Christopher Pulte, Jose Renau, Josh Scheid, Colin Schmidt,
Peter Sewell, Susmit Sarkar, Ved Shanbhogue, Brent Spinney, Brendan Sweeney, Michael Taylor, Wes-
ley Terpstra, Matt Thomas, Tommy Thorn, Philipp Tomsich, Caroline Trippel, Ray VanDeWalker, Mural-
idaran Vijayaraghavan, Megan Wachs, Paul Wamsley, Andrew Waterman, Robert Watson, David Weaver,
Derek Williams, Claire Wolf, Andrew Wright, Reinoud Zandijk & Sizhuo Zhang (2024): The RISC-V
Instruction Set Manual Volume I: Unprivileged Architecture. Technical Report. Available at https:
//drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link.

[5] Robert S. Boyer & J. Strother Moore (2002): Single-Threaded Objects in ACL2. In Shriram Krishnamurthi
& C. R. Ramakrishnan, editors: Practical Aspects of Declarative Languages, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 9–27, doi:10.1007/3-540-45587-6_3.

[6] Shilpi Goel (2016): Formal Verification of Application and System Programs Based on a Validated x86 ISA
Model. Ph.D. thesis, University of Texas at Austin.

[7] Warren A. Hunt Jr. & Matt Kaufmann (2012): A formal model of a large memory that supports efficient
execution. In Gianpiero Cabodi & Satnam Singh, editors: Formal Methods in Computer-Aided Design,
FMCAD 2012, Cambridge, UK, October 22-25, 2012, IEEE, pp. 60–67. Available at https://ieeexplo
re.ieee.org/document/6462556/.

[8] Carl Kwan, Quang Dao & Justin Thaler (2024): Verifying Jolt zkVM Lookup Semantics. Cryptology ePrint
Archive, Paper 2024/1841. Available at https://eprint.iacr.org/2024/1841.

[9] Carl Kwan, Yutong Xin & William D. Young (2023): CHERI Concentrate in ACL2. In Alessandro Coglio &
Sol Swords, editors: Proceedings of the 18th International Workshop on the ACL2 Theorem Prover and Its
Applications, Austin, TX, USA and online, November 13-14, 2023, Electronic Proceedings in Theoretical
Computer Science 393, Open Publishing Association, p. 6–10, doi:10.4204/EPTCS.393.2.

[10] Sandip Ray, Warren A. Hunt, John Matthews & J. Strother Moore (2008): A Mechanical Analysis of Program
Verification Strategies. Journal of Automated Reasoning 40, pp. 245–269, doi:10.1007/s10817-008-9098-1.

[11] Sandip Ray & J. Strother Moore (2004): Proof Styles in Operational Semantics. In Alan J. Hu & Andrew K.
Martin, editors: Formal Methods in Computer-Aided Design, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 67–81, doi:10.1007/978-3-540-30494-4_6.

[12] RISC-V International (2022): RISC-V Sees Significant Growth and Technical Progress in 2022 with Billions
of RISC-V Cores in Market. Available at https://riscv.org/riscv-news/2022/12/risc-v-sees-s
ignificant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-i
n-market/.

[13] Sol Swords & Jared Davis (2011): Bit-Blasting ACL2 Theorems. In David Hardin & Julien Schmaltz, editors:
Proceedings 10th International Workshop on the ACL2 Theorem Prover and its Applications, Austin, Texas,
USA, November 3-4, 2011, Electronic Proceedings in Theoretical Computer Science 70, Open Publishing
Association, pp. 84–102, doi:10.4204/EPTCS.70.7.

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view?usp=drive_link
https://doi.org/10.1007/3-540-45587-6_3
https://ieeexplore.ieee.org/document/6462556/
https://ieeexplore.ieee.org/document/6462556/
https://eprint.iacr.org/2024/1841
https://doi.org/10.4204/EPTCS.393.2
https://doi.org/10.1007/s10817-008-9098-1
https://doi.org/10.1007/978-3-540-30494-4_6
https://riscv.org/riscv-news/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/riscv-news/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://riscv.org/riscv-news/2022/12/risc-v-sees-significant-growth-and-technical-progress-in-2022-with-billions-of-risc-v-cores-in-market/
https://doi.org/10.4204/EPTCS.70.7

Gamboa and Manolios (Eds):
ACL2 Workshop 2025
EPTCS 423, 2025, pp. 51–55, doi:10.4204/EPTCS.423.5

© M. Manjrekar
This work is licensed under the
Creative Commons Attribution License.

On Automating Proofs of Multiplier Adder Trees
using the RTL Books

Mayank Manjrekar
Austin Design Center

Arm Inc.
mayank.manjrekar2@arm.com

We present an experimental, verified clause processor ctv-cp that fits into the framework used at
Arm for formal verification of arithmetic hardware designs. This largely automates the ACL2 proof
development effort for integer multiplier modules that exist in designs ranging from floating-point
division to matrix multiplication.

1 Introduction

Formal verification of multipliers is a difficult problem. At Arm, we have a well-established methodol-
ogy [4, 3] for verifying arithmetic hardware designs. Verification of a design is a two-step process. First,
we model the RTL using the RAC programming language [3], a restricted subset of C++ augmented with
AC datatypes [1], and prove it equivalent to the design using an industrial equivalence checker. Second,
we use the RAC parser to automatically translate the RAC model into ACL2 and prove that it is correct
with respect to a high-level specification; we use mathematical abstractions in the RTL library [5] where,
e.g., floating-point operations are specified using rational numbers. Developing the RAC model requires
a delicate balance: a higher level of abstraction favors ACL2 proofs but a lower level favors equivalence
checks. In this paper, we present an experimental, verified clause processor ctv-cp [2] that fits into our
framework and largely automates the ACL2 proof development effort for integer multipliers. It allows
the RAC model to directly mimic a large portion of the RTL, thereby simplifying model development
and facilitating fast equivalence checks.

The design of an integer multiplier may be divided into two parts: the generation and the summa-
tion of partial products. Various optimization techniques are employed for performance, but the above
partitioning is accurate in principle. Summation of the partial products is done by a compression tree
circuit that has the largest proportion of the multiplier’s area. The compression tree performs a se-
quence of steps to eventually reduce the number of partial products to two. The two output vectors of
the reduction are added together using a carry-propagate adder. Each reduction step is typically im-
plemented using a 3:2 compressor, whose output vectors, sum and carry, have the following formula:
sum = x⊕ y⊕ z, carry = (x∧ y)∨ (x∧ z)∨ (y∧ z). Figure 1 shows a bit-matrix representation of a com-
pression tree of a simple 8× 8 multiplier; a dot indicates that the corresponding bit may be non-zero.

We also split the verification task along the above separation in the design. We define two separate
RAC functions for integer multipliers — genPP to generate the partial products and compress to mimic
the compression tree and the final adder. For the final correctness result, we need to prove that the sum
of the partial products generated by genPP is equal to the product, and that the compress function’s
summation strategy is correct. In this paper, we focus on automating the proofs of the implementations
of the compression tree, i.e., the RAC compress function. Note that we verify the corresponding ACL2
definition of compress, which is automatically generated by the RAC parser. See examples below for
both the RAC and its ACL2 translation for our 8×8 running example, where some code is elided.

http://dx.doi.org/10.4204/EPTCS.423.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

52 On Automating Proofs of Multiplier Adder Trees using the RTL Books

Figure 1: An 8×8 multiplier compression tree

// RAC Functions
ui16 compress(ui16 pp0, ui16 pp1, ui16 pp2, ... , ui16 pp7) {

ui16 l1pp0 = pp0^pp1^pp2;
ui16 l1pp1 = ((pp0&pp1) | (pp0&pp2) | (pp1&pp2)) << 1;
...
ui16 l4pp0 = l3pp0^l3pp1^l3pp2;
ui16 l4pp1 = ((l3pp0&l3pp1) | (l3pp0&l3pp2) | (l3pp1&l3pp2)) << 1;
return l4pp0 + l4pp1; }

ui16 computeProd(ui8 a, ui8 b) {
array<ui16,8> pp = genPP(a, b);
return compress(pp[0], pp[1], pp[2], pp[3], pp[4], pp[5], pp[6], pp[7]); }

;; ACL2 Translation
(defund compress (pp0 pp1 pp2 pp3 pp4 pp5 pp6 pp7)

(let* ((l1pp0 (setbits 0 16 15 0 (logxor pp0 pp1 pp2)))
...
(l4pp0 (setbits 0 16 15 0 (logxor l3pp0 l3pp1 l3pp2)))
(l4pp1 (setbits 0 16 15 0

(logior (logand l3pp0 l3pp1)
(logand l3pp0 l3pp2) (logand l3pp1 l3pp2)))))

(bits (+ l4pp0 l4pp1) 15 0)))

Our new clause processor ctv-cp may be invoked as follows to automatically prove the correctness
of compress.

(def-ctv-thm compress-lemma-8x8
(implies (and (integerp pp0) (integerp pp1) (integerp pp2) (integerp pp3)

(integerp pp4) (integerp pp5) (integerp pp6) (integerp pp7))
(equal (compress pp0 pp1 pp2 pp3 pp4 pp5 pp6 pp7)

(bits (+ pp0 pp1 pp2 pp3 pp4 pp5 pp6 pp7) 15 0)))
:expand (compress))

2 Algorithm

In principle, the correctness proof of the compression tree may be developed by instantiating Theorem 1
from the RTL books for each 3:2 compressor.

Theorem 1 (Add-3) If x, y, and z are integers, and s = x⊕ y⊕ z and c = (x∧ y)∨ (x∧ z)∨ (y∧ z), then
s+2c = x+ y+ z.

M. Manjrekar 53

The clause processor ctv-cp essentially does this instantiation automatically. The high-level idea is
simple; ctv-cp works on the LHS and RHS of a goal separately and processes terms on each side into
an internal format. It then applies a sequence of normalizing transformations. At the end, if the resulting
terms are the same, then the goal is proven.

We describe the algorithm by considering the LHS of the conclusion of compress-lemma-8x8 —
(compress pp0 pp1 pp2 pp3 pp4 pp5 pp6 pp7). First, ctv-cp expands all the functions listed in
its :expand hint, i.e., compress in our example. The untranslated body of this function contains a
sequence of let-bindings, whose translated version is a nested application of lambda forms:

((lambda (l0pp0 pp0 pp1 pp2 ... pp7)
...

((lambda (l4pp0 l4pp1)
(bits (binary-+ l4pp0 l4pp1) '15 '0))

l4pp0 (setbits '0 '16 '15 '0 (binary-logior ...))) ...)
(setbits '0 '16 '15 '0 (binary-logxor ...)) pp0 pp1 ... pp7)

The clause processor acts on this term by diving into the lambda expressions to reach the inner-most
term, (bits (binary-+ l4pp0 l4pp1) '15 '0). As it does so, it also builds a substitution context
needed to interpret the inner-most term. A substitution is an association list mapping symbols to ACL2
terms, and a substitution context is a list of such substitutions. In our example, the first substitution is

'((l0pp0 . (setbits '0 '16 '15 '0 (binary-logxor ...)))
(pp0 . pp0) (pp1 . pp1) ... (pp7 . pp7)).

Once the inner-most expression is reached, the bit-width of the expression is inferred (16 in the example),
and the expression is parsed into a data structure that represents its bitwise expansion. This data structure
is specified in BNF for brevity on the left side below, but is defined using the FTY books [6]. The right
side shows the interpretations for such data.

bvfsl := (cons bvfs bvfsl)
| nil

bvfs := '(bvf num)
bvf := bv

| '(:fas bvf bvf bvf)
| '(:fac bvf bvf bvf)

bv := '(:bit term num)
| '(:v 0)
| '(:v 1)

(cons a b) 7→ (+ (interp a) (interp b))
nil 7→ 0

'(a n) 7→ (ash (interp a) n)

'(:fas a b c) 7→ (logxor (interp a) (interp b) (interp c))
'(:fac a b c) 7→ (logior (logand (interp a) (interp b))

(logand (interp a) (interp c))
(logand (interp b) (interp c)))

'(:bit a n) 7→ (bitn (interp a) n)
'(:v 0) 7→ 0
'(:v 1) 7→ 1

For the running example, the bitwise expansion of the inner-most term is

'(((:bit l4pp0 0) 0) ((:bit l4pp0 1) 1) ... ((:bit l4pp0 15) 15)
((:bit l4pp1 0) 0) ((:bit l4pp1 1) 1) ... ((:bit l4pp1 15) 15))

and its immediate interpretation (in untranslated form for readability) is

(+ (ash (bitn l4pp0 0) 0) (ash (bitn l4pp0 1) 1) ... (ash (bitn l4pp0 15) 15)
(ash (bitn l4pp1 0) 0) (ash (bitn l4pp1 1) 1) ... (ash (bitn l4pp1 15) 15))

ctv-cp generates the bitwise expansion by repeatedly calling a function called get-nth-bit. When
given a term x and a bit position n, this function outputs a bvf form that has the interpretation (bitn x
n). The function get-nth-bit knows how to parse some RTL library functions such as bits, setbits,
etc., that appear in code generated by the RAC parser. It can also recognize expressions emerging from

54 On Automating Proofs of Multiplier Adder Trees using the RTL Books

instances of 3:2 compressors and generate bvf forms of type :fas or :fac. Specifically, a term of
the form (logxor a b c) yields (:fas a′ b′ c′), and a term of the form (logior (logand a b)
(logand a c) (logand b c)) gives the output (:fac a′ b′ c′), where a′, b′ and c′ are bvf’s obtained
by recursively calling get-nth-bit on a, b, and c respectively. Note that if get-nth-bit fails to parse
a term, then it–and consequently ctv-cp–aborts with an error.

After parsing, ctv-cp applies the following transformations until the substitution context is empty.
1. Match all bvfs of the form ((:fas a b c) k) and ((:fac a b c) k + 1), and replace them

with the three bvfs’ (a k), (b k), and (c k).

2. Apply the most recent substitution in the context to get a new bvfsl.
The first transformation is valid because of the add-3 lemma. To optimize the matching algorithm, we
normalize and sort the bvfs terms. The function get-nth-bit is again used by the substitution step —
substituting (x . term) in the bv form (:bit x l) gives (get-nth-bit term l).

An important detail is that the transformations are justified by lemmas in the RTL books that have
integerp type constraints; see, e.g., the add-3 lemma. We defer discharging these hypotheses until the
end. All ctv-cp functions maintain a list of terms that need to satisfy integerp, and syntactic analysis is
done to resolve such hypotheses whenever a substitution is made. If the final transformed terms for LHS
and RHS match, the clause processor tries to prove these type hypotheses under the original assumptions
of the theorem; if it cannot, then it prompts the user to supply any missing assumptions.

3 Observations and Related Work

The largest multipliers that we have used ctv-cp on so far at Arm have 64×64-bit Dadda and Wallace
compression trees; the runtime is less than 1 second. The automation and speed of ctv-cp reduces the
ACL2 proof development effort for integer multipliers and facilitates quick equivalence checks because
the RAC models can faithfully replicate the RTL. We refrain from doing a formal complexity analysis
for ctv-cp, but note that its runtime is proportional to the size of the bvfsl terms and the number of
substitutions in the design. The size of the terms is never larger than the product of the number of the
initial partial products and the multiplication size (i.e., 16 for an 8× 8-bit multiplier). Thus, we expect
ctv-cp to scale for the multipliers we deal with at Arm.

An alternative approach for verifying compression trees would be to apply rewriting after the beta-
reduction of lambda terms. For efficiency, such an approach would need structure sharing using hash-
consing, outside-in rewriting, and optimized algorithms for term matching. Our implementation is sim-
ple; it operates on lambda terms and applies the matching algorithm from the inner-most term outwards
before applying substitutions; this is equivalent in principle to the alternative approach above, and obvi-
ates the need for such nontrivial optimization techniques.

In related work [8, 7], the author develops an efficient, automatic tool, VeSCMul, for end-to-end
proofs of a wide variety of multiplier designs in ACL2. A rewriting-based approach is used that employs
optimization techniques to avoid costly backchaining. Unfortunately, VeSCMul does not currently work
with functions in the RTL books, which are present in the code generated by the RAC parser. Instead of
implementing a translator, we developed ctv-cp which has a simple implementation, works seamlessly
with our existing verification methodology, and has the advantage that it normalizes terms until fixpoint,
which is conducive to producing informative messages if any errors are encountered.

In the future, we plan to develop automation for reasoning about the partial product generation step
to reduce the verification overhead of obtaining end-to-end correctness proofs for integer multipliers and
subsequently, other design units that include them.

M. Manjrekar 55

References
[1] Algorithmic C datatypes. https://github.com/hlslibs/ac_types. Accessed: 2025-04-27.
[2] Mayank Manjrekar: ctv-cp clause-processor. https://github.com/acl2/acl2/tree/master/books/

workshops/2025/manjrekar. Accessed: 2025-04-27.
[3] David M. Russinoff (2022): Formal Verification of Floating-Point Hardware Design - A Mathematical Ap-

proach, Second Edition. Springer, doi:10.1007/978-3-030-87181-9.
[4] David M. Russinoff, Javier D. Bruguera, Cuong Chau, Mayank Manjrekar, Nicholas Pfister & Harsha Val-

saraju (2022): Formal Verification of a Chained Multiply-Add Design: Combining Theorem Proving and
Equivalence Checking. In: 29th IEEE Symposium on Computer Arithmetic, ARITH 2022, Lyon, France,
September 12-14, 2022, IEEE, pp. 120–126, doi:10.1109/ARITH54963.2022.00030.

[5] David M. Russinoff et al.: RTL Books. https://www.cs.utexas.edu/~moore/acl2/manuals/latest/
index.html?topic=ACL2____RTL. Accessed: 2025-04-27.

[6] Sol Swords & Jared Davis (2015): Fix Your Types. In Matt Kaufmann & David L. Rager, editors: Proceedings
Thirteenth International Workshop on the ACL2 Theorem Prover and Its Applications, Austin, Texas, USA,
1-2 October 2015, EPTCS 192, pp. 3–16, doi:10.4204/EPTCS.192.2.

[7] Mertcan Temel (2022): Verified Implementation of an Efficient Term-Rewriting Algorithm for Multiplier Veri-
fication on ACL2. In Rob Sumners & Cuong Chau, editors: Proceedings Seventeenth International Workshop
on the ACL2 Theorem Prover and its Applications, Austin, Texas, USA, 26th-27th May 2022, EPTCS 359,
pp. 116–133, doi:10.4204/EPTCS.359.11.

[8] Mertcan Temel (2024): VeSCMul: Verified Implementation of S-C-Rewriting for Multiplier Verification. In
Bernd Finkbeiner & Laura Kovács, editors: Tools and Algorithms for the Construction and Analysis of Sys-
tems - 30th International Conference, TACAS 2024, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part
I, Lecture Notes in Computer Science 14570, Springer, pp. 340–349, doi:10.1007/978-3-031-57246-3_19.

https://github.com/hlslibs/ac_types
https://github.com/acl2/acl2/tree/master/books/workshops/2025/manjrekar
https://github.com/acl2/acl2/tree/master/books/workshops/2025/manjrekar
https://doi.org/10.1007/978-3-030-87181-9
https://doi.org/10.1109/ARITH54963.2022.00030
https://www.cs.utexas.edu/~moore/acl2/manuals/latest/index.html?topic=ACL2____RTL
https://www.cs.utexas.edu/~moore/acl2/manuals/latest/index.html?topic=ACL2____RTL
https://doi.org/10.4204/EPTCS.192.2
https://doi.org/10.4204/EPTCS.359.11
https://doi.org/10.1007/978-3-031-57246-3_19

Gamboa and Manolios (Eds):

ACL2 Workshop 2025

EPTCS 423, 2025, pp. 56–59, doi:10.4204/EPTCS.423.6

© M. Kaufmann & J S. Moore

This work is licensed under the

Creative Commons Attribution License.

Extended Abstract: Partial-encapsulate and Its Support for

Floating-point Operations in ACL2

Matt Kaufmann and J Strother Moore

Department of Computer Science, The University of Texas at Austin, Austin, TX, USA (retired)

{kaufmann,moore}@cs.utexas.edu

1 Introduction

The partial-encapsulate1 macro was introduced in ACL2 Version 8.2 (May, 2019), providing a gen-

eral way to evaluate constrained functions, thus generalizing trusted (unverified) clause-processors [5].

However, the ACL2 community books [6] of ACL2 Version 8.6 contain only a few applications of this

utility. One goal of this extended abstract is to publicize (finally) this powerful utility. We do so by

describing how it supports floating-point (FP) computation in ACL2, which addresses our second goal:

to augment the very brief discussion of that support in our published treatment of FP computation in

ACL2 [4].

This extended abstract is intended to be reasonably self-contained, especially when combined with

the supporting materials described below. For much more background on FP computation in ACL2, see

its documentation topic for user-level discussion; and for implementation-level comments, see the ACL2

source code, especially file float-a.lisp and the comment therein, Essay on Support for Floating-

point (double-float, df) Operations in ACL2.

FP computations are widely used in the scientific community, and they are generally much faster

than computations with rationals. ACL2 supports such computations using double-floats (FPs), which

are a Lisp2 datatype typically consisting of double-precision floating-point numbers. But FP operations

are awkward to axiomatize. The following Lisp computations show that FP addition is not associative

(which is awkward since ACL2 + is axiomatized to be associative) and in Lisp, the EQUAL function does

not compute equality on numbers.

? (setq *read-default-float-format* ’double-float) ; read FPs as double-floats

DOUBLE-FLOAT

? (+ 0.1 (+ 0.2 0.3))

0.6

? (+ (+ 0.1 0.2) 0.3) ; not the same result as above; associativity fails!

0.6000000000000001

? (equal 1 1.0) ; two equal arithmetic values need not satisfy EQUAL

NIL

?

A solution might be to add a new FP datatype to the ACL2 logic, but we were loath to complicate

ACL2 that way. In particular, although that could explain a result of nil for the evaluation of (equal 1

1Underlined links are to ACL2 documentation topics.
2In this paper, “Lisp” refers to Common Lisp [7].

http://dx.doi.org/10.4204/EPTCS.423.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____PARTIAL-ENCAPSULATE
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____DEFINE-TRUSTED-CLAUSE-PROCESSOR
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____COMMUNITY-BOOKS
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____DF

M. Kaufmann & J S. Moore 57

1.0), it would be at odds with a result of t for the evaluation of (= 1 1.0), since = is defined logically

to be EQUAL. The new datatype would also probably complicate ACL2’s type reasoning.

Instead, ACL2 models FPs as the rational numbers they represent; a rational is representable if it is

the numeric value of a double-float. By tracking the use of FP expressions much as stobjs [1] are tracked,

ACL2 arranges for Lisp FP computations to be performed using Lisp double-floats, even though they are

rational operations logically.

Our goal is to illustrate how partial-encapsulate, when combined with redefinition in Lisp al-

lowed by a trust tag [2], can extend the power of ACL2. We illustrate this idea by showing a toy example

that supports FP operations. For simplicity, this exposition ignores the stobj-like tracking mentioned

above; as a result (and as noted at the end below), this toy implementation is actually unsound! That ob-

servation highlights the potential danger of using partial-encapsulate together with redefinition in

Lisp. The actual ACL2 implementation of floating-point operations also uses partial-encapsulate

but avoids unsoundness by taking great care, including the use of stobj-like tracking mentioned above.

Although our toy example involves floating-point numbers, we expect most user applications would

avoid data types not supported by the ACL2 logic (like floating-point). That should make it considerably

less complicated to avoid unsoundness than was the case when adding support to ACL2 for FP operations.

2 A Toy Implementation Illustrating FP Support

We describe the example worked out in the supporting materials for this paper, which can be found in

the following files in community books directory books/demos/fp/.

• fp.lisp — Certifiable book introducing some FP operations logically

• fp-raw.lsp — Lisp redefinitions supporting FP computation

• fp.acl2 — Certification support for trust tag and dependencies

They define a few functions with “fp” in the name, which correspond to analogous ACL2 built-ins with

“df” (for “double-float”) in the name instead of “fp”. (There are many more df built-ins as well.) Square

root and addition functions are introduced logically in fp.lisp using partial-encapsulate but are

given executable Lisp definitions in file fp-raw.lsp. To support these, we also introduce a conversion

function to-fp and a recognizer function fpp in fp.lisp, as follows. Think of (to-fp x) as choosing

a representable rational near x; specifically, it chooses the rational returned by evaluating the expression

(float x 0.0D0) in Common Lisp, as discussed further below.

(partial-encapsulate ; introduce conversion to representable rationals

(((constrained-to-fp *) => * :formals (x) :guard (rationalp x)))

nil ; supporters; see documentation for partial-encapsulate

(local (defun constrained-to-fp (x) (declare (ignore x)) 0))

(defthm rationalp-constrained-to-fp

(rationalp (constrained-to-fp x))

:rule-classes :type-prescription)

(defthm constrained-to-fp-idempotent

(equal (constrained-to-fp (constrained-to-fp x))

(constrained-to-fp x)))

... ; other exported defthm events omitted here

)

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____TYPE-REASONING
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____STOBJ
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____DEFTTAG
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____DF

58 FP in ACL2

(defun to-fp (x) ; convert to representable rationals

(declare (xargs :guard (rationalp x)))

(constrained-to-fp x))

(defun fpp (x) ; recognizer for representable rationals

(declare (xargs :guard t))

(and (rationalp x) (= (to-fp x) x)))

A partial-encapsulate event represents a corresponding, implicit encapsulate event that in-

troduces additional exported theorems. The key requirement is that the axioms exported by that event,

including the implicit additional ones, are all provable for some choice of local witnesses for the sig-

nature functions. See the documentation topic for partial-encapsulate for more information about that

utility, in particular its lack of support for functional instantiation due to unknown constraints.

In the case of constrained-to-fp, the implicit constraints (from additional, hidden defthm events)

include a theorem for each computation result based on the following definition from fp-raw.lisp; for

example, since (float 1/3 0.0D0) computes to an FP with value

6004799503160661/18014398509481984, an implicit axiom is

(equal (to-fp 1/3) 6004799503160661/18014398509481984).

(defun to-fp (x)

(declare (type rational x))

(float x 0.0D0))

Of course, there are in principle infinitely many such implicit axioms. But the implicit encapsulate

event is a finite object, so we consider only computation results that will be performed, somewhere by

someone, using the current version of ACL2. For details, see comments in the partial-encapsulate

that introduces function symbol constrained-to-df in ACL2 source file float-a.lisp.

Why don’t we instead introduce to-fp with partial-encapsulate and eliminate the function

constrained-to-fp? The reason is that the ACL2 rewriter refuses to execute calls of constrained

functions (regardless of redefinition in Lisp). This way, ACL2 succeeds, for example, in the proof of

(thm (equal (to-fp 1/4) 1/4)).

The function fp-round is similar to to-fp, but these two functions serve different purposes. To-fp

is intended to be executable. Fp-round, which is not executable, logically supports defining FP addition

to be the rounded result of exact addition, as specified by IEEE Standard 754 [3]. FP addition is defined

as follows in fp.lisp.

(defun fp+ (x y)

(declare (xargs :guard (and (fpp x) (fpp y))))

(fp-round (+ x y)))

Fp+ is redefined in fp-raw.lsp as follows. Note that for FPs x and y, the Lisp + operation does the

requisite rounding.

(defun fp+ (x y)

(declare (type double-float x y))

(+ x y))

For more details see the aforementioned supporting materials, which in particular contain:

• redefinition in Lisp using a trust tag followed by the form (include-raw "fp-raw.lsp") in

fp.lisp, to load fp-raw.lsp into Lisp, which redefines functions already defined in ACL2;

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____PARTIAL-ENCAPSULATE
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____FUNCTIONAL-INSTANTIATION
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____INCLUDE-RAW

M. Kaufmann & J S. Moore 59

• introduction of the FP square root function, fp-sqrt, using partial-encapsulate for ACL2

and Lisp sqrt for execution;

• handling of executable-counterpart (so-called “*1*”) functions for redefined functions;

• tests showing that evaluation works, even during proofs; and

• examples demonstrating the need for care when using Lisp redefinition, by proving nil.

The soundness issue just above is due to the attempt to traffic in a Lisp datatype (double-float) that is

not supported in the ACL2 logic. Comments in fp.lisp outline how ACL2 avoids these problems for

its df implementation. We expect that most user applications of partial-encapsulate can avoid such

soundness issues if appropriate care is taken.

Acknowledgments. We thank Warren Hunt for encouraging the implementation of floating-point op-

erations in ACL2 and ForrestHunt, Inc. for supporting that implementation. We also thank the reviewers

for helpful comments.

References

[1] Robert S. Boyer & J Strother Moore (2002): Single-Threaded Objects in ACL2. In Shriram Krishnamurthi

& C. R. Ramakrishnan, editors: Practical Aspects of Declarative Languages, 4th International Symposium,

PADL 2002, Portland, OR, USA, January 19-20, 2002, Proceedings, Lecture Notes in Computer Science

2257, Springer, pp. 9–27, doi:10.1007/3-540-45587-6_3.

[2] Peter C. Dillinger, Matt Kaufmann & Panagiotis Manolios (2007): Hacking and Extending ACL2. In Ruben

Gamboa, Jun Sawada & John Cowles, editors: Proceedings Seventh International Workshop on the ACL2

Theorem Prover and its Applications.

[3] IEEE (2019): IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008),

pp. 1–84, doi:10.1109/IEEESTD.2019.8766229.

[4] Matt Kaufmann & J Strother Moore (2024): ACL2 Support for Floating-Point Computations, p. 251–270.

Springer Nature Switzerland, doi:10.1007/978-3-031-66676-6_13.

[5] Matt Kaufmann, J Strother Moore, Sandip Ray & Erik Reeber (2009): Integrating External Deduction Tools

with ACL2. Journal of Applied Logic 7(1), pp. 3–25, doi:10.1016/j.jal.2007.07.002.

[6] The ACL2 Community (2024): The ACL2 Community Books. https://github.com/acl2/acl2/tree/

master/books.

[7] Kent Pitman: The Common Lisp HyperSpec. See https://www.lispworks.com/documentation/

HyperSpec/Front/.

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____EVALUATION
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____DF
https://doi.org/10.1007/3-540-45587-6_3
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1007/978-3-031-66676-6_13
https://doi.org/10.1016/j.jal.2007.07.002
https://github.com/acl2/acl2/tree/master/books
https://github.com/acl2/acl2/tree/master/books
https://www.lispworks.com/documentation/HyperSpec/Front/
https://www.lispworks.com/documentation/HyperSpec/Front/

Gamboa and Manolios (Eds):

ACL2 Workshop 2025

EPTCS 423, 2025, pp. 60–64, doi:10.4204/EPTCS.423.7

© M. Kaufmann, W. Hunt, Y. Sohail

This work is licensed under the

Creative Commons Attribution License.

Extended Abstract:

Mutable Objects with Several Implementations

Matt Kaufmann

University of Texas at Austin (retired), Austin, TX, USA

kaufmann@cs.utexas.edu

Yahya Sohail

University of Texas at Austin, Austin, TX, USA

yahya@yahyasohail.com

Warren A. Hunt, Jr.

University of Texas at Austin, Austin, TX, USA

hunt@cs.utexas.edu

This extended abstract outlines an ACL2 feature, attach-stobj1, that first appeared in ACL2 Ver-

sion 8.6 (October, 2024). Familiarity is assumed here with single-threaded objects, or stobjs [1] — not

only ordinary concrete stobjs but also abstract stobjs [2].

For a worked example that illustrates attach-stobj, see the directory demos/attach-stobj/ in

the community books [4], starting with file README.txt in that directory. Performance is addressed in

subdirectory mem-test/ of that directory and is discussed in Section 3 below.

1 Background and Acknowledgments

The evolving x86 model [3] (in community books directory projects/x86isa/) currently represents

its memory using an abstract stobj that is nested in X86, the abstract stobj it uses to represent its state.

Linux has been booted on this model and Linux jobs have been run on it. But for efficient execution

for a variety of applications, we wanted the x86 model to be flexible by permitting different memory

models to be used with it. This paper describes an enhancement to ACL2 that permits such substitution

of memory models without requiring recertification of the book that defines the X86 abstract stobj. We

thank Sol Swords for helpful design feedback; ForrestHunt, Inc. for supporting the research reported

herein; and the reviewers for helpful feedback on this paper.

2 Overview

The idea is to allow an abstract stobj ST to be defined in a book as an attachable stobj, using keyword

argument :attachable t as shown below, so that different ACL2 sessions can specify different ways

to execute operations on ST without the need to recertify the book that defines ST. In particular, those

overriding executions can be available without re-proving the theorems that have been proved about ST.

Let’s outline how this works. We start with a book, B_ST, that contains a defabsstobj event

introducing the stobj, ST, followed by some theorems.

(defabsstobj ST

...

1Underlined links are to ACL2 documentation topics. In particular, the topic for attach-stobj has details not included in

this abstract.

http://dx.doi.org/10.4204/EPTCS.423.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____ATTACH-STOBJ
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____STOBJ
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____DEFABSSTOBJ
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____COMMUNITY-BOOKS
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____DEFABSSTOBJ
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____ATTACH-STOBJ

M. Kaufmann, W. Hunt, Y. Sohail 61

:attachable t) ; allows execution of ST to be modified; see below

;;; ... some theorems ...

Then, one or more other books could look as follows, where IMPL is given the same sequence of :logic

functions in its primitives as those of ST.

(defabsstobj IMPL ...) ; Might be top-level, but might be from an included book

(attach-stobj ST IMPL) ; IMPL may be attached to a stobj ST, introduced later.

(include-book "B_ST") ; Define ST using :attachable t, so that execution with

; ST is performed as specified by IMPL.

The relevant notions and required order are as follows, as illustrated above.

• The implementation stobj, IMPL, is defined before the attach-stobj event specifying that it will

be attached to the attachable stobj, ST.

• The attach-stobj event precedes the defabsstobj event that defines ST.

The user documentation for attach-stobj provides detailed requirements for its use. The key idea is to

replace the :foundation and the :exec fields of the attachable stobj with those of its implementation.

Suppose that IMPL is to be used only as suggested above — that is, it will only serve as an implemen-

tation stobj to be attached to some other stobj (for example, ST above). Then the defabsstobj event

for IMPL can save space by specifying :non-executable t. That option’s sole effect is to prevent the

creation of a global IMPL stobj (which however can be created later, if needed, using add-global-stobj).

Option :non-executable t is also useful for a stobj if it will only be used as a child of a superior stobj

or as a local stobj.

For the motivating application described in the preceding section, ST and IMPL represent memories

within a superior X86 stobj; see nested-stobjs. Attach-stobj works as expected when attaching to the

child stobj (whether concrete or abstract), essentially as follows.

(defabsstobj IMPL ...) ; implementation memory stobj

(attach-stobj ST IMPL) ; IMPL to be attached later to ST

(defabsstobj ST ; attachable memory stobj

...

:attachable t)

(defabsstobj X86 ...) ; includes ST as a child, which executes as IMPL

As the new capability was being designed, it was considered to support introduction of an attach-

able stobj without :exec fields for its primitives. But that would have required developing a semantics

for such “incomplete” abstract stobj definitions as well as modifying the checks. In particular, what

should be done about the correspondence function and theorems? There were also problems involving

signatures of exported functions when omitting :exec fields. It thus seemed reasonable to make the

usual requirements for abstract stobjs even when they are attachable, which pertain even to :exec fields

that might not ultimately be used in execution. One can view local witnesses in encapsulate events as

providing a sort of precedent.

3 Performance

This section illustrates how attach-stobj can provide substantial performance benefits without incur-

ring extra proof work. It summarizes results reported in directory demos/attach-stobj/mem-test/

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____ATTACH-STOBJ
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____ADD-GLOBAL-STOBJ
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____LOCAL
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____NESTED-STOBJS
https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____ENCAPSULATE

62 Attach-stobj

of the community books [4], in particular its file README.txt. We start with the following table, which

gives runtime and physical memory used in the six runs described below.

Memory Benchmark Time (secs) Size (bytes)

symmetric low 2.75 2000085072

symmetric high 2.75 2000085072

asymmetric low 0.00 6663495760

asymmetric high 87.91 6666641488

attached low 0.00 6899818576

attached high 89.04 6902964304

The rows are based on doing 100,000 writes of byte value 1 to random addresses in a range of 230

contiguous addresses. Those addresses start at address 0 for “low” writes and at 6∗230 for “high” writes.

The writes are done after loading memory models using the following ACL2 commands.

• symmetric:

(include-book "centaur/bigmems/bigmem/bigmem" :dir :system)

• asymmetric:

(include-book "centaur/bigmems/bigmem-asymmetric/bigmem-asymmetric" :dir :system)

• attached:

(include-book "centaur/bigmems/bigmem-asymmetric/bigmem-asymmetric" :dir :system)

(attach-stobj bigmem::mem bigmem-asymmetric::mem)

(include-book "centaur/bigmems/bigmem/bigmem" :dir :system)

In all cases, we see that the symmetric memory model performs best of the three when writing to “high”

memory, while the other two memory models perform best when writing to “low” memory. It can thus

be beneficial to choose different memory models for different applications.

Naive implementations would simply create the symmetric and asymmetric models and prove desired

theorems about each. But with attach-stobj, we need only prove theorems about the symmetric

model: with attach-stobj one can attach the asymmetric model to the symmetric model when one

wants the performance provided by the asymmetric model.

This use of attach-stobj has benefit beyond avoiding the duplication of proofs. Books that include

the symmetric model can be used with either model, depending on whether or not the asymmetric model

is first included and then attached to the symmetric model, as shown in the three commands displayed

above for the attached usage. Without the availability of attach-stobj, one would need to develop two

such books: one that includes the symmetric model and one that includes the asymmetric model.

Note that the performance penalties are minor for using attached instead of asymmetric. This is a

small price to pay for the benefits described above.

4 Implementation Notes

The basic implementation idea for attachable stobjs is reasonably straightforward. The attach-stobj

event populates a table, attach-stobj-table: it associates an attachable stobj name, which must not

yet be defined, with an implementation stobj name, which must already be defined. Then when the

attachable stobj is later defined, its corresponding implementation stobj is found by looking in the table

— recursively, since the value may itself have an attachment.

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____COMMUNITY-BOOKS

M. Kaufmann, W. Hunt, Y. Sohail 63

(defun attached-stobj (st wrld top)

; Top is t for a top-level call, nil otherwise.

(let ((st2 (cdr (assoc-eq st (table-alist ’attach-stobj-table wrld)))))

(cond (st2 (attached-stobj st2 wrld nil))

(top nil)

(t st))))

The main ACL2 source function for implementing defabsstobj, which is defabsstobj-fn1, calls

itself one time recursively when :attachable t is supplied, essentially by replacing the :exec (execu-

tion) fields and :foundation of the attachable stobj with those of the implementation stobj. But first it

checks that those two abstract stobjs (attachable and implementation) have the same sequence of :logic

fields. See the source code for the many details omitted here, in particular, the definition of the function

defabsstobj-fn1 mentioned above and the comment entitled “Essay on Attachable Stobjs”.

The trickiest part is to install the proper code for execution. When including a certified book that

defines an abstract stobj, code for that stobj’s primitives is normally provided by the book’s compiled

file, based on the :exec fields of the defabsstobj event. But when the stobj is attachable and an

attachment is provided, the :exec fields of the implementation stobj need to be used instead. This

presents a challenge, especially since abstract stobj primitives are macros. Consider for example a book

B_ST.lisp that contains the following events.

(defabsstobj ST

...

:exports (... (p :logic p$a :exec p$c) ...)

:attachable t)

(defun f (ST) (declare (xargs :stobjs ST)) ... (p ...) ...)

Now suppose we attach a stobj IMPL to ST before including that book.

(defabsstobj IMPL

...

:exports (... (p{impl} :logic p$a :exec p{impl}$c) ..))

(attach-stobj ST IMPL)

(include-book "B_ST") ; defines ST and (f ST); see above

A naive implementation would load compiled code from the book B_ST when it is included; and since p

is a macro, the compiled code for f would be produced by macroexpanding calls of p by calling p$c. But

instead, those calls of p$c should instead be calls of the corresponding :exec field from IMPL, namely,

p{impl}$c.

This problem is addressed using two globals in the logical world, ext-gens and ext-gen-barriers,

that track functions like f for which compiled code from a book should be ignored, so that primitives of

an attached stobj are invoked using their attachments. This will generally cause a function like f to be

compiled when its ACL2 definitional event is encountered during include-book. Details are beyond

the scope of this extended abstract. However, that and other implementation issues are covered in the

Essay mentioned above. The community books directory system/tests/attachable-stobjs/ has

examples that test aspects of attachable stobjs, including some of the trickier aspects of execution that

involve them.

We conclude by noting that execution with attachable stobjs is efficient, in that attach-stobj in-

troduces no indirection. The trade-off is that compilation is performed at include-book time when

existing compiled code is avoided, as discussed above.

https://www.cs.utexas.edu/users/moore/acl2/manuals/latest/index.html?topic=ACL2____INCLUDE-BOOK

64 Attach-stobj

References

[1] Robert S. Boyer & J Strother Moore (2002): Single-Threaded Objects in ACL2. In Shriram Krishnamurthi

& C. R. Ramakrishnan, editors: Practical Aspects of Declarative Languages, 4th International Symposium,

PADL 2002, Portland, OR, USA, January 19-20, 2002, Proceedings, Lecture Notes in Computer Science

2257, Springer, pp. 9–27, doi:10.1007/3-540-45587-6_3.

[2] Shilpi Goel, Warren A. Hunt, Jr. & Matt Kaufmann (2013): Abstract Stobjs and Their Application to ISA

Modeling. Electronic Proceedings in Theoretical Computer Science 114, p. 54–69, doi:10.4204/eptcs.

114.5.

[3] Shilpi Goel, Warren A. Hunt, Jr. & Matt Kaufmann (2014): Simulation and Formal Verification of x86

Machine-Code Programs that make System Calls. In K. Claessen & V. Kuncak, editors: FMCAD’14: Proceed-

ings of the 14th Conference on Formal Methods in Computer-Aided Design, EPFL, Switzerland, pp. 91–98,

doi:10.1109/FMCAD.2014.6987600.

[4] The ACL2 Community (2024): The ACL2 Community Books. https://github.com/acl2/acl2/tree/

master/books.

https://doi.org/10.1007/3-540-45587-6_3
https://doi.org/10.4204/eptcs.114.5
https://doi.org/10.4204/eptcs.114.5
https://doi.org/10.1109/FMCAD.2014.6987600
https://github.com/acl2/acl2/tree/master/books
https://github.com/acl2/acl2/tree/master/books

Gamboa and Manolios (Eds):
ACL2 Workshop 2025
EPTCS 423, 2025, pp. 65–83, doi:10.4204/EPTCS.423.8

© A. Coglio and E. McCarthy
This work is licensed under the
Creative Commons Attribution License.

A Formalization of the Yul Language and
Some Verified Yul Code Transformations

Alessandro Coglio Eric McCarthy
Kestrel Institute https://kestrel.edu

Yul is an intermediate language used in the compilation of the Solidity programming language for
Ethereum smart contracts. The compiler applies customizable sequences of transformations to Yul
code. To help ensure the correctness of these transformations and their sequencing, we used the
ACL2 theorem prover to develop a formalization of the syntax and semantics of Yul, proofs relating
static and dynamic semantics, a formalization of some Yul code transformations, and correctness
proofs for these transformations.

1 Introduction

Solidity [21, 18] is a programming language for writing smart contracts for the Ethereum blockchain [9].
Solidity is compiled to EVM (Ethereum Virtual Machine) bytecode [26], which is directly executed by
transactions on the blockchain. The Solidity compiler includes the preferred option to translate Solidity
to EVM bytecode via the intermediate language Yul [20] (see Figure 1): first, Solidity is turned into Yul
with a relatively simple translation; next, the Yul code undergoes several optimizing transformations;
finally, the optimized Yul code is turned into EVM bytecode with another relatively simple translation.
The rationale is to move most of the compilation complexity into the Yul code transformations, which
eases the task because Yul is simpler than Solidity and more structured than EVM bytecode. Yul is also
used to write inline assembly in Solidity, i.e. to embed EVM bytecode (with Yul syntax) directly in the
Solidity code, which is sometimes necessary in Ethereum smart contracts.

Yul is designed to be usable as an intermediate language to compile other front ends than Solidity
to other back ends than EVM bytecode. In line with this aspiration, Yul consists of a core (‘pure Yul’
or ‘generic Yul’) independent from front and back ends, which is extensible with dialects tailored to
specific front and back ends. Currently only the EVM dialect is defined, for compiling Solidity to EVM
bytecode. A Yul dialect extends the Yul core with specific types and operations.

A few tens of Yul transformations have been defined and implemented [19]. Some are dialect-
independent, while others are EVM-dialect-specific. Some transformations assume that others have
already taken place, i.e. they expect the code to be in a certain form, which the previous transformations

Solidity EVM
Yul
to
Yul

Yul transformations

Solidity
to
Yul

Yul
to

EVM
Yul Yul... ...

Figure 1: Solidity Compiler with Yul Transformations

http://dx.doi.org/10.4204/EPTCS.423.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://kestrel.edu

66 Yul Formalization and Transformations

produce. Some transformations, or sequences of transformations, may be iterated, i.e. applied multiple
times until either nothing changes or an iteration limit is reached. The Solidity compiler uses a default
sequence of transformations, which can be overridden by the user.

It is critical that Yul transformations and their sequencing are correct. Each transformation must be
applied to code of the expected form, as produced by the preceding transformations, and must produce
code semantically equivalent to the input code. This paper reports on our preliminary work towards
addressing these problems, using the ACL2 theorem prover [12]. We developed a formalization of the
syntax and semantics of Yul, which covers the generic core and a small portion of the EVM dialect;
we proved some properties of the formalization, most notably that the static semantic checks rule out
dynamic semantic errors. We formalized some Yul transformations, and verified that they preserve both
static and dynamic semantics. We formalized some restrictions on Yul code that are expected by some
transformations, and verified that they are preserved by some transformations. Although we have only
scratched the surface of verifying transformations and their sequencing, we believe that our work shows
the feasibility of the approach. Our ACL2 library for Yul, which contains our development, is available
at [25, [books]/kestrel/yul] and documented at [24, yul].

After providing some background on Yul in Section 2, we describe our formalization of Yul in Section
3, and our work on verified transformations in Section 4. Related work is surveyed in Section 5, while
future work is discussed in Section 6. Some closing remarks are given in Section 7.

Background on Solidity and the EVM can be found in a variety of sources, starting with the Ethereum
web site [9]. However, knowledge of Solidity and the EVM is not required to read this paper.

2 Background on Yul

Yul is a statically typed, block-structured, imperative language. Statements consist of function defini-
tions, variable declarations and assignments, conditionals, loops, control transfers, expressions (for side
effects), and nested blocks. Expressions consist of literals, variables, and function calls. A function takes
zero or more inputs and returns zero or more outputs; if it returns no outputs, it is only used for side
effects, as a statement.

The Yul core has no types, and no syntax to define types. The EVM dialect has a single type u256,
consisting of 256-bit unsigned integers. If a type is omitted (e.g. in a variable declaration), it defaults to
a type specified by the dialect; the EVM dialect necessarily defaults to u256, which is the only type.

The Yul core includes boolean literals (true and false), numeric literals in decimal and hexadecimal
base (e.g. 64738 and 0xff0012), and certain forms of string literals (e.g. "abc" and hex"90a4"). The
EVM dialect defines the meaning of literals as u256 values: boolean literals denote 0 and 1, numeric
literals denote the obvious, and string literals yield byte sequences interpreted as integers in base 256. It
is a static error if a literal denotes 2256 or more, e.g. if a string literal yields more than 32 bytes.

Variables are declared via the let keyword, with or without a type (see above), and with or without
an initializing expression; if the latter is missing, the variable is initialized to 0. In the EVM dialect,
let x declares a variable x of type u256 initialized to 0, while let y := x declares a variable y of type
u256 initialized to the current value of x. A variable assignment is like a variable declaration without
let, e.g. x := 17 assigns 17 to x. A call of a function that returns two or more outputs can be used to
initialize, or to assign to, multiple variables, e.g. let a, b := f(...) initializes a and b to the first
and second result of f. If multiple variables are declared without initializing expressions, they are all
initialized to 0, as in the case of a single variable, e.g. let a, b.

A function definition returns results by assigning them to its output variables, which are declared as

https://github.com/acl2/acl2/tree/master/books/kestrel/yul
http://acl2.org/manual?topic=YUL____YUL

A. Coglio and E. McCarthy 67

part of the function definition, along with the input variables. For example, in a function definition of
the form function f(x, y) -> a, b { ... a := ... b := ... }, the input variables are x and
y, and the output variables are a and b. If a function terminates execution without assigning a value to
some output variables, the corresponding result is 0. The leave statement can be used to return from a
function, whose execution otherwise terminates at the end of its body block.

The Yul core has no built-in functions. The EVM dialect provides several tens of built-in functions,
corresponding to EVM bytecode instructions. For example, the function add, which takes two u256
inputs and returns their u256 sum (modulo 2256), corresponds to the EVM bytecode instruction ADD. An
assignment like z := add(x, y) in inline assembly represents, and is translated to (as the last compi-
lation step), an ADD instruction in EVM bytecode. Although the EVM is stack-based, Yul is essentially
register-based (where the registers are the variables); the rationale is to facilitate understanding and ma-
nipulation of Yul code, while keeping the translation to EVM bytecode still relatively simple.

for loops are structurally similar to C and Java: there is an initialization block, a test expression, an
update block, and a body block; the break and continue statements can be used to break out of a loop
or to skip the rest of an iteration. if conditionals have a ‘then’ branch and no ‘else’ branch. switch
conditionals have case branches based on literals, and optional default branches. There are no go-to
statements; the rationale for this, and for having structured control flow, is to facilitate understanding and
manipulation of Yul code.

Blocks are delimited by curly braces, i.e. { ... }, as in many other languages. Statements are not
terminated by semicolons; note that there are no infix operators, only function calls, which makes parsing
easier. There are line comments // ... and block comments /* ... */, as in many other languages.

The Yul documentation [20] includes a grammar, as is customary, and a semi-formal semantics,
which is much less customary. The latter is an evaluation function over the Yul syntactic constructs,
written in a mix of mathematics, pseudo-code, and English prose.

3 Yul Formalization

Our formalization covers the Yul core and a small portion of the EVM dialect. Extending it to cover the
whole EVM dialect, and generalizing it to accommodate other dialects, are both future work.

3.1 Abstract Syntax

The abstract syntax is the fulcrum of our development: concrete syntax abstracts to it; static and dynamic
semantics are defined on it; and transformations manipulate it. For defining static and dynamic semantics,
the abstract syntax could abstract away all the concrete syntax information that does not affect said
semantics. But for defining transformations, it is beneficial to retain enough concrete syntax information
to reduce incidental differences between code before and after transformations, to facilitate inspection
and debugging; however, retaining excessive concrete syntax information may add complexity without
significant additional benefit. In formalizing the abstract syntax, we tried to strike the right balance: we
keep all the syntactic details of literals, but we drop whitespace and comments.

The abstract syntax is formalized as a collection of algebraic data types, using the fixtype library [23]
[24, fty]. For example, expressions are formalized as

(fty::deftagsum expression
(:path ((get path)))
(:literal ((get literal)))
(:funcall ((get funcall)))

http://acl2.org/manual?topic=ACL2____FTY

68 Yul Formalization and Transformations

:pred expressionp)

i.e. an expression is either a path, or a literal, or a function call; a path is a sequence of identifiers
separated by dots, which are used as variable names.1 As another example, statements are formalized as

(fty::deftagsum statement
(:block ((get block)))
(:variable-single ((name identifier) (init expression-option)))
(:variable-multi ((names identifier-list) (init funcall-optionp)))
(:assign-single ((target path) (value expression)))
(:assign-multi ((targets path-list) (value funcall)))
(:funcall ((get funcall)))
(:if ((test expression) (body block)))
(:switch ((target expression) (cases swcase-list) (default block-option)))
(:for ((init block) (test expression) (update block) (body block)))
(:break ())
(:continue ())
(:leave ())
(:fundef ((get fundef)))
:pred statementp)

i.e. a statement is either a block, or a (single or multiple) variable declaration, or a (single or multiple)
variable assignment, or a function call, or an (if or switch) conditional, or a (for) loop, or a (break
or continue or leave) control transfer, or a function definition. Overall, the definition of the abstract
syntax is unremarkable, directly derived from the concrete syntax.

3.2 Concrete Syntax

To formalize the concrete syntax, we developed an ABNF [7, 15] grammar of Yul, as a straightforward
transcription of the grammar in [20, 18].2 For example, the ABNF grammar rule for expressions is

expression = path / literal / function-call

and the ABNF grammar rule for statements is
statement = block / variable-declaration / assignment / function-call

/ if-statement / switch-statement / for-statement
/ %s"leave" / %s"break" / %s"continue" / function-definition

which also show the correspondence with the examples in Section 3.1.3 The verified ABNF grammar
parser [2] [24, abnf::grammar-parser] turns the ABNF grammar of Yul into an ACL2 representation
with formal semantics, according to the formalization of the ABNF notation [2] [24, abnf::notation].

As is customary in programming languages, the grammar consists of a lexical sub-grammar, which
specifies how sequences of characters are organized into lexemes (i.e. tokens, whitespace, and com-
ments), and a syntactic sub-grammar, which specifies how tokens (after discarding whitespace and com-
ments) are organized into expressions, statements, and related constructs. As is also customary, the
lexical sub-grammar is further constrained by taking the longest possible lexeme at each point (e.g. xy is
a single lexeme, not two lexemes x and y), and by the fact that keywords are not identifiers. A complete
formalization of the concrete syntax should include these restrictions, but this is future work.

1The motivation for using paths as variable names seems to be that Yul variables may represent nested fields in Solidity.
2As explained in [24, yul::concrete-syntax], [20, 18] contains an old grammar and a new grammar, both of which we

have transcribed to ABNF. This paper focuses on the new grammar, for which we have also developed a parser.
3While the abstract syntax of statements has different cases for single and multiple variable declarations and assignments,

the grammar makes that distinction in the rules for variable-declaration and assignment (not shown here).

http://acl2.org/manual?topic=ABNF____GRAMMAR-PARSER
http://acl2.org/manual?topic=ABNF____NOTATION
http://acl2.org/manual?topic=YUL____CONCRETE-SYNTAX

A. Coglio and E. McCarthy 69

We developed an (unverified) executable parser of Yul in ACL2. The lexer is partially generated,
via some preliminary ABNF parser generation tools [24, abnf::defdefparse]; the rest is handwritten,
closely following the lexical grammar. The parser proper is handwritten, closely following the syntactic
grammar, according to a recursive descent strategy.

3.3 Static Semantics

The static semantics consists of efficiently checkable restrictions on the syntax, informally stated in [20].
An example is that a function must be called with the right number of arguments. The Solidity compiler
must: enforce these restrictions on inline assembly; translate Solidity code to Yul code that satisfies these
restrictions; and transform Yul code preserving these restrictions. The static semantics is formalized as
executable ACL2 functions that check these restrictions recursively on the abstract syntax.

The Yul scoping rules involve the notions of visibility and accessibility, which differ between func-
tions and variables. They are explained below, using the following code as example:

{ // block 1:
let x
function f () { // block 2:

function h () { ... }
let y
{ // block 3:

let z
}

}
function g () { // block 4:

let y
function h () { ... }

}
}

A function is both visible and accessible in the whole block where its definition occurs, even before
the definition, and including all the nested blocks. In the example above: f and g are visible and ac-
cessible everywhere in block 1 (including blocks 2, 3, and 4), but not outside block 1; the h defined in
f is visible and accessible everywhere in block 2 (including block 3), but not outside block 2 (e.g. not
in block 4); and so on. A function definition is disallowed if the function name is already visible and
accessible, e.g. no function g can be declared in f. The h defined in f is distinct from the h defined in g.

A variable is visible from just after its declaration to the end of the block where it occurs, including all
the nested blocks; the variable is accessible in the same portion of the block, except in nested functions.
In the example above: x is visible in the portion of block 1 just after its declaration, including blocks
2, 3, and 4, but it is not accessible in blocks 2, 3, and 4; the y declared in f is visible in the portion of
block 2 just after its declaration, including block 3, and it is also accessible in block 3; and so on. A
variable declaration is disallowed if the variable name is already visible, regardless of whether it is also
accessible. The y declared in f is distinct from the y declared in g.

Visibility means lexical scoping, i.e. which names can be seen from where, while accessibility means
the ability to reference those seen names. When a function is called, a fresh variable area is created,
without the ability to reference the variables of the caller: this is why accessibility of variables stops at
function boundaries, and why the notions of visibility and accessibility differ for variables. For functions,
visibility and accessibility coincide.

http://acl2.org/manual?topic=ABNF____DEFDEFPARSE

70 Yul Formalization and Transformations

Our formalized static semantics checks the above scoping rules, using symbol tables for variables
and functions. Since neither the Yul core nor the EVM dialect have syntax for types, symbol tables for
variables are just finite sets of variable names (all of which have the same type), while symbol tables for
functions are finite maps from function names to function “types”, where the latter are pairs (n,m) where
n is the number of inputs and m is the number of outputs. A function must be called with n arguments;
the call must be a statement if m = 0 (for side effects), or used to initialize or assign m variables if m ̸= 0.

Restrictions on where break, continue, and leave may occur are enforced by calculating and
checking the possible ways in which statements and blocks may terminate. There are four possible ways,
called ‘modes’ (also used in the dynamic semantics; see Section 3.4): three modes corresponding to
those three statements, and one mode corresponding to ‘regular’ termination.

Most static semantic checks are dialect-independent, except that literals are interpreted as denoting
u256 values, which are thus checked to be below 2256; this is EVM-dialect-specific. Our static semantics
provides the option to initialize the function symbol table with the types of the built-in functions of the
EVM dialect, so that Yul code in the EVM dialect can be properly checked.

3.4 Dynamic Semantics

The dynamic semantics is formalized as a defensive big-step executable interpreter of the abstract syntax.
Each call of an ACL2 function of the interpreter attempts to execute its input abstract syntax construct
completely, recursively executing the sub-constructs. Since the execution of certain constructs may not
terminate, the ACL2 functions take, as additional input, an artificial counter that limits the depth of
the mutual recursion: the counter is decremented by one at each recursive call, and used as measure,
making the termination proof straightforward. The interpreter is defensive in the sense that it checks the
necessary safety conditions, e.g. that each function is called with the right number of arguments, without
relying on the static semantics (see Section 3.5 for the relation between static and dynamic semantics).

This approach matches the semi-formal semantics in [20], which is also a big-step interpreter. Be-
sides the syntactic construct (expression, statement, etc.), the interpreter takes as input, and returns as
output, a global state G, which is dialect-specific, and a local state L, which is dialect-independent; the
interpreter also returns one of the four termination modes described in Section 3.3. L is the state of the
local variables. In the EVM dialect, G consists of various areas of memory, and provides read access to
some blockchain state (e.g. current block number). Our ACL2 interpreter has the same structure.

The ACL2 function to execute statements is
(define exec-statement

((stmt statementp) (cstate cstatep) (funenv funenvp) (limit natp))
:returns (outcome soutcome-resultp)
(b* (((when (zp limit)) ...)) ; return limit error

(statement-case stmt
:block (exec-block stmt.get cstate funenv (1- limit))
:leave (make-soutcome :cstate cstate :mode (mode-leave))
...)) ; handle the other kinds of statement

:measure (nfix limit))

where:
• stmt is the statement, which is handled by cases (see the type definition in Section 3.1).
• cstate is a computation state, which wraps a finite map from variable names to 256-bit unsigned

integers, modeling the local state L, tailored to the EVM dialect because values have type u256:
(fty::defprod cstate

((local lstate)) ; finite map from identifiers to values

A. Coglio and E. McCarthy 71

:pred cstatep)
We do not yet model the global state G (which is complex), but the reason to wrap the type lstate
into cstate is to accommodate the future addition of a (global gstate) component. The local
state is a flat map, not a stack of maps corresponding to scopes, because each called function starts
a new local state (consisting of the function’s input and output variables), and because nested block
scopes cannot shadow variables.

• funenv is a function environment, i.e. a stack of finite maps from function names to function
information consisting of inputs, outputs, and body:

(fty::defprod funinfo
((inputs identifier-list)
(outputs identifier-list)
(body block))

:pred funinfop)
Unlike the local state, the function environment is a stack because of the different scoping rules of
functions compared to variables: the stack corresponds to the lexical scoping of functions; when a
function is called, the stack is trimmed down to the scope of that function. With reference to the
example code in Section 3.3: when executing the h defined in g, the function environment contains
a scope for block 1 with f and g, a scope for block 4 with h, and a scope for the body of h; if h
calls f, the two top scopes are popped, leaving only the one for block 1, because f can only access
the functions in that scope.

• limit is the artificial counter, which exec-statement tests with zp as first thing, returning an
error value indicating that the limit is exhausted if that is the case. This limit is decremented at
each recursive call, e.g. in the call of exec-block, and used as measure for the mutual recursion.

• outcome is either an error value or a statement outcome of type
(fty::defprod soutcome

((cstate cstate)
(mode mode))

:pred soutcomep)
which consists of a possibly updated computation state and a mode of termination. Inspired by the
Result type in Rust, the type soutcome-result extends soutcome with error values.

• A block statement is executed by executing the block with a separate function exec-block, which
extends the function environment with a new scope, executes the statements in the block, and then
pops the function environment and reduces the local state to the variables before the block (the
function exec-block is not shown here).

• The execution of a leave statement returns the leave termination mode without changing the
computation state. That termination mode is propagated upwards, and treated the same as regular
termination by the ACL2 function exec-function that executes Yul functions.

• The code to execute the other kinds of statements is not shown.
The execution of expressions returns an error value or an expression outcome of type
(fty::defprod eoutcome

((cstate cstate)
(values value-list))

:pred eoutcomep)

which is analogous to statement outcomes, but with a list of zero or more values instead of a termination
mode. Although function calls, and thus expressions, have no side effects on the local state, because each
function has its own local state, our ACL2 interpreter accommodates the extension with side effects on
the global state, since expression outcomes include a possibly updated computation state.

72 Yul Formalization and Transformations

Besides returning an error value when the artificial limit is exhausted, our ACL2 interpreter returns
an error value when a defensive check fails, e.g. a referenced variable or function is not accessible, a
break is executed outside a loop body, a function is given the wrong number of arguments, etc.

Except for using values of type u256, the current interpreter has no support for the EVM dialect.
Adding support involves modeling the global state G and modeling the EVM built-in functions via ACL2
code that manipulates the global state. Adding this support is future work.

3.5 Static Soundness

We proved the soundness of the static semantics with respect to the dynamic semantics: if the checks
of the static semantics are satisfied, the dynamic semantics never returns an error value, except when
the artificial limit is exhausted. In other words, the defensive checks of the dynamic semantics are
guaranteed to succeed if the checks of the static semantics succeed. This kind of property provides a
major validation of the design and formalization of a programming language. The converse property,
i.e. static completeness, namely that if the dynamic semantics never returns error values (except for
exhausting the artificial limit) then the static semantics succeeds, cannot hold for any decidable static
semantics, because it is undecidable whether the dynamic semantics returns error values.4

This formulation of static soundness relies on the fact that, in the Yul core covered by our dynamic
semantics (see Section 3.4), the only error values are for the exhaustion of the artificial limit and for
defensive checks also checked by the static semantics. If some dialect-specific built-in function can fail
in ways not detectable by the static semantics (e.g. division by zero), then static soundness should be
reformulated to rule out only the errors detectable by the static semantics.

The static semantics involves function and variable symbol tables, while the dynamic semantics
involves function environments and computation states. To formulate static soundness, those are related
as follows: a function environment abstracts to a function symbol table, merging the scopes and only
keeping the numbers of inputs and outputs of each function; and a computation state abstracts to a
variable symbol table, keeping only the variables in the domain of the local state map.

There is a static soundness theorem for each mutually recursive ACL2 function, proved by induction
on the mutual recursion. The theorem for expression execution is

(defthm exec-expression-static-soundness
(b* ((results (check-safe-expression

expr (cstate-to-vars cstate) (funenv-to-funtable funenv)))
(outcome (exec-expression expr cstate funenv limit)))

(implies (and (funenv-safep funenv)
(not (reserrp results))
(not (reserr-limitp outcome)))

(and (not (reserrp outcome))
(equal (cstate-to-vars (eoutcome->cstate outcome))

(cstate-to-vars cstate))
(equal (len (eoutcome->values outcome))

results)))))

4For instance, in a conditional statement if E B, where E is an expression and B is a block, B may have a static error that
never causes a dynamic error due to E being always false. In general, it may be possible to prove a static completeness property
with respect to an extended dynamic semantics that nondeterministically chooses among all possible branches regardless of
the actual values of the tests that control branching, as done in [1]. In if E B, after evaluating E, that extended dynamic
semantics would nondeterministically either execute B or skip it, regardless of the value of E. As in [1], this hypothetical static
completeness property for Yul would show that the checks of the static semantics are, in a sense, the most liberal possible.

A. Coglio and E. McCarthy 73

where:
• cstate-to-vars abstracts a computation state to a variable symbol table.
• funenv-to-funtable abstracts a function environment to a function symbol table.
• check-safe-expression, from the static semantics, checks the safety of the expression expr,

returning the number of results if successful, or an error value otherwise.
• exec-expression, from the dynamic semantics, executes the expression expr, returning an ex-

pression outcome, described in Section 3.4.
• The theorem assumes that: the functions in the function environment pass the checks of the static

semantics, formalized by funenv-safep; results is not an error value (recognized by reserrp),
i.e. check-safe-expression succeeds, and results is the number of results of expr; the exe-
cution of expr does not exhaust the artificial limit, where reserr-limitp recognizes error values
that come from exhausting the limit.

• The theorem concludes that: the execution of expr does not return an error value; the new com-
putation state abstracts to the same variable symbol table as the old computation state; the actual
number of values in the outcome coincides with the statically computed one.

The theorems for the other exec-... functions are similar; when statement outcomes are involved
instead of expression outcomes, the conclusion about the number of values instead says that the actual
termination mode is an element of the set of possible modes calculated by the static semantics.

In these theorems, the funenv-safep hypothesis is critical to establish the static safety hypotheses
for the code of each called Yul function, which is obtained from the function environment. As the func-
tion environment is extended, the preservation of its safety relies on the static safety hypotheses for the
code containing the Yul function definitions added to the environment. When the function environment
is trimmed, its safety is preserved because it applies element-wise.

The inductively proved theorems about the exec-... functions are preceded by, and rely on, the
proofs of several theorems about funenv-safep, funenv-to-funtable, and other ACL2 functions.
Overall, the proofs are not conceptually difficult, but involve a bit of work.

4 Yul Transformations

While the formalization of Yul described in Section 3 has value on its own, our primary motivation for
developing it was to support the verification of Yul code transformations in the Solidity compiler. Our
work on transformations is fairly preliminary, yet illustrative.

4.1 Approach

Since the Solidity compiler is written in C++ [17], verifying the implementation of Yul transformations
is a daunting proposition. It is more feasible to generate, each time a Yul transformation is run, a proof of
the correctness of the new code with respect to the old code; a verifying (not verified) compiler approach.

Extending the Solidity compiler to generate such proofs is impractical, due to its complexity and
ownership. A more viable approach is to (1) replicate the Yul transformations in ACL2, (2) verify
correctness properties of the replicated transformations, and (3) validate the replicated transformations
by checking that they are consistent with the transformations in the compiler. Performing the third
step every time a transformation is run, and instantiating the general theorems of the second step to the
run, achieves the same goal as a proof-generating extension of the compiler, but without modifying the
compiler; in [5], we introduced the term ‘detached proof-generating extension’ for this approach.

74 Yul Formalization and Transformations

Yul transformation in ACL2

T (x,y)≜ . . . C(x,y)≜ . . .
⊢ ∀x,y. T (x,y) =⇒C(x,y)

Yul transformation in C++

theorem generation

Yul Yul

JSON JSON

AST a AST b

export export

convert convert

⊢C(a,b)

Figure 2: Proof Generation Approach for Yul Transformations

Figure 2 visualizes the approach. The top box is any one of the Yul transformations in the Solidity
compiler. The middle box is the replicated transformation in ACL2, formalized as a predicate T (x,y)
on old code x and new code y, accompanied by a correctness predicate C(x,y) (which may vary slightly
across transformations), and a general theorem that T implies C; this theorem is proved once, for each
transformation, under user guidance, with effort dependent on the complexity of the transformation. The
Solidity compiler has facilities to output Yul abstract syntax trees in JSON format at various stages of the
compilation process: these facilities are depicted as the ‘export’ boxes. We have built a tool, in ACL2,
to convert the resulting JSON into abstract syntax trees (ASTs) of our ACL2 formalization of Yul; this
is depicted as the ‘convert’ boxes. Each time the transformation is run, ASTs a and b for the old and
new code can be automatically generated; the bottom box can check that T (a,b) holds, and if so it can
instantiate the general theorem to obtain a proof of C(a,b) automatically. These last sentences say ‘can’
because we have not implemented this workflow yet, although we see no obstacle to doing that.

An alternative to verifying the correctness of the replicated transformations is to have them generate
proofs of correctness, as done in APT [13, 4, 6] and ATC [3], pushing the verifying compiler approach
further. But having pursued that approach in the tools just mentioned, for Yul we wanted to explore the
verification of the transformations. In summary, our approach for Yul transformation is a combination
of verifying and verified compiler: the former for the transformations in the Solidity compiler, and the
latter for the replicated transformations in ACL2.

4.2 Definitions

We have formalized the ForLoopInitRewriter, DeadCodeEliminator, and Disambiguator trans-
formations [19]. The first two are quite simple; the third one is relatively simple, but illustrates a general
important point.

The ForLoopInitRewriter transformation moves the initialization component of a for loop just
before the loop and wraps it and the loop in a block, e.g. the loop

A. Coglio and E. McCarthy 75

for { <init> } <test> { <update> } { <body> }

is transformed into the block5

{ <init> for { } <test> { <update> } { <body> } }

The scoping rules for for loops involve an exception: the scope of variables declared and functions
defined in the initialization block extends to the whole loop (test, update, and body). The purpose of
performing this transformation is to obviate the need for successive transformations to deal with this
scoping exception. This transformation is easily defined in ACL2, by recursion on the abstract syntax.

The DeadCodeEliminator transformation removes a simple form of dead code, namely the code in
a block that follows a break, continue, or leave statement, e.g. the block

{ <live> break <dead> }

is transformed into the block6

{ <live> break }

The purpose of this transformation is to reduce code size.
The Disambiguator transformation makes all the variable and function names unique across the

whole program. For instance, the example code in Section 3.3 is transformed into something like

{
let x
function f () {

function h1 () { ... }
let y1
{

let z
}

}
function g () {

let y2
function h2 () { ... }

}
}

where the two different variables y and functions h are renamed apart. There are many ways to rename
variables and functions apart, differing in the exact choice of names. To make our ACL2 definition of
the transformation simpler, and independent from the choice of names made by the Solidity compiler,
we formalized it as a relation instead of a function: the relation holds on old and new code exactly when
they are the same except for a consistent renaming of variables and functions such that the new code has
globally unique names. In fact, our definition consists of four independent components:

• A binary relation expressing consistent variable renaming.
• A binary relation expressing consistent function renaming.
• A unary relation expressing global uniqueness of variable names.
• A unary relation expressing global uniqueness of function names.
The binary relation for variable renaming consists of a family of recursive functions, such as

(define statement-renamevar ((old statementp) (new statementp) (ren renamingp))
:returns (new-ren renaming-resultp)

5More precisely, the transformation is recursively applied to <init>, <test>, <update>, and <body> as well.
6More precisely, the transformation is recursively applied to <live> as well.

76 Yul Formalization and Transformations

(statement-case
old
:block
(b* (((unless (statement-case new :block)) ...) ; return error

((statement-block new) new)
((okf &) (block-renamevar old.get new.get ren)))

(renaming-fix ren))
:variable-single
(b* (((unless (statement-case new :variable-single)) ...) ; return error

((statement-variable-single new) new)
((okf &) (expression-option-renamevar old.init new.init ren)))

(add-var-to-var-renaming old.name new.name ren))
...)) ; handle the other kinds of statements

where:
• old and new are the statements before and after the transformation.
• ren is a renaming, i.e. a list of cons pairs of identifiers ((x1 . y1) (x2 . y2) ...) where
x1, x2, etc. are all distinct and where y1, y2, etc. are all distinct. It is an injective alist with unique
keys, invertible into ((y1 . x1) (y2 . x2) ...). x1, x2, etc. are the variables in scope for
old; y1, y2, etc. are the variables in scope for new. x1 in old is renamed to y1 in new, x2 in old is
renamed to y2 in new, etc.; but x1 and y1 could be the same, or x2 and y2 could be the same, etc.

• If old is a block statement, new must be a block statement too; otherwise statement-renamevar
returns an error value, because new is not a valid result of transforming old.

• The block in new must be a valid result of transforming the block in old, which is checked by the
mutually recursive companion function block-renamevar.

• Since a block contributes no new variables outside it, statement-renamevar returns ren.7

• If old is a (single) variable declaration, say for x, new must be one too, say for y. The optional ini-
tializing expression of new must be a valid result of transforming the one of old, via the renaming
ren, which is then extended with the pair (x . y), and returned.

• The code for the other kinds of statements is not shown.
The binary relation for function renaming is defined similarly.

The unary relations for unique variable and function names go through the abstract syntax, keep
track of the set of all the names encountered so far, whether visible/accessible or not, and check that
every variable declaration or function definition introduces a name not already in the set.

The purpose of Disambiguator is to make it easier for subsequent transformations to move code
around, without worrying about name conflicts.

Our formalization of Disambiguator, unlike our formalizations of the other transformations, does
not consist of executable ACL2 code to run the transformation; it consists of executable ACL2 code to
check whether the result of the transformation is valid. According to the approach described in Section
4.1, the purpose of formalizing the transformation in ACL2 is to verify that, every time the Solidity
compiler runs it, the new code is equivalent to the old code. The old and new code are given as inputs
to our formalization of the transformation to check that the action of the Solidity compiler matches
our formalization; given a general proof of the correctness of our formalization (see Section 4.4), it is
possible to obtain a proof of the correctness of that run of the transformation by the Solidity compiler.
This relational approach, which isolates the formal definition and proofs from changeable details of the
implementation, may also be applicable to other Yul code transformations.

7The fixer renaming-fix is a no-op under the guard (renamingp ren), but it makes the return theorem unconditional.

A. Coglio and E. McCarthy 77

4.3 Restrictions

Some transformations expect the code to satisfy certain restrictions, which must be established by pre-
ceding transformations, and must be generally preserved by subsequent transformations. We formalized
some of these restrictions in ACL2 as predicates on the abstract syntax.

We formalized the restriction that for loops have empty initialization blocks. As mentioned in
Section 4.2, this restriction is established by ForLoopInitRewriter.

We formalized the restriction that code has no function definitions. Some transformations (not de-
scribed in this paper) move all the function definitions (after disambiguation) to a new top-level block,
so that subsequent transformations can take all the function definitions from the top-level block without
worrying about nested function definitions. Our formalized restriction just says that there are no func-
tion definitions: it applies to the non-top-level code, which is recursively processed by transformations,
stripped of the function definitions at the top level.

4.4 Proofs

We proved that (our formalization of) DeadCodeEliminator preserves the two restrictions in Section
4.3. Removing code does not introduce function definitions or code in for loop initialization blocks.
These proofs are automatic, after enabling the involved functions.

We proved that DeadCodeEliminator preserves the static semantics: if the old code is safe, so is
the new code, assuming the restriction about the absence of function definitions. The latter is critical: if a
function definition follows a break, removing the code after the break removes that function definition,
which the old code may be calling in non-dead code before the break. The theorem for statements is

(defthm check-safe-statement-of-statement-dead
(implies (and (statement-nofunp stmt)

(statement-noloopinitp stmt))
(b* ((varsmodes (check-safe-statement stmt varset funtab))

(varsmodes-dead (check-safe-statement (statement-dead stmt)
varset
funtab)))

(implies (not (reserrp varsmodes))
(and (not (reserrp varsmodes-dead))

(equal (vars+modes->vars varsmodes-dead)
(vars+modes->vars varsmodes))

(set::subset (vars+modes->modes varsmodes-dead)
(vars+modes->modes varsmodes)))))))

where:
• statement-dead removes dead code from a statement, according to the transformation: stmt is

the old statement, and (statement-dead stmt) is the new statement.
• varset and funtab are the variable and function symbol tables. For this transformation, they are

the same for old and new code; more complex transformations may require transforming these
tables as well.

• check-safe-statement, from the static semantics, checks the safety of a statement; if successful,
it returns an updated variable symbol table, and a set of possible termination modes.

• The theorem assumes that: the old statement has no function definitions (critical hypothesis); the
old statement has empty for loop initialization blocks (which slightly simplifies the proof); the
old statement is safe, i.e. varmodes is not an error value.

78 Yul Formalization and Transformations

• The theorem concludes that: the new statement is safe, i.e. varmodes-dead is not an error value;
the updated variable table after the new statement is the same as the one after the old statement;
the termination modes of the new statement are a subset of the ones of the old statement (because
the static semantics over-approximates them; for example, if a leave followed a break in the old
code, it would be absent in the new code).

The proof is automatic, after enabling the involved functions and also adding an :expand hint.8

We proved that DeadCodeEliminator preserves the dynamic semantics: the new code has the same
execution behavior as the old code, assuming the restriction about the absence of function definitions,
which is critical for the same reason explained above. The theorem for statements is

(defthm exec-statement-of-dead
(implies (and (statement-nofunp stmt)

(funenv-nofunp funenv))
(soutcome-result-okeq
(exec-statement
(statement-dead stmt) cstate (funenv-dead funenv) limit)

(exec-statement stmt cstate funenv limit))))

where:
• As in the previous theorem: stmt is the old statement; (statement-dead stmt) is the new

statement; statement-nofunp is the critical restriction.
• funenv-dead extend the transformation to (the function bodies in) function environments. When

a function is called during execution, its body is retrieved from the function environment: to
apply induction hypotheses during the proof, the function bodies in the old and new function
environments must be related by the transformation, in the same way as the code being executed.

• funenv-nofunp extends the restriction of no function definitions to (the function bodies in) func-
tion environments. This is also needed to apply induction hypotheses during the proof, because
the code of called functions is retrieved from the function environment.

• soutcome-result-okeq is an equivalence relation on soutcome-result that holds on a and b
exactly when either they are equal statement outcomes or they are both error values. This accom-
modates slight differences in the details of the error values returned by the dynamic semantics.9

• The theorem says that, assuming no function definitions in the old statement and function environ-
ment, executing the old statement gives equivalent results to executing the new statement on the
same computation state, the transformed function environment, and the same artificial limit.

The proof is not difficult, but involves certain :expand and :use hints, applied only to certain cases of
the induction via computed hints, because they slow down the proof if applied to all the cases. Perhaps
the :use hints could be avoided in some way, but the :expand hints may be necessary to defeat heuristics
that prevent the opening of certain recursive function calls.

The formulation of the theorem above does not distinguish between errors due to limit exhaustion
and errors due to unsafe operations. In general, a transformation should not turn terminating code into
non-terminating code. This can be proved by distinguishing between the two kinds of errors, as done in
the theorems for variable renaming, described next.

We proved that the variable renaming component of the Disambiguator preserves both static and
dynamic semantics. Although this is intuitively obvious, picturing the old and new code merely differing

8Without the :expand hint, the proof fails, presumably due to heuristics about opening recursive functions.
9These slight differences exist because the error values contain some user-oriented information about the error causes, e.g.

the constructs that cause the errors. But since this is unnecessary for verification, the error values should probably be simplified,
only distinguishing between limit exhaustion and unsafe operations. This should obviate the need for the equivalence relation.

A. Coglio and E. McCarthy 79

in variable names but otherwise completely isomorphic, it takes a bit of work to formulate and prove.
The theorem for the preservation of the static semantics for statements is

(defthm check-safe-statement-when-renamevar
(b* ((ren1 (statement-renamevar stmt-old stmt-new ren))

(varmodes-old (check-safe-statement stmt-old (varset-old ren) funtab))
(varmodes-new (check-safe-statement stmt-new (varset-new ren) funtab)))

(implies (and (not (reserrp ren1))
(not (reserrp varmodes-old)))

(and (not (reserrp varmodes-new))
(equal (vars+modes->vars varmodes-old)

(varset-old ren1))
(equal (vars+modes->vars varmodes-new)

(varset-new ren1))
(equal (vars+modes->modes varmodes-old)

(vars+modes->modes varmodes-new))))))

where:
• The theorem assumes that the new statement stmt-new is a valid result of transforming the old

statement stmt-old, given a renaming ren, which results in the possibly extended renaming ren1.
• The safety of the old/new statement is checked using the variable symbol table consisting of the

keys/values of the renaming ren, which are indeed the accessible variables, given how the binary
relation statement-renamevar is defined (see Section 4.2). The same function symbol table
funtab is used for both, since functions are not renamed, only variables.10

• The theorem assumes that the old statement is safe, and concludes that: the new statement is safe
too; the updated variable symbol table after the old/new statement consists of the keys/values of
the updated renaming ren1; the termination modes of the new statement are the same as the ones
of the old statement.

The proof involves some preparatory lemmas, as well as a custom induction scheme that takes into
account the recursive structure of both the variable renaming functions like statement-renamevar and
the static semantic functions like check-safe-statement.

The theorem for the preservation of the dynamic semantics for statements is

(defthm exec-statement-when-renamevar
(b* ((ren1 (statement-renamevar stmt-old stmt-new ren)))

(implies (and (not (reserrp ren1))
(cstate-renamevarp cstate-old cstate-new ren)
(funenv-renamevarp funenv-old funenv-new))

(b* ((outcome-old
(exec-statement stmt-old cstate-old funenv-old limit))

(outcome-new
(exec-statement stmt-new cstate-new funenv-new limit)))

(implies (and (not (reserr-nonlimitp outcome-old))
(not (reserr-nonlimitp outcome-new)))

(soutcome-result-renamevarp outcome-old
outcome-new
ren1))))))

where:
• The assumption involving statement-renamevar is the same as in the previous theorem.

10This is a motivation for decomposing Disambiguator into the four independent components described in Section 4.2.

80 Yul Formalization and Transformations

• cstate-renamevarp extends variable renaming to computation states, which are built from the
variables in the code. The old and new computation states are renamed according to ren.

• funenv-renamevarp extends variable renaming to function environments, from which the code
of called functions is retrieved. This does not depend on ren, because the variables in the body of
every function in the environment are renamed independently.

• soutcome-renamevarp (not directly used in the theorem) extends variable renaming to statement
outcomes a and b: the computation states must be related by cstate-renamevarp, and the termi-
nation modes must be the same.

• soutcome-result-renamevarp extends variable renaming to soutcome-result: it holds on a
and b exactly when either they are both statement outcomes satisfying soutcome-renamevarp or
they are both error values.

• reserr-nonlimitp recognizes non-limit error values. Thus, the theorem assumes that the execu-
tion of both old and new statement results in either a limit error or a statement outcome.

• The theorem concludes that the two executions yield equivalent results.
The proof involves several preparatory lemmas, a custom induction scheme that takes into account the re-
cursive structure of both the variable renaming functions like statement-renamevar and the execution
functions like exec-statement, and several computed hints to apply different collections of common
hints to different cases of the induction.

It may seem strange that the above theorem assumes, instead of concluding, that the execution of the
new statement does not yield a non-limit error value: compare the theorem for DeadCodeEliminator.
However, the preservation of the static semantics by variable renaming described earlier, and the general
proof of static soundness in Section 3.5, imply that the execution of the new statement does not yield a
non-limit error; thus, it can be assumed in the theorem above, making the proof slightly easier.

The dynamic semantics preservation theorems for DeadCodeEliminator require transforming the
function environment, but not the computation state or the limit. The dynamic semantics preservation
theorems for variable renaming require transforming the computation state and function environment,
but not the limit. Theorems for more complex transformations require transforming the limit as well,
because the number of execution steps can change.

5 Related Work

We are not aware of any other work on Yul using ACL2.
Other formalizations of Yul exist, written in generic math [14], K [11], Isabelle/HOL [10], Lean

[16, 22], and Dafny [8]. As pointed out in [14], none of these are peer-reviewed, except for [14] itself.
It does not appear that any of these formalizations include a static semantics separate from the dynamic
semantics, and a static soundness proof relating the two. On the other hand, [14] includes both a small-
step and a big-step dynamic semantics, with a proof of equivalence. An advantage of [14] compared to
the other formalizations, including ours, is that it is written in a generic mathematical notation that is
more widely accessible than the language and libraries of ACL2 and similar tools; a disadvantage is that
it is not machine-checked, unlike the ones developed with ACL2 and similar tools.

The README in the K formalization of Yul [11] says that its purpose is to perform translation valida-
tion of the Solidity compiler, which is exactly the same goal as ours; that README also indicates scripts to
run tests. It would be interesting to compare their work with ours, but the lack of published papers and de-
tailed documentation demands an examination of their code and prerequisite knowledge of K. The stated
purpose of [14] is to provide a widely accessible precise formalization of Yul. The purpose of [10, 16, 8]

A. Coglio and E. McCarthy 81

appears to be mainly the formal verification of Yul code, but not specifically Yul transformations.

6 Future Work

Although our formalization of the Yul core is essentially complete, it hard-wires some aspects of the
EVM dialect, which should better be kept more separate via a more explicit parameterization of the core
formalization over the dialect. This may take some effort because, despite the multi-dialect aspiration,
currently the Yul core and the EVM dialect are not crisply delineated, and manifest very much like one
integrated language; for instance, different dialects are supposed to have different type systems, but the
Yul syntax does not provide a way to specify types.11

More importantly than having a cleaner separation between core and dialects, the EVM dialect should
be formalized completely, since it is currently the only Yul dialect in practical use. This is a laborious
task because it involves modeling a large portion of the functionality of the EVM [26], although it does
not require a full formalization of the EVM itself.

Our work on transformations has barely scratched the surface. The Solidity compiler includes tens of
transformations, some of which are rather complex and involve EVM-dialect-specific features. Formaliz-
ing and verifying all of them is a substantial task, but it can be approached piecewise: each transformation
can be formalized and verified mostly on its own; dependencies among transformations can be handled
by formalizing the kinds of restrictions on Yul code exemplified in Section 4.3.

To verify the transformations performed by the Solidity compiler, the theorem generator depicted
in Figure 2 must be developed. Once all transformations have been formalized and verified, the gener-
ated proofs can be composed into a proof that the entire sequence of Yul transformations was correctly
applied.

7 Conclusion

Our formalization of Yul, like formalizations developed by others, does not contain any particularly in-
novative ideas, partly because Yul is a relatively simple language. However, a precise, machine-checked
formalization of Yul is clearly valuable. Furthermore, it is possible that extending the formalization to
the full EVM dialect may uncover more interesting formalization issues.

The work on verifying Yul transformations is more original, though there is some similar work (see
Section 5). An interesting finding of our work was that verifying the correctness of even fairly simple
transformations, such as those described in Section 4, whose correctness intuitively appears obvious,
required more work than expected. The proofs are not difficult, but a bit laborious.

Acknowledgements

We thank the Ethereum Foundation for supporting this work.

11The Yul documentation includes an older grammar with syntax for type identifiers, and a newer grammar without such
syntax. The Yul team from the Ethereum Foundation told us that the latter supersedes the former.

82 Yul Formalization and Transformations

References

[1] Alessandro Coglio (2004): Simple Verification Technique for Complex Java Bytecode Subroutines. Concur-
rency and Computation: Practice and Experience 16(7), pp. 647–670, doi:10.1002/cpe.798.

[2] Alessandro Coglio (2018): A Formalization of the ABNF Notation and a Verified Parser of ABNF Gram-
mars. In: Proc. 10th Working Conference on Verified Software: Theories, Tools, and Experiments (VSTTE),
Lecture Notes in Computer Science (LNCS) 11294, pp. 177–195, doi:10.1007/978-3-030-03592-1_10.

[3] Alessandro Coglio (2022): A Proof-Generating C Code Generator for ACL2 Based on a Shallow Embed-
ding of C in ACL2. In: Proc. 17th International Workshop on the ACL2 Theorem Prover and Its Applica-
tions (ACL2-2022), Electronic Proceedings in Theoretical Computer Science (EPTCS) 359, pp. 185–201,
doi:10.4204/EPTCS.359.15.

[4] Alessandro Coglio, Matt Kaufmann & Eric Smith (2017): A Versatile, Sound Tool for Simplifying Definitions.
In: Proc. 14th International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2017), Elec-
tronic Proceedings in Theoretical Computer Science (EPTCS) 249, pp. 61–77, doi:10.4204/EPTCS.249.5.

[5] Alessandro Coglio, Eric McCarthy & Eric Smith (2022): Formal Verification of Zero-Knowledge Circuits. In:
Proc. 18th International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2022), Elec-
tronic Proceedings in Theoretical Computer Science (EPTCS) 393, pp. 94–112, doi:10.4204/EPTCS.393.9.

[6] Alessandro Coglio & Stephen Westfold (2020): Isomorphic Data Type Transformations. In: Proc. 16th Inter-
national Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2020), Electronic Proceedings
in Theoretical Computer Science (EPTCS) 327, pp. 125–141, doi:10.4204/EPTCS.327.12.

[7] D. Crocker & P. Overell (2008): Augmented BNF for Syntax Specifications: ABNF. Request for Comments
(RFC) 5234.

[8] Yul in Dafny. Available at https://github.com/franck44/yul-dafny.

[9] The Ethereum Blockchain. Available at https://ethereum.org.

[10] Yul in Isabelle/HOL. Available at https://github.com/mmalvarez/Yul-Isabelle.

[11] Yul in K. Available at https://github.com/ethereum/Yul-K.

[12] Matt Kaufmann & J Strother Moore: The ACL2 Theorem Prover. Available at http://acl2.org.

[13] Kestrel Institute: APT (Automated Program Transformations). https://www.kestrel.edu/research/
apt.

[14] Vasileios Koutavas, Yu-Yang Lin & Nikos Tzevelekos (2024): An Operational Semantics for Yul. In
Alexandre Madeira & Alexander Knapp, editors: Proc. 22nd International Conference on Software Engi-
neering and Formal Methods (SEFM), Lecture Notes in Computer Science (LNCS) 15280, pp. 328–346,
doi:10.1007/978-3-031-77382-2_19.

[15] P. Kyzivat (2014): Case-Sensitive String Support in ABNF. Request for Comments (RFC) 7405.

[16] Yul in Lean. Available at https://github.com/NethermindEth/Yul-Specification.

[17] The Solidity Compiler. Available at https://github.com/ethereum/solidity.

[18] The Solidity Documentation. Available at https://docs.soliditylang.org.

[19] The Solidity Documentation: The Optimizer. Available at https://docs.soliditylang.org/en/
latest/internals/optimizer.html.

[20] The Solidity Documentation: Yul. Available at https://docs.soliditylang.org/en/latest/yul.
html.

[21] The Solidity Language. Available at https://soliditylang.org.

[22] Julian Sutherland (2022): Securing Warp: A formal specification of the Yul IR. Avail-
able at https://medium.com/nethermind-eth/securing-warp-a-formal-specification-of-
the-yul-ir-85bb3bf51c62. Medium post.

https://doi.org/10.1002/cpe.798
https://doi.org/10.1007/978-3-030-03592-1_10
https://doi.org/10.4204/EPTCS.359.15
https://doi.org/10.4204/EPTCS.249.5
https://doi.org/10.4204/EPTCS.393.9
https://doi.org/10.4204/EPTCS.327.12
https://github.com/franck44/yul-dafny
https://ethereum.org
https://github.com/mmalvarez/Yul-Isabelle
https://github.com/ethereum/Yul-K
http://acl2.org
https://www.kestrel.edu/research/apt
https://www.kestrel.edu/research/apt
https://doi.org/10.1007/978-3-031-77382-2_19
https://github.com/NethermindEth/Yul-Specification
https://github.com/ethereum/solidity
https://docs.soliditylang.org
https://docs.soliditylang.org/en/latest/internals/optimizer.html
https://docs.soliditylang.org/en/latest/internals/optimizer.html
https://docs.soliditylang.org/en/latest/yul.html
https://docs.soliditylang.org/en/latest/yul.html
https://soliditylang.org
https://medium.com/nethermind-eth/securing-warp-a-formal-specification-of-the-yul-ir-85bb3bf51c62
https://medium.com/nethermind-eth/securing-warp-a-formal-specification-of-the-yul-ir-85bb3bf51c62

A. Coglio and E. McCarthy 83

[23] Sol Swords & Jared Davis (2015): Fix Your Types. In: Proc. 13th International Workshop on the ACL2
Theorem Prover and Its Applications, pp. 3–16, doi:10.4204/EPTCS.192.2.

[24] The ACL2 Community: The ACL2 Theorem Prover and Community Books: Documentation. Available at
http:/acl2.org/manual.

[25] The ACL2 Community: The ACL2 Theorem Prover and Community Books: Source Code. Available at
http://github.com/acl2/acl2.

[26] Gavin Wood: Ethereum: A Secure Decentralized Generalised Transaction Ledger. https://ethereum.
github.io/yellowpaper/paper.pdf.

https://doi.org/10.4204/EPTCS.192.2
http:/acl2.org/manual
http://github.com/acl2/acl2
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

Gamboa and Manolios (Eds):
ACL2 Workshop 2025
EPTCS 423, 2025, pp. 84–103, doi:10.4204/EPTCS.423.9

© A. Kumar & P. Manolios
This work is licensed under the
Creative Commons Attribution License.

A Formalization of the Correctness of the Floodsub Protocol

Ankit Kumar Panagiotis Manolios
Northeastern University

Boston, USA
{kumar.anki,p.manolios}@northeastern.edu

Floodsub is a simple, robust and popular peer-to-peer publish/subscribe (pubsub) protocol, where
nodes can arbitrarily leave or join the network, subscribe to or unsubscribe from topics and forward
newly received messages to all of their neighbors, except the sender or the originating peer. To show
the correctness of Floodsub, we propose its specification: Broadcastsub, in which implementation
details like network connections and neighbor subscriptions are elided. To show that Floodsub does
really implement Broadcastsub, one would have to show that the two systems have related infinite
computations. We prove this by reasoning locally about states and their successors using Well-
Founded Simulation (WFS). In this paper, we focus on the mechanization of a proof which shows
that Floodsub is a simulation refinement of Broadcastsub using WFS. To the best of our knowledge,
ours is the first mechanized refinement-based verification of a real world pubsub protocol.

1 Introduction

Peer-to-Peer (P2P) systems are decentralized distributed systems, which constitute overlay networks built
over physical networks, such as the Internet [2]. These systems are characterized by self-organization,
being able to handle highly dynamic network configurations, with nodes being able to join or leave the
overlay network, which allows for scalability in the size of the networks. Publish/Subscribe (pubsub)
systems are P2P systems that allow (1) consumers of information (subscriber nodes) to query the system,
and (2) producers of information (publisher nodes) to publish information to the system. Publishers
are able to send messages to multiple recipients without them having to know who the subscribers are.
This is achieved by associating subscriptions and messages with topics. For example, in a chat room
application, each room is a pubsub topic and clients post chat messages to rooms, which are received
by all other clients (subscribers) in the room. The Scribe system [5] was a first attempt at providing
topic-based pubsub functionality over the Pastry P2P network [33].

A most basic implementation of pubsub systems is Floodsub [36, 1]. In Floodsub, nodes are free
to leave or join the network. Every node has information about its neighboring nodes and their sub-
scriptions. Whenever a node joins, subscribes to or unsubscribes from a topic, it updates its neighboring
nodes. Messages are forwarded to all neighbors that subscribe to the topic of the message, except the
source (originating node) of the message, or the node that forwarded this message. Our implementation
of Floodsub is based on its specification [36]. However, we did not do any conformance testing or cross
validation against existing implementations. And we do not model Ambient Peer Discovery, which is a
way for nodes to learn about their neighbors, and is described in the specification as being external to the
protocol. Given our model of Floodsub protocol, how can we verify that it actually is an implementation
of a pubsub system? We need a specification for a pubsub system and some notion of correctness.

We propose Broadcastsub [1] as the specification for a P2P pubsub system. Broadcastsub nodes can
freely leave and join the network. Nodes maintain a list of topics they subscribe to. However, there is
no notion of neighboring nodes. Messages are broadcasted “magically” to all the subscribers in a single

http://dx.doi.org/10.4204/EPTCS.423.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

A. Kumar & P. Manolios 85

transition. Notice that Broadcastsub is the simplest P2P pubsub system, where implementation details
like subscription updates, neighboring nodes and their subscriptions are abstracted. In this paper, we
focus on the mechanization of the proof that Floodsub is a simulation refinement [31] of Broadcastsub
using Well-Founded Simulation (WFS) [23] in ACL2 Sedan (ACL2S) [12, 6].

To show that Floodnet implements Broadcastnet, we will prove that Floodnet is a simulation refine-
ment of Broadcastnet. Why are we proving a simulation refinement? Because we are comparing two P2P
systems at different levels of abstraction. In a Broadcastsub network, a message broadcast propagates
to all subscribers (of the message) instantly. However, in a Floodsub network, a message may require
several hops from one node to another, until it reaches all of the subscribers. It is often the case that
a lower-level implementation takes several steps to match a step of its higher level specification. Prov-
ing a WFS guarantees that Floodsub states and related Broadcastsub states have related computations.
This notion of correctness implies that the two systems satisfy the same ACT L∗ \X [4] properties. WFS
proofs are structural and local, requiring proofs about states and their successors, instead of infinite paths,
thereby allowing proofs to be amenable to formal verification. This work is a piece of a larger puzzle that
allows us to reason about more complex P2P systems using compositional refinement [25, 24], which
we want to extend all the way down to Gossipsub [35]. Since our models are public, protocol engineers
will be able to easily define/extend their own P2P systems and attempt to show that their model is a
refinement of one of our existing ones. Our proof of refinement spells out exactly how the proof breaks,
if these conditions are not satisfied. Hence, our contribution can also be used to tag P2P systems with
the kinds of network attacks they are prone to, corresponding to the refinement conditions that were not
satisfied.

We make the following contributions: (1) Formal, executable, open and public models of Floodsub
and Broadcastsub protocols expressed as transition systems, and (2) a mechanized proof in ACL2S

showing that Floodsub is a simulation refinement of Broadcastsub. We discuss related work in Section 5;
and ours is the first mechanized refinement-based verification of a real world pubsub protocol. While
refinement is a standard formal method, it has never been previously applied to P2P pubsub protocols
like FloodSub. Our models and proofs are publicly available in our repository [21]. Overall, our code
consists of 476 theorems proved, and 10277 lines of lisp code.

Paper Outline. Section 2 describes Floodnet and Broadcastnet models for Floodsub and Broadcastsub,
respectively. Section 3 describes the refinement theorem. Section 4 is a discussion about the theorem
proving process and effort that went into this proof. Section 5 discusses related work. Section 6 con-
cludes.

2 Model Descriptions

We model Floodsub and its specification Broadcastsub using transition systems consisting of states and
transition relations (boolean functions on 2 states) that depend on transition functions. We call our
models Floodnet and Broadcastnet respectively. In this section we will explain each of our transition
system models in a top-down fashion. The state models are self explanatory. The interesting parts of the
following code listings are the transition relations, where we place conditions, not only as sanity checks
or for cases, but also as guards to disallow illegal behaviour, like requiring that a peer leaving a network
is already in the network. We will discuss such conditions in detail.

86 A Formalization of the Correctness of the Floodsub Protocol

2.1 Broadcastnet

The state of a Broadcastnet is stored in a map from peers to their corresponding peer-states. We represent
peers by natural numbers. A Broadcastnet peer state is a record consisting of (i) pubs : the set of topics
in which a peer publishes, (ii) subs : the set of topics to which a peer subscribes to, and (iii) seen : the
set of messages a peer has already processed. We use sorted ACL2 lists containing unique elements to
represent sets. Hence, set equality is reduced to list equality. Messages are records consisting of (i) pld
: a message payload of type string (ii) tp : the topic in which this message was published, and (iii) or :
the originating peer for this message.

(defdata s-bn (map peer ps-bn))

(defdata-alias peer nat)

(defdata ps-bn (record
(pubs . lot)
(subs . lot)
(seen . lom)))

(defdata lot (listof topic))

(defdata-alias topic var)

(defdata lom (listof mssg))

(defdata mssg (record
(pld . string)
(tp . topic)
(or . peer)))

We will now define the transition relation for Broadcastnet. The relation rel-step-bn relates 2
Broadcastnet states s and u iff s transitions to u. rel-step-bn is an OR of all the possible ways s can
transition to u. rel-skip-bn represents a transition where s chooses to skip, hence u is s.

(definec rel-step-bn (s u :s-bn) :bool
(v (rel-skip-bn s u)

(rel-broadcast-bn s u)
(rel-broadcast-partial-bn s u)
(rel-subscribe-bn s u)
(rel-unsubscribe-bn s u)
(rel-leave-bn s u)
(rel-join-bn s u)))

(definecd rel-skip-bn (s u :s-bn) :bool
(== u s))

rel-broadcast-bn defines a relation between s and u, where u represents the state resulting from
broadcasting a message in s. The broadcast is modeled as an atomic operation in which all subscribers
receive the message simultaneously. The function (br-mssg-witness s u) is a witness finding function
that calculates the message that was broadcast, if one exists. Since seen is a set of messages implemented
as an ordered list with unique elements, br-mssg-witness utilizes this ordering of unique messages to
find the broadcasted message.

A. Kumar & P. Manolios 87

The boolean function broadcast-bn-pre is a conjunction of the following preconditions: (i) the
broadcast message is new, i.e., it is not already found in the seen set of any of the peers in s, (ii) the
originating peer of the message exists in s, and (iii) the topic of the broadcast message is one in which
the originating peer publishes messages. broadcast-bn-pre also appears as an input contract (:ic) in
the definition of the broadcast transition function. (== u (broadcast (br-mssg-witness s u) s))

in the definition of rel-broadcast-bn ensures that the message found by br-mssg-witness was the
sole message broadcast in s. We use the insert-unique function within broadcast-help to add new
messages while preserving order and uniqueness of the seen set.

In the following code snippets, we use some ACL2S syntax described as follows. ˆ, v and !

are macros for and, or and not respectively. In a property form, the form following the keyword
:h is the hypothesis, while the form following the keyword :b is the body. (nin a x) stands for
(not (in a x)). :match is a powerful ACL2S pattern matching capability which supports predicates,
including recognizers automatically generated by defdata, disjunctive patterns and patterns contain-
ing arbitrary code [30]. For more expressive pattern matching, ! is used for literal match while &

is used as a wildcard. In a function definition form, :ic and :oc abbreviate :input-contract and
:output-contract respectively.

(definecd rel-broadcast-bn (s u :s-bn) :bool
(^ (br-mssg-witness s u)

(broadcast-bn-pre (br-mssg-witness s u) s)
(== u (broadcast (br-mssg-witness s u) s))))

(definec broadcast-bn-pre (m :mssg s :s-bn) :bool
(b* ((origin (mget :or m))

(origin-st (mget origin s)))
(^ (new-bn-mssgp m s)

origin-st
(in (mget :tp m)

(mget :pubs origin-st)))))

(definec br-mssg-witness (s u :s-bn) :maybe-mssg
(cond
((v (endp s) (endp u)) nil)
((== (car s) (car u)) (br-mssg-witness (cdr s) (cdr u)))
(t (car (set-difference-equal (mget :seen (cdar u))

(mget :seen (cdar s)))))))

(defdata maybe-mssg (v nil mssg))

(definecd new-bn-mssgp (m :mssg s :s-bn) :bool
(v (endp s)

(^ (nin m (mget :seen (cdar s)))
(new-bn-mssgp m (cdr s)))))

(definecd broadcast (m :mssg s :s-bn) :s-bn
:ic (broadcast-bn-pre m s)
(broadcast-help m s))

(definecd broadcast-help (m :mssg st :s-bn) :s-bn
(match st

88 A Formalization of the Correctness of the Floodsub Protocol

(() nil)
(((p . pst) . rst)
(cons ‘(,p . ,(if (v (in (mget :tp m) (mget :subs pst))

(== p (mget :or m)))
(mset :seen

(insert-unique m (mget :seen pst))
pst)

pst))
(broadcast-help m rst)))))

(definec insert-unique (a :all x :tl) :tl
(match x
(() (list a))
((!a . &) x)
((e . es) (if (<< a e) (cons a x) (cons e (insert-unique a es))))))

We will explain rel-broadcast-partial-bn, and its necessity when discussing the proof of correct-
ness later in the paper. rel-subscribe-bn and rel-unsubscribe-bn relate states s and u where u rep-
resents the state obtained after a peer in s subscribes to or unsubscribes from a set of topics, respectively.
bn-topics-witness calculates the peer and the set of topics it subcribes to or unsubscribes from, if there
exists such peer. Notice that we reuse bn-topics-witness in the definition of rel-unsubscribe-bn,
with the arguments reversed, so as to find the topics that are subscribed to in s, but not in u. The calcu-
lated set of topics are unioned with or removed from the existing set of peer topic subscriptions of the
calculated peer, based on whether it is subscribing or unsubscribing. The definition of unsubscribe-bn
is analogous to that of subscribe-bn and is hence omitted.

(definecd rel-subscribe-bn (s u :s-bn) :bool
(^ (bn-topics-witness s u)

(mget (car (bn-topics-witness s u)) s)
(== u (subscribe-bn (car (bn-topics-witness s u))

(cdr (bn-topics-witness s u))
s))))

(definecd rel-unsubscribe-bn (s u :s-bn) :bool
(^ (bn-topics-witness u s)

(mget (car (bn-topics-witness u s)) s)
(== u (unsubscribe-bn (car (bn-topics-witness u s))

(cdr (bn-topics-witness u s))
s))))

(definec bn-topics-witness (s u :s-bn) :maybe-ptops
(cond
((v (endp s) (endp u)) nil)
((== (car s) (car u)) (bn-topics-witness (cdr s) (cdr u)))
((^ (== (caar s) (caar u))

(set-difference-equal (mget :subs (cdar u))
(mget :subs (cdar s))))

(cons (caar s)
(set-difference-equal (mget :subs (cdar u))

(mget :subs (cdar s)))))
(t nil)))

A. Kumar & P. Manolios 89

(defdata maybe-ptops (v nil (cons peer lot)))

(definecd subscribe-bn (p :peer topics :lot s :s-bn) :s-bn
:ic (mget p s)
(let ((pst (mget p s)))
(mset p (mset :subs (union-equal (mget :subs pst) topics) pst) s)))

rel-join-bn and rel-leave-bn relate states s and u where u is obtained after a peer joins s or
leaves s, respectively. bn-join-witness calculates the peer and its peer-state, if there exists a peer that
joins s. Its definition depends on the keys of our Broadcastnet state being in order, which is guaranteed
by ACL2S maps. A peer joins a Broadcastnet state when a new default Broadcastnet peer state is set for
the corresponding peer. A peer leaves a Broadcastnet state when the entry corresponding to the leaving
peer is removed from the state.

(definecd rel-join-bn (s u :s-bn) :bool
(^ (bn-join-witness s u)

(b* ((p (car (bn-join-witness s u)))
(pst (cdr (bn-join-witness s u))))

(^ (! (mget p s))
(== u (join-bn p (mget :pubs pst) (mget :subs pst) s))))))

(definecd rel-leave-bn (s u :s-bn) :bool
(^ (bn-join-witness u s)

(mget (car (bn-join-witness u s)) s)
(== u (leave-bn (car (bn-join-witness u s)) s))))

(definec bn-join-witness (s u :s-bn) :maybe-ppsbn
(match (list s u)
((() ((q . qst) . &)) ‘(,q . ,qst))
((((p . pst) . rs1) ((q . qst) . rs2))
(cond
((== ‘(,p . ,pst) ‘(,q . ,qst)) (bn-join-witness rs1 rs2))
((!= q p) ‘(,q . ,qst)) ;; Joining peer found
(t nil)))

(& nil)))

(defdata maybe-ppsbn (v nil (cons peer ps-bn)))

(definecd join-bn (p :peer pubs subs :lot s :s-bn) :s-bn
:ic (! (mget p s)) ;; Join only if peer does not already exist in state
(mset p (ps-bn pubs subs ’()) s))

(definecd leave-bn (p :peer s :s-bn) :s-bn
:ic (mget p s) ;; Leave only if peer already exists in state
(match s
(((!p . &) . rst) rst)
((r . rst) (cons r (leave-bn p rst)))))

90 A Formalization of the Correctness of the Floodsub Protocol

2.2 Floodnet

A Floodnet peer-state is a record consisting of sets pubs, subs and seen which we described previously
in context of Broadcastnet peer-states. It also consists of pending, which is a set of messages that have
not yet been processed, and nsubs, a map from topics to list of peers. nsubs stores topic subscriptions
for neighboring peers.

(defdata s-fn (map peer ps-fn))

(defdata ps-fn
(record (pubs . lot)

(subs . lot)
(nsubs . topic-lop-map)
(pending . lom)
(seen . lom)))

When a message has not been forwarded to neighboring subscribers (processed) it remains in the
pending set. Once it is processed, it is added to the seen set. In our Floodnet model, pending and seen

are sets of messages, instead of queues. This simplifies the model and allows us to not worry about the
order in which messages are received. Related states have equal sets of seen messages.

We define the transition relation rel-step-fn which relates two Floodnet states s and u iff s tran-
sitions to u. It encodes all the possible ways s can transition to u. rel-skip-fn represents a transition
where s chooses to skip, hence u is s.

(definec rel-step-fn (s u :s-fn) :bool
(v (rel-skip-fn s u)

(rel-produce-fn s u)
(rel-forward-fn s u)
(rel-subscribe-fn s u)
(rel-unsubscribe-fn s u)
(rel-leave-fn s u)
(rel-join-fn s u)))

(definecd rel-skip-fn (s u :s-fn) :bool
(== u s))

rel-produce-fn relates s and u where u represents the state obtained after a new message has been
produced in s. The newly produced message is one of the pending messages in u. The boolean function
produce-fn-pre is a conjunction of the following preconditions: (i) the produced message is new i.e.,
it is not already found in the seen or pending sets of any of the peers in s, (ii) the originating peer of
the message exists in s, and (iii) the topic of the produced message is one in which the originating peer
publishes messages. The new message is added to the set of pending messages of the originating peer.

(definecd rel-produce-fn (s u :s-fn) :bool
(rel-produce-help-fn s u (fn-pending-mssgs u)))

(definec fn-pending-mssgs (s :s-fn) :lom
(match s
(() ’())
(((& . pst) . rst) (union-set (mget :pending pst) (fn-pending-mssgs rst)))))

(definec rel-produce-help-fn (s u :s-fn ms :lom) :bool
(match ms

A. Kumar & P. Manolios 91

(() nil)
((m . rst) (v (^ (produce-fn-pre m s)

(== u (produce-fn m s)))
(rel-produce-help-fn s u rst)))))

(definec produce-fn-pre (m :mssg s :s-fn) :bool
(b* ((origin (mget :or m))

(origin-st (mget origin s)))
(^ (new-fn-mssgp m s)

origin-st
(in (mget :tp m) (mget :pubs origin-st)))))

(definecd new-fn-mssgp (m :mssg s :s-fn) :bool
(v (endp s)

(^ (nin m (mget :seen (cdar s)))
(nin m (mget :pending (cdar s)))
(new-fn-mssgp m (cdr s)))))

(definecd produce-fn (m :mssg s :s-fn) :s-fn
:ic (produce-fn-pre m s)
(mset (mget :or m)

(add-pending-psfn m (mget (mget :or m) s)) s))

(definecd add-pending-psfn (m :mssg pst :ps-fn) :ps-fn
(if (v (in m (mget :pending pst))

(in m (mget :seen pst)))
pst

(mset :pending (cons m (mget :pending pst)) pst)))

rel-forward-fn relates states s and u where u represents the state obtained after a peer in s forwards
a pending message. Notice that any of the pending messages in s are eligible to be forwarded. Notice also
that there can be several peers with a given message pending, and the Floodnet can take several possible
transitions to states related to the current state by rel-forward-fn. To model this in a constructive and
deterministic way, we introduce find-forwarder as a skolem function which returns the first peer in
the state where a given message is pending. It produces a concrete peer p in the call to forward-fn. Its
output contract (:oc) specifies that the message forwarding peer it returns (i) is a peer in s, (ii) possesses
the given message in its pending set, and (iii) that message is not new in s.

The forward-fn transition function simultaneously updated the state of the peer that forwards the
message, using update-forwarder-fn and updates the pending sets of the neighboring subscribers by
inserting the forwarded message using forward-help-fn. Note that messages are forwarded to all the
peers subscribing to the topic of the message in the :nsubs map. If the forwarding peer records its own
subscriptions in :nsubs, it can lead to rel-forward-fn being infinitely enabled. We will ensure that a
peer does not include itself in this map, by considering good Floodnet states later in the paper.

(definecd rel-forward-fn (s u :s-fn) :bool
(rel-forward-help-fn s u (fn-pending-mssgs s)))

(definec rel-forward-help-fn (s u :s-fn ms :lom) :bool
(match ms
(() nil)
((m . rst)

92 A Formalization of the Correctness of the Floodsub Protocol

(v (^ (in m (fn-pending-mssgs s))
(== u (forward-fn (find-forwarder s m) m s)))

(rel-forward-help-fn s u rst)))))

(definec find-forwarder (s :s-fn m :mssg) :peer
:ic (in m (fn-pending-mssgs s))
:oc (^ (mget (find-forwarder s m) s)

(in m (mget :pending (mget (find-forwarder s m) s)))
(! (new-fn-mssgp m s)))

(match s
(((p . &)) p)
(((p . pst) . rst)
(if (in m (mget :pending pst)) p (find-forwarder rst m)))))

(definecd forward-fn (p :peer m :mssg s :s-fn) :s-fn
:ic (^ (mget p s)

(in m (mget :pending (mget p s))))
(b* ((tp (mssg-tp m))

(pst (mget p s))
(nsubs (mget :nsubs pst))
(fwdnbrs (mget tp nsubs)))

(forward-help-fn (update-forwarder-fn p m s) fwdnbrs m)))

(definec update-forwarder-fn (p :peer m :mssg s :s-fn) :s-fn
(match s
(() ’())
(((!p . pst) . rst) (cons ‘(,p . ,(forwarder-new-pst pst m)) rst))
((r . rst) (cons r (update-forwarder-fn p m rst)))))

(definecd forwarder-new-pst (pst :ps-fn m :mssg) :ps-fn
(mset :seen

(insert-unique m (mget :seen pst))
(mset :pending

(remove-equal m (mget :pending pst))
pst)))

(definecd forward-help-fn (s :s-fn nbrs :lop m :mssg) :s-fn
(match s
(() ’())
(((q . qst) . rst)
(cons (if (in q nbrs)

‘(,q . ,(add-pending-psfn m qst))
‘(,q . ,qst))

(forward-help-fn rst nbrs m)))))

rel-subscribe-fn and rel-unsubscribe-fn relate states s and u where u represents the state ob-
tained after a peer in s subscribes to or unsubscribes from a set of topics, respectively. They are very
similar to their Broadcastnet counterparts and hence we omit their definitions.

rel-join-fn and rel-leave-fn relate states s and u where u represents the state obtained after a
peer joins s or leaves s, respectively. fn-join-witness calculates the peer and its peer-state, if there
exists a peer that joins s, and is analogous to bn-join-witness. rel-join-fn requires that the joining

A. Kumar & P. Manolios 93

peer (i) is not already in s, and (ii) does not exist in its own :nsubs map. The second condition is
necessary to prevent peers from endlessly forwarding messages to themselves. join-fn depends on
new-joinee-st-fn which returns the state for a newly joined peer, and on set-subs-sfn which updates
the :nsubs map for each of the neighboring peers of the joining node. For the sake of brevity, we omit the
definitions of these helper functions. The rel-leave-fn relation, similar to rel-leave-bn requires that
there is a leaving peer, as calculated by (fn-join-witness u s) and that it already exist in the state.
Notice that there is another requirement, that a leaving peer has no pending messages. This condition
allows for graceful exit of leaving peers, guaranteeing that no pending messages are lost along with them.

(definecd rel-join-fn (s u :s-fn) :bool
(^ (fn-join-witness s u)

(b* ((p (car (fn-join-witness s u)))
(pst (cdr (fn-join-witness s u)))
(nbrs (topic-lop-map->lop (mget :nsubs pst))))

(^ (! (mget p s))
(nin p nbrs)
(== u (join-fn p (mget :pubs pst) (mget :subs pst) nbrs s))))))

(definecd join-fn (p :peer pubs subs :lot nbrs :lop s :s-fn) :s-fn
:ic (^ (! (mget p s))

(nin p nbrs))
(set-subs-sfn nbrs

subs
p
(mset p (new-joinee-st-fn pubs subs nbrs s) s)))

(definecd rel-leave-fn (s u :s-fn) :bool
(^ (fn-join-witness u s)

(mget (car (fn-join-witness u s)) s)
(endp (mget :pending (mget (car (fn-join-witness u s)) s)))
(== u (leave-fn (car (fn-join-witness u s)) s))))

(definecd leave-fn (p :peer s :s-fn) :s-fn
:ic (mget p s)
(match s
(() ’())
(((!p . &) . rst) rst)
((r . rst) (cons r (leave-fn p rst)))))

3 Correctness and the Refinement Theorem

We consider simulation refinement [23] as the notion of correctness for Floodnet and show that Floodnet
is a simulation refinement of Broadcastnet. The key idea of a simulation refinement is to show that
every behavior of the concrete system (Floodnet) is allowed by the abstract system (Broadcastnet). If we
prove a WFS refinement then we know that for any infinite computation tree starting from some Floodnet
state, we can find a related computation tree in Broadcastnet after applying the refinement map. Another
consequence is that we preserve any branching time properties, excluding next time, for example, all
properties in ACT L∗ \X [4].

94 A Formalization of the Correctness of the Floodsub Protocol

The refinement map needs to map Floodnet states to “related” Broadcastnet states. Why do we re-
quire a refinement map? Because states in different levels of abstractions may represent data differently,
or some implementation details from the lower abstraction may simply be missing in the higher level
specification. For example, :nsubs and :pending appear only in Floodnet peer states, not in Broad-
castnet peer states. Using a refinement map is like putting on glasses that let us “see” lower-level con-
crete states as their corresponding abstract specification states. The refinement map that we use is f2b

shown below. It maps Floodnet states to Broadcastnet states where pending messages have not yet been
broadcasted. This is called as the commitment approach to refinement, since we are mapping to states
consisting of only those messages that have been fully propagated in Floodnet and are thus considered
committed.

(definec f2b (s :s-fn) :s-bn
(f2b-help s (fn-pending-mssgs s)))

(definec f2b-help (s :s-fn ms :lom) :s-bn
(if (endp s)

’()
(cons ‘(,(caar s) . ,(f2b-st (cdar s) ms))

(f2b-help (cdr s) ms))))

(definecd f2b-st (ps :ps-fn ms :lom) :ps-bn
(ps-bn (mget :pubs ps)

(mget :subs ps)
(set-difference-equal (mget :seen ps) ms)))

To gain a better understanding of our refinement map, we examine example traces of Floodnet and
Broadcastnet in Figure 1. On the left side, we have a trace of a Floodnet, consisting of 3 green colored
nodes, numbered 1, 2 and 3. The node numbered 3 is connected to nodes 1 and 2. We show pending
messages on the top left of a node, and seen messages on the bottom right. So, in the second Floodnet
state shown, node 1 has a pending message m, after a produce-fn transition. On the right side, we have
Broadcastnet states such that for each Floodnet state on the left, we have its refinement map on the right
and for each transition on the left, we show a corresponding matching transition on the right.

The transitions on the Floodnet side are as follows : (i) Node 1 produces message m; (ii) Node 1
forwards its pending message m to its connected neighboring peer 3; (iii) Node 1 leaves the network
(iv) Node 2 unsubscribes from (mssg-tp m), which is the message topic (iv) Node 3 unsubscribes from
(mssg-tp m), and finally (v) Node 3 forwards m to node 2. Notice that f2b is a clear refinement map
where events like joining and leaving are not masked. Hence, in the corresponding Broadcastnet states,
leave and unsubscribe transitions are matched with leave and unsubscribe transitions. However, when the
message m can no longer be forwarded, and is no longer pending, it needs to be matched by a broadcast.
But notice that on the Broadcastnet side (a) the originating peer (Node 1) is no longer present, which is
required for a broadcast, due to broadcast-bn-pre, and (b) there are no subscribers of m left in the
network! This issue arises from the fact that broadcasting a message in Floodnet is a highly fragmented
operation, taking place over several message hops during which peers are free to leave, join, subscribe
or unsubscribe. With so many moving parts in the network, it becomes impossible to specify which
nodes will receive the broadcasted message in the Broadcastnet under the refinement map at the time
the message is produced. To solve this problem, we generalize the Broadcastnet specification by adding
another transition relation: rel-broadcast-partial-bn which allows us to relate 2 states s and u where
u represents the state obtained after broadcasting a message in s, but only partially. This relation is

A. Kumar & P. Manolios 95

defined using the broadcast-partial transition function, which given a message and a list of peers,
sends the message to those peers.

Floodnet Broadcastnet
f2b

1

23

skip

skip

leave-bn

unsubscribe-bn

unsubscribe-bn

broadcast-partial

{m}

1

23

produce-fn

{m}

forward-fn

{m}
{m}

leave-fn

{m}

unsubscribe-fn

{m}

unsubscribe-fn

{m}

forward-fn

{m}

Figure 1: On the left is an example Floodnet trace. Broadcastnet states on the right are refinement maps
of the Floodnet states on the left, and every step taken by the Broadcastnet states matches each step taken
by the Floodnet states.

When we consider a static configuration where nodes do not change their subscriptions, no existing
nodes are leaving, no new nodes are joining, and the network is connected in each topic, the recip-
ients of the message m in broadcast-partial can be shown to be exactly those in broadcast i.e.,
the subscribers of (mssg-tp m). This aligns with Dijkstra’s notion of self-stabilizing distributed sys-
tems [11], where the system is guaranteed to reach a legitimate configuration regardless of the initial
state. In our case, once the system stabilizes (i.e., peer churn and subscription/unsubscription ceases),

96 A Formalization of the Correctness of the Floodsub Protocol

the broadcast-partial step effectively becomes indistinguishable from a broadcast step, reinforcing
the view that broadcast-partial is a generalization that accommodates transient perturbations while
preserving desirable behavior in steady state.
(definecd rel-broadcast-partial-bn (s u :s-bn) :bool
(^ (br-mssg-witness s u)

(new-bn-mssgp (br-mssg-witness s u) s)
(== u (broadcast-partial (br-mssg-witness s u)

(brd-receivers-bn (br-mssg-witness s u) u)
s))))

(definecd broadcast-partial (m :mssg ps :lop s :s-bn) :s-bn
:ic (new-bn-mssgp m s)
(broadcast-partial-help m ps s))

(definecd broadcast-partial-help (m :mssg ps :lop st :s-bn) :s-bn
(match st
(() nil)
(((p . pst) . rst)
(cons ‘(,p . ,(if (== p (car ps))

(mset :seen (insert-unique m (mget :seen pst)) pst)
pst))

(broadcast-partial-help m (if (== p (car ps)) (cdr ps) ps) rst)))))
;; broadcast message receivers in a Broadcastnetwork
(definec brd-receivers-bn (m :mssg s :s-bn) :lop
(match s
(() ())
(((p . pst) . rst) (if (in m (mget :seen pst))

(cons p (brd-receivers-bn m rst))
(brd-receivers-bn m rst)))))

We define rel-B, which holds for related states. rel-B is defined over a set of states combining
both Floodnet and Broadcastnet states, which we define as borf. Notice that rel-B depends on Floodnet
states satisfying the good-s-fnp predicate. This predicate ensures that each Floodnet state in the trace
satisfies certain invariants. Given space constraints, we only list the invariant properties that hold true for
good-s-fnp states at the end of the following listing.
(defdata borf (v s-bn s-fn))

(definec rel-B (x y :borf) :bool
(v (rel-wf x y)

(== x y)))

(definec rel-wf (x y :borf) :bool
(^ (s-fnp x)

(s-bnp y)
(good-s-fnp x)
(== y (f2b x))))

(definec rel-> (s u :borf) :bool
(v (^ (s-fnp s) (s-fnp u) (good-rel-step-fn s u))

(^ (s-bnp s) (s-bnp u) (rel-step-bn s u))))

A. Kumar & P. Manolios 97

(definec good-rel-step-fn (s u :s-fn) :bool
(^ (good-s-fnp s)

(good-s-fnp u)
(rel-step-fn s u)))

;; A good-s-fnp state satisfies 2 predicates
(definec good-s-fnp (s :s-fn) :bool
(^ (p!in-nsubs-s-fn s) (ordered-seenp s)))

;; Invariant 1: A peer p does not track its own subscriptions in the
;; :nsubs map. So, it can not forward a message to itself.
(propertyd prop=p!in-nsubs-s-fn (p :peer tp :topic s :s-fn)
:h (^ (mget p s) (p!in-nsubs-s-fn s))
:b (nin p (mget tp (mget :nsubs (mget p s)))))

;; Invariant 2: :seen components of Floodnet peers are ordered.
(property prop=ordered-seenp-cdar (s :s-fn)
:h (^ s (ordered-seenp s))
:b (orderedp (mget :seen (cdar s))))

(definec orderedp (x :tl) :bool
(match x
(() t)
((&) t)
((a . (b . &)) (^ (<< a b) (orderedp (cdr x))))))

Proving the WFS refinement requires proving the following three theorems: (i) WFS1 states that
concrete Floodnet states are related to their corresponding Broadcastnet states under the refinement map
(by relation rel-B), (ii) WFS2 states that the labelling function labels related states equally, and (iii)
WFS3 states that given related states s and w, and given s steps to u under the transition relation, there
exists a state, say v, such that u is matched by a step from w going to v such that w is related to v.

;; WFS1
(property b-maps-f2b (s :s-fn)
:h (good-s-fnp s)
:b (rel-B s (f2b s)))

;; WFS2. L is the labelling functions of our combined transition system
(definec L (s :borf) :borf
(match s
(:s-bn s)
(:s-fn (f2b s))))

(property wfs2 (s w :borf)
:h (rel-B s w)
:b (== (L s) (L w)))

;; WFS3
(defun-sk exists-v-wfs (s u w)
(exists (v)
(^ (rel-> w v)

(rel-B u v))))

98 A Formalization of the Correctness of the Floodsub Protocol

(property wfs3 (s w u :borf)
:h (^ (rel-B s w)

(rel-> s u))
:b (exists-v-wfs s u w))

;; Witness generating function for v
(definec exists-v (s u w :borf) :borf
:ic (^ (rel-B s w)

(rel-> s u))
(if (null s)

(if (null u)
nil

(exists-nil-v u))
(exists-cons-v s u w)))

;; when w is nil
(definec exists-nil-v (u :borf) :borf
:ic (^ u (rel-> nil u))
(match u
(:s-fn (exists-v1 nil u))
(:s-bn u)))

;; when w is not nil
(definec exists-cons-v (s u w :borf) :borf
:ic (^ s (rel-B s w) (rel-> s u))
(cond
((^ (s-bnp s) (s-bnp w)) u)
((^ (s-fnp s) (s-bnp w)) (exists-v1 s u))
((^ (s-fnp s) (s-fnp w)) u)))

;; when s and u are Floodnet states
(definec exists-v1 (s u :s-fn) :s-bn
:ic (good-s-fnp s)
(cond
((rel-skip-fn s u) (f2b s))
((^ (rel-forward-fn s u)

(!= (f2b s) (f2b u)))
(broadcast-partial (br-mssg-witness (f2b s) (f2b u))

(brd-receivers-bn (br-mssg-witness (f2b s) (f2b u))
(f2b u))

(f2b s)))
(t (f2b u))))

4 Proof Organization

Given that we define our models using transition functions from states to states, whereas the refinement
theorem is expressed in terms of transition relations, proving the monolithic refinement theorem can be
a daunting task. In this section, we describe how we approached the mechanization of the refinement
proof. The entire codebase can be logically partitioned into four stages:

A. Kumar & P. Manolios 99

• State models and transition functions: State models are described using defdata, and transition
functions on the state models are described using definec and appear in files bn-trx.lisp and
fn-trx.lisp. Apart from the input state, functions may accept additional arguments. For example
forward-fn 2.2 accepts a peer p along with a message m that p forwards. These functions usually
have input contracts to ensure that the extra arguments satisfy certain properties, for example, p
should be a peer in the state s, and it should have m in its pending set of messages.

• Properties of functions under the refinement map: Given that we have defined functions that
accept states and output states, we then prove theorems relating Floodnet states to their corre-
sponding Broadcastnet states under the refinement map in file f2b-commit.lisp. For example,
here is one such theorem:

(property prop=forward-fn (p :peer m :mssg s :s-fn)
:h (^ (mget p s)

(in m (mget :pending (mget p s)))
(== (fn-pending-mssgs (forward-fn p m s))

(fn-pending-mssgs s)))
:b (== (f2b (forward-fn p m s))

(f2b s)))

Notice that these theorems still depends on variables that have not yet been skolemized, so as to
ease the theorem proving process.

• Transition relations: We define the transitions relations for both Broadcastnet and Floodnet in
trx-rels.lisp. Transition relations are boolean functions over two state variables, and hence,
we also define witness functions for non-state variables appearing in the transition functions. In
our running example, we instantiate p with (find-forwarder s m) and m could be any one of the
pending messages in the state.

• Combined states, transitions relations and correctness theorems: Finally we prove the WFS
theorems and their helper properties in f2b-sim-ref.lisp.

During development, some of the previous iterations of our model deviated from the metatheory. For
example, in one iteration of the final theorem, the restrictions on the transition relations, which serve as
guards against illegal behaviors, emerged as part of the hypotheses of WFS3. It forced us to understand
the nature of good states, and to derive the required hypotheses from the invariants of the good states.
In an another iteration of our models, the transition relations corresponding to each of the transitions a
model can make, was augmented with natural numbers, such that transitions on the Floodnet states were
matched by transitions on the Broadcastnet states bearing the same number. Eventually, this arrangement
seemed unnecessary because even without the natural numbers, the theorem prover was able to pick the
required transition based on theorems proved on them, and because of their definitions being disabled.
Hence we would recommend to stick to the metatheory when implementing proofs of refinement, and
always write the top level theorems, before embarking on proving lower-level theorems.

5 Related Work

Proof mechanization in context of P2P systems has been explored previously. Azmy et. al. [3] formally
verified a safety property of Pastry, a P2P Distributed Hash Table (DHT), in TLA+ [22]. The safety
property is that of correct delivery, which states that at any point in time, there is at most one node that
answers a lookup request for a key, and this node must be the closest live node to that key. Their proof

100 A Formalization of the Correctness of the Floodsub Protocol

assumes that nodes never fail, which is a likely event in any P2P system. Zave [41] utilized the Alloy
tool [14] to produce counter-examples to show that no published version of Chord is correct w.r.t. the
liveness property of the Chord ring-maintenance protocol: that the protocol can eventually repair all
disruptions in the ring structure, given ample time and no further disruptions while it is working. Kumar
et. al. modeled the Gossipsub [35] P2P protocol in ACL2S, formulated safety properties for its scoring
function and showed using counter-examples that for some applications like Ethereum which configure
Gossipsub in a particular way, it is possible for Sybil nodes to violate those properties, thereby creating
large scale partition or eclipse attacks on the network [19, 18]. To the best of our knowledge, none of the
previous work has attempted to prove the correctness of a P2P system by showing it as a refinement of a
higher level specification.

There exist several provers to formally check properties of distributed systems, such as Dafny [13],
TLA+, Ivy [32] and DistAlgo [34]. They operate by reducing a given specification to a decidable logic
formula expressed entirely in First Order Logic. The basic tactic involves forming a conjunction of
protocol invariants, invert it, and then using an SMT solver to (possibly) search for a counterexample.
The issue in such systems is a lack of expressivity, which does not allow capturing properties over infinite
traces. Another issue is that our models can be arbitrary, with nodes leaving and joining and with arbitrary
pending messages in transit across a network. And we are reasoning about all possible behaviors of the
protocol, which could not be done if we were to be limited to a decidable fragment of logic.

We wrote our models and proved our theorems in ACL2S. The ACL2 Sedan (ACL2S) [12, 6] is
an extension of the ACL2 theorem prover[15, 16, 17]. On top of the capabilities of ACL2, ACL2S

provides the following: (1) A powerful type system via the defdata data definition framework [9] and
the definec and property forms, which support typed definitions and properties. (2) Counterexample
generation capability via the cgen framework, which is based on the synergistic integration of theorem
proving, type reasoning and testing [8, 10, 7]. (3) A powerful termination analysis based on calling-
context graphs [29] and ordinals [26, 27, 28]. (4) An (optional) Eclipse IDE plugin [6]. (5) The ACL2S

systems programming framework (ASPF) [40] which enables the development of tools in Common Lisp
that use ACL2, ACL2S and Z3 as a service [38, 37, 20, 39].

6 Conclusions and Future Work

In this paper, we described our ACL2S models for Broadcastsub and Floodsub, Broadcastnet and Flood-
net respectively, and proposed Broadcastnet as a specification of Floodnet. For both the models, we
explained our transition systems (including state and transition relations) and design decisions. We de-
scribed our refinement map f2b, the combined transition system and the equivalence relation rel-B

relating related states. Finally we explained the refinement theorem.

In the future we would like to show that in a static configuration where a Floodnet is connected in each
of the topics, a forward-fn transition can be matched by either a broadcast-partial or a broadcast

transition. We would also like to refine Floodnet progressively until we approach a specification close to
Gossipsub. By contrasting this lowest layer of our refinement chain to Gossipsub, we will be able to find
and explain security issues in Gossipsub from a refinement point of view.

Acknowledgements We thank the anonymous reviewers for their thoughtful feedback and sugges-
tions, which helped improve the quality and clarity of this work.

A. Kumar & P. Manolios 101

References

[1] What is Publish/Subscribe. https://docs.libp2p.io/concepts/pubsub/overview/. Accessed 12
May 2023.

[2] Ioannis Aekaterinidis & Peter Triantafillou (2018): Peer-to-Peer Publish-Subscribe Systems. In: Encyclope-
dia of Database Systems, Second Edition, doi:10.1007/978-1-4614-8265-9_1221.

[3] Noran Azmy, Stephan Merz & Christoph Weidenbach (2016): A Rigorous Correctness Proof for Pastry. In:
Abstract State Machines, Alloy, B, TLA, VDM, and Z, doi:10.1007/978-3-319-33600-8_5.

[4] Michael C. Browne, Edmund M. Clarke & Orna Grumberg (1988): Characterizing Finite Kripke Structures
in Propositional Temporal Logic. doi:10.1016/0304-3975(88)90098-9.

[5] Miguel Castro, Peter Druschel, A-M Kermarrec & Antony IT Rowstron (2002): SCRIBE: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in communications,
doi:10.1109/JSAC.2002.803069.

[6] Harsh Chamarthi, Peter C. Dillinger, Panagiotis Manolios & Daron Vroon (2011): The "ACL2" Sedan The-
orem Proving System. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
doi:10.1007/978-3-642-19835-9_27.

[7] Harsh Raju Chamarthi (2016): Interactive Non-theorem Disproving. Ph.D. thesis, Northeastern University,
doi:10.17760/D20467205.

[8] Harsh Raju Chamarthi, Dillinger Peter C., Matt Kaufmann & Panagiotis Manolios (2011): Integrating testing
and interactive theorem proving. doi:10.4204/EPTCS.70.1.

[9] Harsh Raju Chamarthi, Dillinger Peter C. & Panagiotis Manolios (2014): Data Definitions in the ACL2
Sedan. doi:10.4204/eptcs.152.3.

[10] Harsh Raju Chamarthi & Panagiotis Manolios (2011): Automated specification analysis using an interactive
theorem prover. In Per Bjesse & Anna Slobodová, editors: International Conference on Formal Methods
in Computer-Aided Design, FMCAD ’11, FMCAD Inc., pp. 46–53. Available at http://dl.acm.org/
citation.cfm?id=2157665.

[11] Edsger W. Dijkstra (1974): Self-stabilizing Systems in Spite of Distributed Control. Commun. ACM,
doi:10.1145/361179.361202.

[12] Peter C. Dillinger, Panagiotis Manolios, Daron Vroon & J. Strother Moore (2007): ACL2s: “The ACL2
Sedan”. In: Proceedings of the 7th Workshop on User Interfaces for Theorem Provers (UITP 2006),
doi:10.1016/j.entcs.2006.09.018.

[13] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan Parno, Michael L Roberts, Srinath
Setty & Brian Zill (2015): IronFleet: proving practical distributed systems correct. In: Proceedings of the
25th Symposium on Operating Systems Principles, doi:10.1145/2815400.2815428.

[14] Daniel Jackson (2019): Alloy: a language and tool for exploring software designs. doi:10.1145/3338843.

[15] Matt Kaufmann, Panagiotis Manolios & J Strother Moore (2000): Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, doi:10.1007/978-1-4615-4449-4.

[16] Matt Kaufmann, Panagiotis Manolios & J Strother Moore (2000): Computer-Aided Reasoning: Case Studies.
Kluwer Academic Publishers, doi:10.1007/978-1-4757-3188-0.

[17] Matt Kaufmann & J Strother Moore (2022): ACL2 homepage. Available at https://www.cs.utexas.
edu/users/moore/acl2/.

[18] Ankit Kumar, Max von Hippel, Panagiotis Manolios & Cristina Nita-Rotaru (2023): Verification of Gos-
sipSub in ACL2s. In: International Workshop on the ACL2 Theorem Prover and Its Applications,
doi:10.4204/EPTCS.393.10.

[19] Ankit Kumar, Max von Hippel, Panagiotis Manolios & Cristina Nita-Rotaru (2024): Formal Model-Driven
Analysis of Resilience of GossipSub to Attacks from Misbehaving Peers. In: IEEE Symposium on Security
and Privacy, SP 2024, San Francisco, CA, USA, May 19-23, 2024, doi:10.1109/SP54263.2024.00017.

https://docs.libp2p.io/concepts/pubsub/overview/
https://doi.org/10.1007/978-1-4614-8265-9_1221
https://doi.org/10.1007/978-3-319-33600-8_5
https://doi.org/10.1016/0304-3975(88)90098-9
https://doi.org/10.1109/JSAC.2002.803069
https://doi.org/10.1007/978-3-642-19835-9_27
https://doi.org/10.17760/D20467205
https://doi.org/10.4204/EPTCS.70.1
https://doi.org/10.4204/eptcs.152.3
http://dl.acm.org/citation.cfm?id=2157665
http://dl.acm.org/citation.cfm?id=2157665
https://doi.org/10.1145/361179.361202
https://doi.org/10.1016/j.entcs.2006.09.018
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/3338843
https://doi.org/10.1007/978-1-4615-4449-4
https://doi.org/10.1007/978-1-4757-3188-0
https://www.cs.utexas.edu/users/moore/acl2/
https://www.cs.utexas.edu/users/moore/acl2/
https://doi.org/10.4204/EPTCS.393.10
https://doi.org/10.1109/SP54263.2024.00017

102 A Formalization of the Correctness of the Floodsub Protocol

[20] Ankit Kumar & Panagiotis Manolios (2021): Mathematical Programming Modulo Strings. In: Formal Meth-
ods in Computer Aided Design, FMCAD, doi:10.34727/2021/ISBN.978-3-85448-046-4_36.

[21] Ankit Kumar & Panagiotis Manolios (2025): Proof of Refinement of Floodsub. Available at https://
github.com/ankitku/FloodsubRef. In submission.

[22] Leslie Lamport (2002): Specifying systems: the TLA+ language and tools for hardware and software engi-
neers.

[23] Panagiotis Manolios (2001): Mechanical Verification of Reactive Systems. Ph.D. thesis, The University of
Texas at Austin, Department of Computer Sciences, Austin TX.

[24] Panagiotis Manolios & Sudarshan K. Srinivasan (2004): Automatic Verification of Safety and Liveness for
XScale-Like Processor Models Using WEB Refinements. In: Design, Automation and Test in Europe Confer-
ence and Exposition, DATE, doi:10.1109/DATE.2004.1268844.

[25] Panagiotis Manolios & Sudarshan K. Srinivasan (2008): A Refinement-Based Compositional Reason-
ing Framework for Pipelined Machine Verification. IEEE Trans. Very Large Scale Integr. Syst.,
doi:10.1109/TVLSI.2008.918120.

[26] Panagiotis Manolios & Daron Vroon (2003): Algorithms for Ordinal Arithmetic. In: Conference on Auto-
mated Deduction CADE, doi:10.1007/978-3-540-45085-6_19.

[27] Panagiotis Manolios & Daron Vroon (2004): Integrating Reasoning about Ordinal Arithmetic into ACL2.
In: Formal Methods in Computer-Aided Design FMCAD, LNCS, Springer–Verlag, doi:10.1007/978-3-540-
30494-4_7.

[28] Panagiotis Manolios & Daron Vroon (2005): Ordinal Arithmetic: Algorithms and Mechanization. Journal of
Automated Reasoning, doi:10.1007/s10817-005-9023-9.

[29] Panagiotis Manolios & Daron Vroon (2006): Termination Analysis with Calling Context Graphs. In: Com-
puter Aided Verification CAV, doi:10.1007/11817963_36.

[30] Pete Manolios (2023): Reasoning About Programs. Available at https://www.ccs.neu.edu/home/
pete/courses/Logic-and-Computation/2023-Fall/lectures.html. Lecture notes, Northeastern
University, CS 2800: Logic and Computation, Accessed 21 Apr 2025.

[31] Robin Milner (1971): An Algebraic Definition of Simulation Between Programs. In: Proceedings of the 2nd
International Joint Conference on Artificial Intelligence. Available at http://ijcai.org/Proceedings/
71/Papers/044.pdf.

[32] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv & Sharon Shoham (2016): Ivy: safety
verification by interactive generalization. doi:10.1145/2908080.2908118.

[33] Antony I. T. Rowstron & Peter Druschel (2001): Pastry: Scalable, Decentralized Object Location, and Rout-
ing for Large-Scale Peer-to-Peer Systems. In: International Conference on Distributed Systems Platforms,
doi:10.1007/3-540-45518-3_18.

[34] Kumar Shivam, Vishnu Paladugu & Yanhong A. Liu (2023): Specification and Runtime Checking of Derecho,
A Protocol for Fast Replication for Cloud Services. doi:10.1145/3584684.3597275.

[35] Dimitris Vyzovitis: gossipsub: An extensible baseline pubsub protocol. https://github.com/libp2p/
specs/blob/master/pubsub/gossipsub/README.md. Accessed 28 Nov 2022.

[36] Dimitris Vyzovitis (2020): GossipSub v1.0: An extensible baseline pubsub protocol. https://github.
com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0-old.md. Accessed 23
Jan 2025.

[37] Andrew T. Walter, Benjamin Boskin, Seth Cooper & Panagiotis Manolios (2019): Gamification of Loop-
Invariant Discovery from Code. In: Proceedings of the Seventh AAAI Conference on Human Computation
and Crowdsourcing, HCOMP, doi:10.1609/HCOMP.V7I1.5277.

[38] Andrew T. Walter, David A. Greve & Panagiotis Manolios (2022): Enumerative Data Types with Constraints.
In: Formal Methods in Computer-Aided Design, FMCAD, doi:10.34727/2022/ISBN.978-3-85448-053-2_-
25.

https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_36
https://github.com/ankitku/FloodsubRef
https://github.com/ankitku/FloodsubRef
https://doi.org/10.1109/DATE.2004.1268844
https://doi.org/10.1109/TVLSI.2008.918120
https://doi.org/10.1007/978-3-540-45085-6_19
https://doi.org/10.1007/978-3-540-30494-4_7
https://doi.org/10.1007/978-3-540-30494-4_7
https://doi.org/10.1007/s10817-005-9023-9
https://doi.org/10.1007/11817963_36
https://www.ccs.neu.edu/home/pete/courses/Logic-and-Computation/2023-Fall/lectures.html
https://www.ccs.neu.edu/home/pete/courses/Logic-and-Computation/2023-Fall/lectures.html
http://ijcai.org/Proceedings/71/Papers/044.pdf
http://ijcai.org/Proceedings/71/Papers/044.pdf
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1145/3584684.3597275
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/README.md
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/README.md
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0-old.md
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0-old.md
https://doi.org/10.1609/HCOMP.V7I1.5277
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_25
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_25

A. Kumar & P. Manolios 103

[39] Andrew T. Walter, Ankit Kumar & Panagiotis Manolios (2023): Proving Calculational Proofs Correct.
In: Proceedings of the 18th International Workshop on the ACL2 Theorem Prover and Its Applications,
doi:10.4204/EPTCS.393.11.

[40] Andrew T. Walter & Panagiotis Manolios (2022): ACL2s Systems Programming. In: Workshop on the ACL2
Theorem Prover and its Applications, doi:10.4204/EPTCS.359.12.

[41] Pamela Zave (2012): Using lightweight modeling to understand chord. Comput. Commun. Rev.,
doi:10.1145/2185376.2185383.

https://doi.org/10.4204/EPTCS.393.11
https://doi.org/10.4204/EPTCS.359.12
https://doi.org/10.1145/2185376.2185383

Gamboa and Manolios (Eds):
ACL2 Workshop 2025
EPTCS 423, 2025, pp. 104–123, doi:10.4204/EPTCS.423.10

© A.T. Walter & P. Manolios
This work is licensed under the
Creative Commons Attribution License.

An ACL2s Interface to Z3

Andrew T. Walter Panagiotis Manolios
Khoury College

Northeastern University
Massachusetts, USA

walter.a@northeastern.edu p.manolios@northeastern.edu

We present Lisp-Z3, an extension to the ACL2s systems programming framework (ASPF) that sup-
ports the use of the Z3 satisfiability modulo theories (SMT) solver. Lisp-Z3 allows one to develop
tools written using the full feature set of Common Lisp that can use both ACL2/s (either ACL2 or
ACL2s) and Z3 as services, combining the power of SMT and interactive theorem proving. Lisp-Z3
is usable by anyone who would like to interact with Z3 from Common Lisp, as it does not depend
on the availability of ACL2/s. We discuss the use of Lisp-Z3 in three applications. The first is a
Sudoku solver. The second is SeqSolve, a string solver which solved a larger number of benchmark
problems more quickly than any other existing solver at the time of its publishing. Finally, Lisp-Z3
was also used in the context of hardware-in-the-loop fuzzing of wireless routers, where low latency
was an important goal. The latter two applications leveraged the ability of Lisp-Z3 to integrate Z3
with ACL2s code. We have further plans to use Lisp-Z3 inside of ACL2s to provide more powerful
automated support for dependent types, and in particular more efficient generation of counterexam-
ples to properties involving dependent types. This paper describes the usage and implementation of
Lisp-Z3, as well as an evaluation of its use in the aforementioned applications.

1 Introduction

This paper describes a publicly available extension to our ACL2s systems programming framework [44]
(ASPF) that supports the use of the Z3 satisfiability modulo theories (SMT) solver [35] as a service.

ASPF enables the development of tools that use ACL2 and ACL2s (the ACL2 Sedan) as a service
by allowing one to write code that uses Common Lisp features that ACL2/s (ACL2 and ACL2s) restrict.
This code can then interact with ACL2/s using a library provided by ASPF. We have used ASPF to
build several systems, including a web-based loop invariant discovery game [41], a system for providing
feedback for calculational proofs intended for pedagogical settings [43] and a system for automating the
grading of homework involving different kinds of automata [27]. In our experience, ASPF particularly
shines when building tools that are components of a larger system, especially when networking and
foreign-function interfacing (FFI) are required.

Z3 is an SMT solver. This means that given a set of constraints within a supported theory, Z3
will attempt to determine whether or not that set of constraints is satisfiable. If so, Z3 can produce a
satisfying assignment (a model) for the constraints. Z3 may be able to determine that the constraints are
unsatisfiable as well, or it may instead exceed a timeout or resource limit and report that the satisfiability
of the constraints is unknown. Lisp-Z3 provides an interface for expressing and asserting constraints,
requesting that Z3 check the satisfiability of asserted constraints and accessing the produced satisfying
assignment if Z3 determined that the constraints were satisfiable. The interface of Lisp-Z3 is intended
to mirror the SMT-LIB2 [8] command interface as much as possible, making it especially easy to use
for anyone who has experience with SMT-LIB2 (which Z3 and many other SMT solvers support). Many
kinds of problems can be modeled using SMT, with a classic example being solving Sudoku puzzles.

http://dx.doi.org/10.4204/EPTCS.423.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

A.T. Walter & P. Manolios 105

As prior work has reported [30, 36, 37], interactive theorem proving (ITP) and SMT are complemen-
tary techniques and their combination can be highly effective. The authors and their collaborators have
found the combination of ACL2/s (which is an interactive theorem prover) and Z3 to be useful in multi-
ple applications, including string solving (Kumar et al.’s TranSeq) [26] and security testing of wireless
routers [42]. To support these applications, it was necessary to develop an ACL2/s or Common Lisp
interface for Z3 with the right features—in the case of security testing, low latency was highly desirable,
whereas incremental solving was important for the string solver. Existing interfaces did not fulfill these
requirements. Our interface, which we call Lisp-Z3, consists of low-level bindings to Z3’s C API as
well as a higher-level interface on top to make it convenient to interact with Z3. Lisp-Z3 is usable by
anyone who would like to interact with Z3 from Common Lisp, as it does not rely on functionality spe-
cific to ACL2/s. Nevertheless, we think of Lisp-Z3 as an extension of the ACL2s Systems Programming
methodology, providing another reasoning backend in addition to ACL2/s.

In addition to using Lisp-Z3 when developing tools that use ACL2/s as a service, we are planning to
use Lisp-Z3 to power functionality inside of ACL2s. In particular, we are working on Enumerative Data
Types Modulo Theories, a generalization and extension of our wireless router security testing project [42]
that aims to improve the ability of ACL2s to generate counterexamples in the presence of constraints.
This will involve using Lisp-Z3 inside of ACL2s’ cgen [13], which is integrated into the ACL2 waterfall.

The contributions of this work include: (1) A description of the design and implementation of Lisp-
Z3, a major extension to ASPF that in addition to supporting ACL2s also supports Z3. With this exten-
sion, one can build tools that use both ACL2/s and Z3 as services, (2) A public release of the extended
ASPF, including examples of the use of Lisp-Z3 in Common Lisp outside of ACL2/s, (3) an evaluation of
the use of Lisp-Z3 in conjunction with the ASPF in three applications: a Sudoku solver, a state-of-the-art
string solver and hardware-in-the-loop fuzzing of wireless routers.

The remainder of the paper is organized as follows: Section 2 gives a brief introduction to the inter-
face of Lisp-Z3 through examples, Section 3 gives short introduction to Z3 and SMT-LIB2, Section 4
discusses how Lisp-Z3 is implemented, Section 5 walks through the development of a Sudoku solver
using Lisp-Z3, Section 6 discusses the use of Lisp-Z3 in the SeqSolve string solver, Section 7 explores
the use of Lisp-Z3 in hardware-in-the-loop fuzzing of wireless routers, Section 8 provides an overview
of related work, and Section 9 concludes.

2 Usage

Listing 1 shows a basic example of the usage of Lisp-Z3. After initializing Z3, the variables x and
y are declared in the same way that one might declare them in SMT-LIB2, using the declare-const

command. x is declared to be a Boolean variable, and y is declared to be an integer variable. Next, the
z3-assert function is used to add a constraint to Z3. The constraint added states that x must be true,
and that y must be greater than or equal to 5. Note that this could be written as two independent calls to
z3-assert rather than as a conjunction if desired. Next, the check-sat command is run, which asks Z3
to determine whether the conjunction of all of the constraints added to it is satisfiable. Here it will return
:SAT, indicating that the constraints are indeed satisfiable. Finally, we call get-model to retrieve Z3’s
representation of a satisfying assignment to the free variables in the constraint we added. In this case,
Z3’s representation of one possible satisfying assignment is printed as follows:

#<Z3::MODEL
X -> true
Y -> 5 >

106 An ACL2s Interface to Z3

If one would like to interact with the assignment in Common Lisp, it is generally easier to instead call
get-model-as-assignment, which will translate Z3’s representation of the satisfying assignment into a
Common Lisp list appropriate for use as let bindings. In this case, the output would be ((X T) (Y 5)).
Note that there are infinitely many satisfying assignments to this set of constraints, as y may be assigned
any integer greater than 5. In principle Z3 could produce any of these assignments, though in this case it
tends to generate the solution shown above, which is the satisfying assignment with the smallest possible
value for y.

Listing 1: An example of a basic SMT query using Lisp-Z3, in the style of SMT-LIB2.
;; Load lisp-z3
(ql:quickload :lisp-z3)
;; Enter its package so we can use its functions without needing to
;; specify the z3 package.
(in-package :z3)
;; Set up Z3. Only needs to happen once, before other code that uses Z3
(solver-init)
;; Declare variables x and y
(declare-const x Bool)
(declare-const y Int)
;; Add an assertion
(z3-assert
(and x (>= y 5)))

;; Check for satisfiability
(check-sat)
;; If satisfiable, get a satisfying assignment
(get-model)

Lisp-Z3 also allows one to declare variables inline with the z3-assert form. This is shown in
Listing 2. This syntax is similar to that used by ACL2s’ definec and property forms, making it easier
for users familiar with those facilities to start using Lisp-Z3.

Listing 2: An example of a basic SMT query using Lisp-Z3, using inline declarations of variables rather
than forward declarations as shown in Listing 1.
;; Set up Z3. Only needs to happen once, before other code that uses Z3
(solver-init)
;; Declare variables x and y and add an assertion over them
(z3-assert (x :bool y :int)
(and x (>= y 5)))

;; Check for satisfiability
(check-sat)
;; If satisfiable, get a satisfying assignment and translate it into a
;; form that is usable as Common Lisp let bindings
(get-model-as-assignment)

It is important to note that the statement passed in to z3-assert to be asserted in Z3 will be inter-
preted using the semantics that Z3 assigns to the used operators. Z3’s semantics for expressions diverge
from the semantics of ACL2 in some cases, as will be discussed later.

3 Short Introduction to Z3 and SMT-LIB2

Z3 supports several input formats, but the default is SMT-LIB2 [8]. SMT-LIB2 was developed with the
intention of creating a standard format for interacting with different SMT solvers. SMT-LIB2 consists of

A.T. Walter & P. Manolios 107

several components, including a command language for use when interacting with a SMT solver. All of
the languages that SMT-LIB2 provides are based on S-expressions. The base logic used in SMT-LIB2 is
derived from many-sorted first-order logic with equality, meaning that functions, variables and operators
have sorts associated with them. In this context, a sort can be thought of as a name for a type. SMT-LIB2
also provides a standard set of theories, each of which include declarations for the sorts and functions
that the theory provides. For example, the Ints theory provides the Int sort and a set of functions over
Ints (addition, multiplication, negation, subtraction, division, modulus, absolute value, and inequality
relations).

To express a set of assertions and check its satisfiability using the SMT-LIB2 command format, one
will generally do the following: 1) declare or define any sorts, functions and constants (variables) that
will be used beyond what is provided by the theory in use; 2) manipulate the set of assertions maintained
by the SMT solver, for example by adding assertions over the declared sorts, functions and constants;
3) request that the SMT solver perform a satisfiability check and print a model. The produced model
may not have an interpretation (an assigned value) for every declared sort, function and constant from
the assertion stack. This generally will occur if the satisfiability of the assertion stack is not dependent
on that sort, function or constant having a particular value.

SMT-LIB2 solvers maintain an assertion stack that consists of assertion levels. Each assertion level
is a set containing assertions as well as declarations of sorts, functions and constants. When the solver
is asked to check satisfiability, it considers the contents of all of the assertion levels in the stack. SMT-
LIB2 provides commands for manipulating the stack. push allows one to create a new assertion level,
and pop removes the most recently introduced assertion level from the stack. This removes any of the
assertions added since the popped assertion level was introduced. The behavior of popping on sort and
variable declarations is controlled by the (:global-declarations) solver option. If this option is set
to false (as is the default in Z3), a declaration of a sort or a variable is attached to the assertion level
of the solver at the time of declaration. If that assertion level is popped off the stack, the declaration is
removed. If the option is set to true, declarations of variables and sorts are unaffected by changes to
assertion levels. Maintaining an assertion stack means that an SMT-LIB2 solver can support a kind of
incremental solving, where satisfiability is queried multiple times, with modifications made to the set of
assertions in between queries.

4 Implementation

Lisp-Z3 consists of two main parts: the low-level bindings to Z3’s C API, and the higher-level interface
that provides a convenient interface for asserting constraints and generally interacting with Z3. These two
parts together make up an ASDF [1] system that can be loaded by many Common Lisp implementations.

4.1 The Low-Level Interface

Included in Z3’s distribution is a library that can be used to integrate Z3 inside another program. Z3
provides APIs that allow one to call into this library from several different programming languages. We
chose to write bindings for the C API provided by Z3, as C foreign function interfacing (FFI) is common
and there is substantial support available for doing so in Common Lisp. We used the Common Foreign
Function Interface (CFFI) library [2] to implement our bindings in a way that is portable across many
Common Lisp implementations.

Interfacing with C in Common Lisp results in certain challenges. For example, to be able to call a

108 An ACL2s Interface to Z3

C function that takes in an argument of type Z3_context, the Common Lisp implementation needs to
know the size of values of that type, the layout of any fields (if it is a C struct) and how to turn a Common
Lisp value into a Z3_context value. Even just determining the size of the type is a complicated affair,
as it generally requires looking at the C header files where the type is defined, which involves handling
preprocessor directives which may appear in those header files, and then making a guess as to what
size a C compiler would use for values satisfying that definition. In practice, FFI tools often manage
these issues by generating a C file that includes the relevant types and interfacing with a C compiler
to determine whatever information is needed about those types. For Lisp-Z3, we use CFFI’s Groveller
functionality. We provide a special Common Lisp file called a Grovel file that has a form for each Z3
type we would like to interact with. The Groveller evaluates this file to produce a C file which is then
compiled and run. The result of running the resulting executable is another Lisp file that contains CFFI
forms that describe the layout and size of the Z3 types we referenced. We can then load the Z3 library
and use CFFI forms to create Lisp bindings for the Z3 functions that we would like to call, using the size
and layout information that was gleaned previously.

The Grovel file must be aligned with the API provided by the version of Z3 running on the user’s
computer. For example, different versions of Z3 may provide different members for an enumeration type
used to identify which built-in operator a function call is using. To make it easier for a user to generate
an appropriate version of the Grovel file, we provide a Python script that will read Z3’s C header files
and generate a Grovel file appropriate for them. A similar issue exists for the file that contains bindings
for each Z3 C function that we would like to expose, though we do not yet provide an automated way to
generate that file. We try to ensure that Lisp-Z3 is shipped with files that should work with a relatively
modern version of Z3. This is done by using the Grovel file generation script and manually removing or
modifying functionality for maximal compatibility.

At this point, it is possible to call many of Z3’s C API functions, but it is not convenient to do so.
One needs to manually deal with memory management tasks, array types are a pain to deal with, printing
values of Z3 types gives little useful information and the context value must be provided in practically
every function call. An example highlighting the verbosity of the low-level interface is provided in
Listing 3. Note that this example does not include any error handling and also avoids functionality that
requires manual reference counting (memory management). This is where the high-level interface comes
in!

Listing 3: An example highlighting the usage of the low-level interface.
;; The below form asserts the constraint (= (+ x y) 10) for integer variables
;; x and y, checks satisfiability and reports a satisfying assignment if SAT.
(let* ((ctx (z3-mk-context (z3-mk-config)))

(slv (z3-mk-simple-solver ctx))
(x (z3-mk-const ctx (z3-mk-string-symbol ctx "X") (z3-mk-int-sort ctx)))
(y (z3-mk-const ctx (z3-mk-string-symbol ctx "Y") (z3-mk-int-sort ctx)))
;; add has arbitrary arity, so we need to provide the args in a temporary C array.
(sum (with-foreign-array (arg-array z3-c-types::Z3_ast (list x y))

(z3-mk-add ctx 2 arg-array)))
(stmt (z3-mk-eq ctx sum (z3-mk-numeral ctx "10" (z3-mk-int-sort ctx)))))

(z3-solver-assert ctx slv stmt)
;; Check whether the assertion is satisfiable
(if (equal (z3-solver-check ctx slv) :L_TRUE)

;; SAT! Now we must get all of the constant interpretations (e.g. variable
;; assignments) from the model.
(let ((model (z3-solver-get-model ctx slv)))
(loop for i below (z3-model-get-num-consts ctx model)

A.T. Walter & P. Manolios 109

for decl = (z3-model-get-const-decl ctx model i)
for name = (z3-get-symbol-string ctx (z3-get-decl-name ctx decl))
for value-ast = (z3-model-get-const-interp ctx model decl)
;; Here we assume the value is a numeral and get it as a string
collect (list name (z3-get-numeral-string ctx value-ast))))

;; Otherwise, UNSAT or unknown.
'not-sat))

;; Outputs (("Y" "0") ("X" "10"))

4.2 The High-Level Interface

The high-level interface mitigates several of the pain points that the low-level interface gives rise to. It is
written entirely in Common Lisp and uses the low-level interface internally to make calls to Z3.

The Context and Solver When interacting with Z3 programatically, one is nearly always doing so
with respect to a particular context value. The context stores certain settings and global values as well
as information needed for memory management (discussed later). Since most operations on Z3 types
require the context that the value was created relative to, we define a wrapper type around each Z3
type that has a field for the relevant context in addition to the value itself. In addition to making it
unnecessary for the user to pass a context value around when dealing with Lisp-Z3 code, this makes it
possible to implement describe-object and print-object for each Z3 type, enabling Common Lisp
to display useful printed representations for values of Z3 types.

Another important element of the Z3 C API is the solver value, which stores any constraints that
the user adds and is needed when checking satisfiability or generating a satisfying assignment to the set
of constraints. When Lisp-Z3 is initialized, a default solver is created and stored. This solver is used
whenever the user does not specify one. Many parameters of the solver can be modified to control Z3’s
behavior—for example, one can set how many threads will be used by Z3 when checking satisfiability,
the logic used to set up the SMT solver and the schedule used for performing restarts.

Memory Management As is often the case when interfacing with a C API from a language with
automatic memory management, one must be careful to ensure that any allocated memory that passes
over the language barrier is deallocated at an appropriate time. For many of the types that it defines, Z3’s
C API provides a manual reference counting interface for managing the lifetime of allocated memory.
This means that each time we create an object that requires manual reference counting, like a solver, we
must call a function to increment the reference counter for that object. This is implemented for each Z3
type by incrementing the reference counter in the initializer of the corresponding wrapper type. As long
as an object’s reference counter has a positive value, Z3 will not deallocate that object’s memory. We use
the trivial-garbage Common Lisp library [3] to attach a finalizer function to each such object that will
run when the wrapper object has been garbage collected (e.g. when it is no longer referenced by any Lisp
values). This finalizer function decrements the object’s reference counter so that Z3 is notified that one
fewer reference to the object exists. When the reference counter hits zero, Z3 can deallocate that object’s
memory.

Producing Expressions Lisp-Z3 aims to support expressing as many of the constraints that Z3 supports
as possible. To assert constraints in a Z3 solver, we first need to convert them into Z3 AST objects. This

110 An ACL2s Interface to Z3

may seem trivial, since the default input format for the Z3 binary is based on S-expressions, but in
practice it is more complicated than simply handing off an S-expression to Z3.

The primary mechanism that Lisp-Z3 provides for expressing constraints to be asserted in Z3 is the
z3-assert macro. In addition to taking in an expression to be asserted, this macro can optionally take in
a set of specifiers for free variables to be used in the assertion, as well as a solver object. Each specifier
contains a name and a sort specification describing the signature of the variable. These will be described
in more detail later. All assertions are performed with respect to a solver object. If the solver object is not
provided explicitly, the default solver is used. The assertion is traversed recursively, with each argument
of a function call or operator application being translated into a Z3 AST before the function call or
operator application itself is translated. Whenever a reference to a free variable is found, an appropriate
Z3 AST object referencing a free variable with the correct name and sort is created. Information about
the set of known identifiers and their sorts is maintained by the solver. Lisp-Z3 has support for a subset of
the operators supported by Z3. The operators can be referenced by the same name that they are known by
in Z3’s SMT-LIB2 interface, though some are known by additional names as well (aliases). A document
describing the set of operators known by Lisp-Z3 is provided alongside its source code [40].

The way that SMT-LIB2 behaves in situations where there are multiple declarations of variables with
the same name is different from the way that Common Lisp does. In particular, SMT-LIB2 provides a
single namespace for variables (constants and functions) and allows multiple declarations of variables
with the same name, given that they are associated with different sorts. To reference such a variable, it is
necessary to disambiguate using the as form. For example, if both a constant of type Int and a function
of type (Int) -> String have been declared with the name x, one must reference the constant using
the form (as x Int). An exception to this behavior is when variables are introduced by a form that
introduces bound variables, like forall or exists. If such a form introduces a variable with name x,
any references to x in the body of that form (unless inside another form that introduces x as a bound
variable) will refer to the bound variable rather than any declaration outside of binding form.

To behave in a way that is more consistent with Common Lisp, Lisp-Z3 restricts the declarations
of variables. In particular, Lisp-Z3 requires that at all times, any name is associated with at most one
declared free variable. Declarations of variables are associated with the solver’s assertion level at the
time of the declaration and are removed when that assertion level is popped off the stack. This is con-
sistent with the behavior specified by SMT-LIB2 when :global-declarations is false. To be clear,
attempting to declare a variable with the same name and a different sort as one in the current assertion
level or any assertion level below it will result in an error. The one exception is the introduction of bound
variables, which behave in the same way that SMT-LIB2 describes above (any bindings with the same
name as a bound variable are replaced in the context of the body of the form introducing the bound
variables).

Our wrapper around the Z3 solver object contains an environment stack that maps identifiers to vari-
able declarations at each assertion level. Lisp-Z3 provides two ways to introduce variable declarations:
an ahead-of-time option (consistent with SMT-LIB2) and an inline option. The ahead-of-time option
involves using the declare-const or declare-fun forms, which behave identically to the commands
of the same name defined by SMT-LIB2. After checking that the variable is not already declared in the
current assertion level or any level below it, a variable declared using either form is added to the solver’s
environment stack at the current assertion level. The variable can then be referred to in any assertions
added at the current assertion level or above it. The inline option for declaring variables involves pro-
viding variable specifiers in a z3-assert form. These variable specifiers are processed to produce a
mapping from each variable to a declaration, and the declarations are added to the solver’s environment
stack at the current assertion level. Just as with the ahead-of-time option, an attempt to declare a variable

A.T. Walter & P. Manolios 111

with a name that is already mapped to a declaration but a different sort than that declaration will result
in an error.

Using and Defining Sorts In SMT-LIB2, each sort is defined with some number of parameters (po-
tentially zero). For example, the Int sort takes in zero parameters, and the Seq sort takes in a single
parameter (representing the sort of the sequence’s elements). A sort with at least one parameter is a
parametric sort, while a sort with no parameters is a non-parametric sort. The name of a sort may be an
indexed identifier, meaning that it is of the form (_ <name> <idx1> ... <idxn>), where each <idxi>
is either a number or a symbol. For example, a sort representing a bitvector of width 3 is represented
using the following indexed identifier: (_ BitVec 3). This is a non-parametric sort, though it may look
like a parametric one.

So, why does this distinction exist between indexed identifiers and parametric ones? In SMT-LIB2,
it is possible to define a sort parameter—a variable that ranges over sorts—and then to use that variable
as a parameter for a parametric sort. Listing 4 shows an example where X is declared as a sort parameter,
and then a variable y is declared to be a function from Int values to values of sort X. On the other hand,
indexed identifiers are restricted so that the provided indices are literal values. This means that for any
bitvector sort in a SMT-LIB2 query, the width of that sort is encoded syntactically, making it much easier
to apply any analysis that might benefit from knowledge of the bitwidth.

Listing 4: An example highlighting how sort parameters can be expressed in SMT-LIB2 syntax.
;; X is a variable over sorts
(declare-sort-parameter X)
;; y is a variable over functions from Int to X
(declare-const y (-> Int X))

When declaring variables for use in assertions, it is necessary to provide sort specifiers to indicate
what sort each variable should have. A sort specifier refers to either a non-parametric sort, a parametric
sort, or a function rank. We will first discuss non-parametric and parametric sorts before discussing
function ranks.

A sort specifier for a non-parametric sort is simply a symbol denoting the name of a non-parametric
sort that is known to Lisp-Z3. The package of that symbol does not matter. For example, the SMT-LIB2
sort Int is known to Lisp-Z3, and both :int and int are sort specifiers denoting it. A sort specifier for
a parametric sort is a list where the first element is a symbol indicating the name of the parametric sort
and the remaining entries in the list are arguments for the parameters of the parametric sort. Different
parametric sorts may take in different kinds of values for their parameters, including sorts. Parameters
for such sorts can be provided as sort specifiers themselves. For example, (:seq :int) is a sort specifier
that denotes the (Seq Int) sort in Z3.

SMT-LIB2 requires that each function have at least one rank associated with it [8]. A rank is a non-
empty sequence of sorts, where the last sort is the return type of the function and the sequence of sorts
up to the last sort (potentially empty) denotes the sorts of the parameters of the function. A sort specifier
for a function rank consists of a list of the form (:fn (<p1> ... <pn>) <r>), where each <pi> and
<r> is a sort specifier for a parametric or non-parametric sort. In general a function may have multiple
ranks, but Lisp-Z3 only supports free functions with a single rank, for similar reasons as it does not
support variables that have the same name but different sorts. Function rank sort specifiers are processed
by translating each of <pi> and <r> into Z3 sorts and then producing a Z3 function declaration object
with the given name and rank.

112 An ACL2s Interface to Z3

When declaring variables inline using z3-assert, it is necessary to refer to the name of the variable’s
sort using a keyword symbol (which can be written as a symbol whose name starts with a colon). This
is because the fact that a symbol is in the keyword package is used to identify that a particular entry
in the variable specifiers for a z3-assert call refers to a type rather than a variable name. When using
declare-const or declare-fun, the name of the sort will be normalized in such a way that the package
that it is in is irrelevant.

Many sorts built-in to Z3, like Int and Seq, are available with the same names in Lisp-Z3. In
addition, it is possible to define a subset of the user-defined sorts that Z3 allows. In particular, Lisp-
Z3 supports enumeration sorts and tuple sorts. Enumeration sorts consist of a finite number of distinct
constants. For example, one way to represent the value of a Sudoku square is as an enumeration sort
containing only the integers between 1 and 9 inclusive. Such an enumeration sort can be defined in
Lisp-Z3 using the register-enum-sort function, as shown in Listing 5.

Listing 5: An example of an enumeration sort being registered in Lisp-Z3.
(register-enum-sort :square (1 2 3 4 5 6 7 8 9))

Tuple sorts can be thought of like struct types in Common Lisp or record types in other languages.
They consist of a set of fields, each of which has a name and a sort. The fields must have distinct names.
An example of a definition of a tuple sort is shown in Listing 6.

Listing 6: An example of a tuple sort being registered in Lisp-Z3.
(register-tuple-sort :person ((age . :int) (name . :string)))

Both enumeration sorts and tuple sorts can be defined using the declare-datatypes SMT-LIB2
command, though that command allows for the definition of more complicated sorts than Lisp-Z3 does.

Interpreting Models When Z3 determines that the set of assertions loaded into the current solver is
satisfiable, it is possible to request a model from Z3 that describes a satisfying assignment to the set of
assertions. This model maps any free variables and sorts in the assertions to interpretations (values).
However, Z3 may determine that the interpretation of a particular free variable does not impact the
satisfiability of the assertions. The generated model will not provide an interpretation for such variables.

To be able to use the interpretations from a model in Common Lisp, it is necessary to trans-
late them into Common Lisp values. This can be done by using the (get-model-as-assignment)

function. The interpretations for constants are encoded as Z3 AST values, just like the AST val-
ues that we generate when producing constraints for asserting in Z3. For example, Z3 may en-
code an interpretation equivalent to the sequence (1 2 3) as a concatenation of unit sequences
(seq.++ (seq.unit 1) (seq.unit 2) (seq.unit 3)). The code that translates these ASTs into
Common Lisp values does not support all possible interpretations. Additionally, there are some ASTs
that have multiple possible Common Lisp representations, or for which it is not possible to produce a
perfectly identical Common Lisp representation using Z3’s C API. These include algebraic number val-
ues representing irrational roots of polynomials (for example,

√
2)—Lisp-Z3 will by default translate

such values into a Common Lisp floating-point value, losing some precision.
Function interpretations are particularly interesting to look at. Z3 represents an interpretation for

a function f using a combination of a map from function inputs to outputs M f and a default value
else f . The value of the function on a particular set of arguments f (a1, ...,an) is either the value that
the set of arguments maps to in M f (if that set of arguments is mapped by M f) or the default value

A.T. Walter & P. Manolios 113

else f otherwise. By default, Lisp-Z3 will translate a function interpretation for a function f into an S-
expression containing a map with all of the entries from M f but where each argument value and output
value has been transformed into a Common Lisp value, plus a designated :default key that is mapped
to else f transformed into a Common Lisp value.

As a result of the restrictions that Lisp-Z3 imposes on variable declarations, it is always the case
that a model produced by Z3 will contain at most one interpretation for each variable name. This makes
it possible to unambiguously interpret the assignment produced by (get-model-as-assignment), as
otherwise it would be possible for multiple variables for the same name but different sorts to be included
in the assignment. On the other hand, it is possible that some of the variables that were constrained will
not appear in the assignment produced by (get-model-as-assignment). This occurs when Z3 does
not assign the variable an interpretation in the produced model.

Another way to interact with the model produced by Z3 is to use the eval-under-model form
provided by Lisp-Z3. This form takes in a expression to be converted into a Z3 AST in the same way
that z3-assert does and evaluates it under either the given model or the result of (get-model) if no
model is provided. The result of the evaluation is another Z3 AST, which is converted into a Common
Lisp value and returned. By default eval-under-model will ask Z3 to perform completion on the
given model when evaluating the given expression, meaning that if the statement to evaluate references a
variable that was used in the assertion stack but that is not assigned an interpretation in the given model,
Z3 will assign that variable some value that satisfies its sort (and it will use this value consistently if the
variable appears more than once in the statement to evaluate).

Additional Features Z3 provides a wide variety of features, many of which have not been discussed
so far. Lisp-Z3 supports Z3’s optimization functionality, allowing one to specify objective functions to
maximize or minimize as well as add soft constraints. It is possible to access statistics that Z3 gathers
during the solving process, something which is often helpful when trying to understand Z3’s performance
on a particular set of assertions.

5 Sudoku

A classic example of a puzzle that can be encoded as an SMT problem is Sudoku. A traditional Sudoku
puzzle consists of a 9x9 grid of squares (a grid), where each square is either blank or contains an integer
between 1 and 9 inclusive. The grid is partitioned into nine 3x3 submatrices (subgrids). The goal of
the player is to fill in any blank squares such that the resulting grid satisfies the following: for each row,
column and subgrid, that group of squares must contain distinct values. A well-formed Sudoku puzzle
has a unique solution [16]. Figure 1 shows an example of a Sudoku puzzle and its solution.

One can encode Sudoku as an SMT problem using a variety of different representations, but here we
show one: representing the value of each square using an integer variable, appropriately constrained to
be between 1 and 9 inclusive. Listing 7 contains an implementation of a Sudoku solver using Lisp-Z3.
It consists of Common Lisp functions that generate the needed constraints for each square, row, column
and subgrid, which can be asserted in Z3 once when the program starts up. There is also a function
that translates a representation of a Sudoku problem (a “starting grid”) into a set of equality constraints
that represent the values of non-blank squares given in the problem, which can then be asserted in Z3.
This example highlights Z3’s scope functionality by first asserting the constraints that are constant across
all Sudoku problems (the square, row, column and subgrid constraints), and then creating a new scope
before adding the constraints for a particular Sudoku problem. This new scope can then be exited after

114 An ACL2s Interface to Z3

Figure 1: A Sudoku puzzle (left) and its solution (right). _ is used to denote a blank square.

the Sudoku problem is solved so that the Z3 solver can be used again for another Sudoku problem without
needing to re-assert the initial set of constraints.

Listing 7: An implementation of a Sudoku solver using Lisp-Z3. This is an excerpt from the Sudoku
example that is provided with Lisp-Z3, which also includes pretty-printing and several Sudoku puzzles.
;; Turn an index into a Sudoku grid into the variable corresponding to that square's value.
(defun idx-to-cell-var (idx)
(intern (concatenate 'string "C" (write-to-string idx))))

;; We'll encode the sudoku grid in the simplest way possible, 81 integers
(defconstant +cell-vars+
(loop for idx below 81

append (list (idx-to-cell-var idx) :int)))

;; We limit the integers to values between 1 and 9, inclusive
(defconstant cell-range-constraints
(loop for idx below 81

append `((<= 1 ,(idx-to-cell-var idx))
(>= 9 ,(idx-to-cell-var idx)))))

;; distinct is a built-in Z3 function that is true iff none of its arguments are equal.

;; The values in each row must be distinct
(defconstant row-distinct-constraints
(loop for row below 9

collect `(distinct
,@(loop for col below 9

collect (idx-to-cell-var (+ (* 9 row) col))))))

;; The values in each column must be distinct
(defconstant col-distinct-constraints
(loop for col below 9

A.T. Walter & P. Manolios 115

collect `(distinct
,@(loop for row below 9

collect (idx-to-cell-var (+ (* 9 row) col))))))

;; The values in each 3x3 box must be distinct
(defconstant box-distinct-constraints
;; These numbers are the indices of the top-left square of each box
(loop for box-start in '(0 3 6 27 30 33 54 57 60)

collect `(distinct
;; These numbers are the offsets of each square in a
;; box from the index of the box's top-left square
,@(loop for box-offset in '(0 1 2 9 10 11 18 19 20)

collect (idx-to-cell-var (+ box-start box-offset))))))

;; Set up the initial constraints on the grid
(defun init ()
(solver-init)
;; z3-assert-fn allows us to assert an expression generated by executing some Common Lisp code.
(z3-assert-fn +cell-vars+ (cons 'and cell-range-constraints))
(z3-assert-fn +cell-vars+ (cons 'and row-distinct-constraints))
(z3-assert-fn +cell-vars+ (cons 'and col-distinct-constraints))
(z3-assert-fn +cell-vars+ (cons 'and box-distinct-constraints)))

;; This generates constraints based on a "starting grid".
;; This starting grid is a length-81 list representation of the 9x9 Sudoku grid in row-major order.
;; The list should have a _ in cells where no initial value is given.
(defun input-grid-constraints (grid)
(loop for entry in grid

for idx below 81
when (not (equal entry '_))
collect `(= ,(idx-to-cell-var idx) ,entry)))

(defun solve-grid (input-grid)
(solver-push)
(z3-assert-fn +cell-vars+ (cons 'and (input-grid-constraints input-grid)))
(let* ((sat-res (check-sat))

(res (if (equal sat-res :sat)
(get-model-as-assignment)

sat-res)))
(progn (solver-pop)

res)))

;; Now, use the solver! We assume the Sudoku grid from Figure 1 is loaded in *fig1-grid*.
(init)
(solve-grid *fig1-grid*)

Generating constraints programatically makes it easy to experiment with variants of Sudoku that have
different-sized grids. The traditional Sudoku game seen above can be thought of as 3x3 Sudoku—each
subgrid is contains 3 rows and 3 columns of squares and the top-level grid contains 3 rows and 3 columns
of subgrids. The Lisp-Z3 examples contain code for a solver that can solve nxn Sudoku problems.

Note that the above Sudoku solver does not make use of any ACL2/s functionality. However, one
could imagine using this Sudoku solver implementation as an oracle for solutions to a Sudoku problem
inside of ACL2/s. Its output need not be trusted—instead one could write ACL2/s functions to validate
that the produced solution is indeed a valid solution and matches with the given Sudoku problem.

116 An ACL2s Interface to Z3

6 Application: String Solving

Several applications benefit from the ability to perform satisfiability checking over string equations
(“string solving”). These include security analysis [19, 20], program verification [25, 10] and type check-
ing [38]. Many string solvers exist, including Z3str3 [9] which is part of Z3.

Kumar and Manolios used Lisp-Z3 in their string solver SeqSolve [26]. In addition to supporting
string equation constraints, SeqSolve allows one to express LIA constraints over the lengths of string
variables. As part of its solving process, SeqSolve generates LIA constraints over the lengths of string
variables and uses Lisp-Z3 to determine whether or not these constraints are satisfiable. SeqSolve uses
Z3’s incremental solving capabilities (e.g. the assertion stack) to manage adding and removing con-
straints as appropriate as the string solving algorithm partitions the search space and explores each par-
tition. SeqSolve is a particularly good example of the advantages of ASPF, as it is partially written in
ACL2s, enabling it to take advantage of defdata data definitions and to express guarantees regarding
those functions written in ACL2s. This includes guarantees about types (the function always returns a
value satisfying its signature if it was called with arguments satisfying its signature) as well as regarding
termination (unless explicitly configured not to, ACL2/s requires that any admitted function terminates).

Kumar and Manolios evaluated SeqSolve on a set of benchmarks, comparing against a set of string
solvers that also supported length constraints. The benchmark set was derived mainly from benchmarks
used in prior work, omitting benchmarks outside of the theory that SeqSolve supports. Kumar and
Manolios found that SeqSolve solved a larger number of the benchmark problems in a shorter time than
any of the other string solvers at the time of their paper’s publishing. The results of Kumar and Manolios’
work [26] highlight the ability of Lisp-Z3 to enable the use of Z3 alongside ACL2/s in a performant way,
and their feedback was invaluable in guiding continued improvements to Lisp-Z3.

7 Application: Wi-Fi Fuzzing

Wireless communication protocols are ubiquitous in modern life, connecting devices ranging from smart-
phones to medical implants to the Internet. One of the most prevalent wireless communication protocols
is the IEEE 802.11 Wi-Fi protocol [4]. Given the reach and impact of devices implementing Wi-Fi and
the complexity of the protocol, it is important to evaluate the correctness and security of Wi-Fi infras-
tructure that will be used in sensitive applications. It is for this reason that we collaborated with a group
at Collins to work on hardware-in-the-loop fuzzing of Wi-Fi routers [42].

Fuzzing is a technique for software testing wherein the system under test (SUT) is run on generated
inputs with the goal of evaluating its reliability. Hardware-in-the-loop fuzzing involves using fuzzing to
test a physical hardware device. This introduces several challenges above and beyond software fuzzing,
including the introduction of timing constraints. These challenges, in conjunction with the complexity of
the Wi-Fi protocol itself, mean that fuzzing Wi-Fi devices is challenging. Our work focused primarily on
a particular part of the 802.11 specification—the probe request frame, which is used to request informa-
tion about a Wi-Fi router prior to connecting to it. A 802.11 frame contains several fields, one of which
is a body that itself consists of a sequence of elements. These elements each contain an ID indicating
the kind of the element (are chosen from a set of possible element kinds) and a body, the valid values of
which are determined by the element’s kind.

Our collaborators had been working on model-based fuzzing of Wi-Fi routers, focusing on the probe
request frame. They wrote a model expressing the structure of and constraints on a probe request frame
and (through some tooling) translated the model into a SMT query, a satisfying assignment for which

A.T. Walter & P. Manolios 117

corresponded to a valid probe request frame. They then used an approach called trapezoidal generaliza-
tion [21] to generate a large number of different probe request frames from a single satisfying assignment.
This was necessary because solving the SMT query was quite slow. The probe request frames were then
sent to the SUT, which was monitored for availability.

We were interested in comparing our collaborators’ approach for model-based fuzzing against one
using ACL2s’ enumeration facilities. To do this, we translated our collaborators’ model into data defi-
nitions in ACL2s using the defdata system. By doing so, we were able to make use of the enumerators
that ACL2s generates for each defdata type. The enumerator for a type is a function that maps natural
numbers to elements of the type, making it possible to generate arbitrary elements of the type. This is
used inside of ACL2s to support counterexample generation and automated testing.

An important factor for the success of model-based fuzzing is the ability to explore a large swathe
of the space of possible input for the SUT (in the case of a Wi-Fi router, the space of possible frames).
One relevant parameter in the case of probe request frames is the size of the generated frames, computed
by summing the size of each element in the frame’s body with the size of the frame’s header. There
exist valid probe request frames with any size between 172 and 2741 bytes (inclusive). It is possible
that a bug in a Wi-Fi router’s handling of probe request frames may only occur given very large or small
frames. Therefore, we evaluated the ability of ACL2s to generate probe request frames with a particular
size against an SMT approach. We found that both struggled to generate probe request frames across
the entire range of valid sizes. We determined that the reason why ACL2s struggled to generate frames
with a particular size was because it struggled to reason about the size of the different parts of a frame
independently from their contents and pass that information to the frame’s enumerator.

To produce a more performant approach, we split the task of generating a frame with a particular
size into two steps: we solve the size constraints first (in Z3) and then pass that information along to
the appropriate enumerators in ACL2s. This leverages the strengths of each tool—Z3 is highly capable
at solving constraints involving linear integer arithmetic, and ACL2s makes it easy to specify types
describing the body of each element, as the constraints on the contents of the body can be difficult for Z3
to handle.

To evaluate the performance of our approach (which we will refer to as ACL2s-ETC), we compared it
against an approach that purely used ACL2s’ counterexample generation (referred to as ACL2s-ET) and
one that purely used Z3. We already had the ACL2s version of the model and we translated the model
into SMT-LIB2 constraints for use in evaluating the pure-Z3 approach. We then measured the throughput
of the three approaches when queried for frames with a particular length. We evaluated across lengths
from 0 to 5000 bytes, in increments of 10 bytes. Given the model, frames exist with sizes between 172
and 2741 bytes inclusive, so the evaluated range contained both satisfiable and unsatisfiable queries. The
results are shown in Figure 2 (note that results for frame sizes between 4000 and 5000 bytes are elided).

The results show a clear win for ACL2s-ETC: it was able to generate frames more quickly than either
ACL2s-ET or Z3 across the entire range of evaluated frame sizes, and much more quickly (nearly two
orders of magnitude) across the range of satisfiable frame sizes. These results are strong evidence for
the effectiveness of the combination of ACL2s and Z3 and of the ability of Lisp-Z3 to support such a
combination. Further discussion of these results is available in our FMCAD paper [42].

7.1 Enumerative Data Types Modulo Theories

Our evaluation above showed the effectiveness of our ACL2s-ETC approach in a particular application,
but implementing our approach there required a fair amount of manual effort with respect to plumbing
together defdata enumerators and Z3. We would like to generalize our approach in such a way that users

118 An ACL2s Interface to Z3

1

10

100

1000

0 1000 2000 3000 4000 5000
frame size (bytes)

de
fin

iti
ve

 r
es

po
ns

es
 p

er
 m

in
ut

e

Approach ACL2s−ET Z3 ACL2s−ETC

Figure 2: The number of frames generated per minute using each of three approaches when queried for
frames with a given length. Z3 denotes an implementation that uses Z3 and an SMT-LIB2 version of the
model to generate frames, ACL2s-ET uses ACL2s’ counterexample generation and ACL2s-ETC uses a
combination of Z3 and ACL2s. Only instances where the model returned a definitive response (e.g. not
“unknown” or “timeout”) are shown. The two vertical lines represent the minimum frame size and the
maximum frame size; any responses outside of that range were all UNSAT, and any within that range
were SAT. This figure is similar to Figure 7 in [42].

can take advantage of it in a highly automated fashion. This is the main idea behind our ongoing work
on enumerative data types modulo theories (EDT), an extension of defdata that allows one to express
what we call parameters of data types—features that can be constrained and solved for using something
like Z3. For example, in our Wi-Fi fuzzing work we would define a frame size parameter which could
then be solved for ahead of time if the user wrote a constraint over its value. We hope to use Lisp-Z3 to
power our implementation of EDT inside of ACL2s’ cgen counterexample generation functionality.

8 Related Work

The ACL2 Sedan (ACL2s) [17, 11] is an extension of the ACL2 theorem prover[22, 23, 24]. On top
of the capabilities of ACL2, ACL2s provides the following: (1) A powerful type system via the defdata
data definition framework [14] and the definec and property forms, which support typed definitions
and properties. (2) Counterexample generation capability via the cgen framework, which is based on
the synergistic integration of theorem proving, type reasoning and testing [13, 15, 12]. (3) A powerful
termination analysis based on calling-context graphs [34] and ordinals [31, 32, 33]. (4) An (optional)
Eclipse IDE plugin [11]. (5) The ACL2s systems programming framework (ASPF) [44] which enables

A.T. Walter & P. Manolios 119

the development of tools in Common Lisp that use ACL2, ACL2s and Z3 as a service [42, 41, 26, 43].
The most directly relevant existing system to Lisp-Z3 is the Smtlink tool, developed by Peng and

Greenstreet [36, 37]. In short, Smtlink allows one to use SMT to discharge ACL2 goals in a way that
only involves trusting a small amount of code (in addition to ACL2 and Z3). In more detail, Smtlink
provides a set of verified clause processors for transforming ACL2 goals into equivalent forms that are
better suited for the SMT solver and a trusted clause processor that translates an ACL2 goal into a
set of constraints for Z3, calls Z3, and interprets the output. Smtlink provides support for reporting
counterexamples if reported by Z3 as a result of a failed proof.

Part of the challenge of implementing a system like Smtlink is that of providing a translation of an
ACL2 form into Z3 that accounts for the differing semantics of ACL2 and Z3. This is especially true
given that ACL2 uses an untyped logic and Z3 uses a many-sorted logic. For example, consider the
ACL2 theorem in Listing 8 which can be proven to hold.

Listing 8: A theorem expressed using ACL2s’ property form. Note that for ACL2s to accept this property,
the contract checking feature of property must be disabled. 1

(property (x :bool y :int)
(= (+ x y) y))

This is true in ACL2 since ACL2’s arithmetic functions generally treat any non-number arguments as
though they were 0. However, the corresponding Z3 expression is falsifiable! This is shown in Listing 9.
The reason for this is that Z3 happens to treat true as 1 and false as 0 in the context of arithmetic
operators 2.

Listing 9: A naïve translation of the theorem in Listing 8 into Lisp-Z3 calls.
;; We negate the statement that we are trying to prove, and if
;; Z3 determines UNSAT then the statement is valid.
(z3-assert (x :bool y :int)
(not (= (+ x y) y)))

(check-sat) ;; returns :sat, therefore the statement is not valid.

Since Smtlink allows one to use the fact that Z3 can prove a transformed ACL2 proof obligation to
justify the correctness of the obligation in ACL2, a difference in semantics between the two that is not
accounted for can load to unsoundness. The authors of Smtlink took particular care to ensure that their
translation between ACL2 and Z3 expressions preserve validity. We chose to develop a lighter-weight
solution in Lisp-Z3, insofar as it does not provide the ability to translate of an ACL2 expression into a
Z3 expression in a way that preserves validity.

Manolios and Srinivasan were early advocates for integrating decision procedures into interactive
theorem provers, suggesting an integration of the UCLID decision procedure with ACL2 in 2004 [28].
This integration was later performed and used to verify pipelined processor models [29, 30], enabling
the automated verification of proofs that neither UCLID nor ACL2 could handle alone. Srinivasan went
on to develop an integration of the Yices SMT solver with ACL2 as part of his PhD thesis [39]. Other
researchers have investigated the integration of SMT into the Isabelle/HOL [18] and Coq [5] theorem
provers, and work is ongoing to integrate the CVC5 SMT solver [7] and the Lean theorem prover [6].

1Contract checking can be disabled by evaluating (set-acl2s-property-table-test-contracts? nil) and
(set-acl2s-property-table-check-contracts? nil)

2Note that this behavior is an extension of the behavior that SMT-LIB requires, and other SMT solvers supporting SMT-LIB
may handle things differently. For example, CVC5 reports an error when trying to add that assertion, as it does not define the
addition and multiplication operators on Booleans.

120 An ACL2s Interface to Z3

9 Conclusion and Future Work

We presented Lisp-Z3, an extension to the ACL2s systems programming framework (ASPF) that sup-
ports the use of Z3 as a service. The source code for Lisp-Z3 plus documentation and several examples
of its usage are publicly available [40]. We also discussed three applications of our extended ASPF, the
first being a Sudoku solver and the second being the SeqSolve string solver. The last application in-
volved testing of wireless routers, where using a combination of ACL2s and Z3 resulted in substantially
improved performance over pure-ACL2s and pure-Z3 approaches. We expect to use Lisp-Z3 inside of
ACL2s as part of our ongoing work on enumerative data types modulo theories.

There are many improvements that we would like to make to Lisp-Z3. These include supporting
a larger subset of the commands, operators and sorts that Z3 and SMT-LIB2 provide, developing an
optional integration between Z3 sorts and ACL2s defdata types and enabling the use of other SMT
solvers on the backend (in particular, CVC5). We are interested in getting more feedback from external
users of the interface and encourage anyone interested in using Lisp-Z3 to experiment with it and reach
out with any questions, comments or feedback.

Acknowledgments Lisp-Z3 has been greatly improved thanks to feedback from its users, including
Ankit Kumar and the students in the Fall 2021 and 2022 sections of CS4820 at Northeastern University.
Additionally, we would like to thank David Greve, who collaborated on Wi-Fi fuzzing with us at Collins,
as well as Konrad Slind, Kristopher Cory and all of the other folks at Collins who we worked with.

References
[1] ASDF - Another System Definition Facility. Available at https://asdf.common-lisp.dev/.

[2] CFFI - The Common Foreign Function Interface. Available at https://cffi.common-lisp.dev/.

[3] Trivial Garbage. Available at https://trivial-garbage.common-lisp.dev/.

[4] (2021): IEEE Standard for Information Technology–Telecommunications and Information Exchange between
Systems - Local and Metropolitan Area Networks–Specific Requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11-2020 (Revision of IEEE
Std 802.11-2016), pp. 1–4379, doi:10.1109/IEEESTD.2021.9363693.

[5] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry & Benjamin Werner
(2011): A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In Jean-Pierre Jouan-
naud & Zhong Shao, editors: Certified Programs and Proofs - First International Conference, CPP 2011. Pro-
ceedings, Lecture Notes in Computer Science 7086, Springer, pp. 135–150, doi:10.1007/978-3-642-25379-
9_12.

[6] Haniel Barbosa (2023): Challenges in SMT Proof Production and Checking for Arithmetic Reasoning (In-
vited Paper). In Erika Ábrahám & Thomas Sturm, editors: Proceedings of the 8th SC-Square Work-
shop co-located with the 48th International Symposium on Symbolic and Algebraic Computation, SC-
Square@ISSAC 2023, CEUR Workshop Proceedings 3455, CEUR-WS.org, pp. 1–9. Available at https:
//ceur-ws.org/Vol-3455/invited1.pdf.

[7] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman
Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli & Yoni Zohar (2022): cvc5: A Versatile and Industrial-Strength SMT
Solver. In Dana Fisman & Grigore Rosu, editors: Tools and Algorithms for the Construction and Analysis
of Systems - 28th International Conference, TACAS 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Proceedings, Part I, Lecture Notes in Computer Science
13243, Springer, pp. 415–442, doi:10.1007/978-3-030-99524-9_24.

https://asdf.common-lisp.dev/
https://cffi.common-lisp.dev/
https://trivial-garbage.common-lisp.dev/
https://doi.org/10.1109/IEEESTD.2021.9363693
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-642-25379-9_12
https://ceur-ws.org/Vol-3455/invited1.pdf
https://ceur-ws.org/Vol-3455/invited1.pdf
https://doi.org/10.1007/978-3-030-99524-9_24

A.T. Walter & P. Manolios 121

[8] Clark Barrett, Pascal Fontaine & Cesare Tinelli (2025): The SMT-LIB Standard: Version 2.7. Technical
Report, Department of Computer Science, The University of Iowa. Available at www.SMT-LIB.org.

[9] Murphy Berzish, Vijay Ganesh & Yunhui Zheng (2017): Z3str3: A string solver with theory-aware heuris-
tics. In Daryl Stewart & Georg Weissenbacher, editors: 2017 Formal Methods in Computer Aided Design,
FMCAD 2017, IEEE, pp. 55–59, doi:10.23919/FMCAD.2017.8102241.

[10] Tevfik Bultan, Fang Yu, Muath Alkhalaf & Abdulbaki Aydin (2017): String Analysis for Software Verification
and Security. Springer, doi:10.1007/978-3-319-68670-7.

[11] Harsh Chamarthi, Peter C. Dillinger, Panagiotis Manolios & Daron Vroon (2011): The "ACL2" Sedan The-
orem Proving System. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
doi:10.1007/978-3-642-19835-9_27.

[12] Harsh Raju Chamarthi (2016): Interactive Non-theorem Disproving. Ph.D. thesis, Northeastern University,
doi:10.17760/D20467205.

[13] Harsh Raju Chamarthi, Peter C. Dillinger, Matt Kaufmann & Panagiotis Manolios (2011): Integrating
Testing and Interactive Theorem Proving. In David S. Hardin & Julien Schmaltz, editors: Proceedings
10th International Workshop on the ACL2 Theorem Prover and its Applications, EPTCS 70, pp. 4–19,
doi:10.4204/EPTCS.70.1.

[14] Harsh Raju Chamarthi, Peter C. Dillinger & Panagiotis Manolios (2014): Data Definitions in the ACL2
Sedan. In: Proceedings Twelfth International Workshop on the ACL2 Theorem Prover and its Applications,
doi:10.4204/EPTCS.152.3.

[15] Harsh Raju Chamarthi & Panagiotis Manolios (2011): Automated specification analysis using an interactive
theorem prover. In Per Bjesse & Anna Slobodová, editors: International Conference on Formal Methods in
Computer-Aided Design, FMCAD ’11, FMCAD Inc., pp. 46–53. Available at https://dl.acm.org/doi/
10.5555/2157654.2157665.

[16] Jean-Paul Delahaye (2006): The science behind Sudoku. Scientific American 294(6), pp. 80–87,
doi:10.1038/scientificamerican0606-80.

[17] Peter C. Dillinger, Panagiotis Manolios, Daron Vroon & J. Strother Moore (2007): ACL2s: “The ACL2
Sedan”. In: Proceedings of the 7th Workshop on User Interfaces for Theorem Provers (UITP 2006), Elec-
tronic Notes in Theoretical Computer Science, doi:10.1016/j.entcs.2006.09.018.

[18] Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto & Alwen Fernanto Tiu (2006):
Expressiveness + Automation + Soundness: Towards Combining SMT Solvers and Interactive Proof Assis-
tants. In Holger Hermanns & Jens Palsberg, editors: Tools and Algorithms for the Construction and Analysis
of Systems, 12th International Conference, TACAS 2006 Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2006, Proceedings, Lecture Notes in Computer Science 3920,
Springer, pp. 167–181, doi:10.1007/11691372_11.

[19] Xiang Fu & Chung-Chih Li (2010): A String Constraint Solver for Detecting Web Application Vulnerability.
In: Proceedings of the 22nd International Conference on Software Engineering & Knowledge Engineering
(SEKE’2010), Knowledge Systems Institute Graduate School, pp. 535–542.

[20] Vijay Ganesh, Adam Kiezun, Shay Artzi, Philip J. Guo, Pieter Hooimeijer & Michael D. Ernst (2011):
HAMPI: A String Solver for Testing, Analysis and Vulnerability Detection. In Ganesh Gopalakrishnan &
Shaz Qadeer, editors: Computer Aided Verification - 23rd International Conference, CAV 2011. Proceedings,
Lecture Notes in Computer Science 6806, Springer, pp. 1–19, doi:10.1007/978-3-642-22110-1_1.

[21] David A. Greve & Andrew Gacek (2018): Trapezoidal Generalization over Linear Constraints. In Shilpi
Goel & Matt Kaufmann, editors: Proceedings of the 15th International Workshop on the ACL2 Theorem
Prover and Its Applications, EPTCS 280, pp. 30–46, doi:10.4204/EPTCS.280.3.

[22] Matt Kaufmann, Panagiotis Manolios & J Strother Moore (2000): Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, doi:10.1007/978-1-4615-4449-4.

[23] Matt Kaufmann, Panagiotis Manolios & J Strother Moore (2000): Computer-Aided Reasoning: Case Studies.
Kluwer Academic Publishers, doi:10.1007/978-1-4757-3188-0.

https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1007/978-3-319-68670-7
https://doi.org/10.1007/978-3-642-19835-9_27
https://doi.org/10.17760/D20467205
https://doi.org/10.4204/EPTCS.70.1
https://doi.org/10.4204/EPTCS.152.3
https://dl.acm.org/doi/10.5555/2157654.2157665
https://dl.acm.org/doi/10.5555/2157654.2157665
https://doi.org/10.1038/scientificamerican0606-80
https://doi.org/10.1016/j.entcs.2006.09.018
https://doi.org/10.1007/11691372_11
https://doi.org/10.1007/978-3-642-22110-1_1
https://doi.org/10.4204/EPTCS.280.3
https://doi.org/10.1007/978-1-4615-4449-4
https://doi.org/10.1007/978-1-4757-3188-0

122 An ACL2s Interface to Z3

[24] Matt Kaufmann & J Strother Moore (2025): ACL2 homepage. Available at https://www.cs.utexas.edu/
users/moore/acl2/.

[25] Scott Kausler & Elena Sherman (2014): Evaluation of string constraint solvers in the context of symbolic
execution. In Ivica Crnkovic, Marsha Chechik & Paul Grünbacher, editors: ACM/IEEE International Con-
ference on Automated Software Engineering, ASE ’14, ACM, pp. 259–270, doi:10.1145/2642937.2643003.

[26] Ankit Kumar & Panagiotis Manolios (2021): Mathematical Programming Modulo Strings. In: Formal Meth-
ods in Computer Aided Design, FMCAD 2021, IEEE, pp. 261–270, doi:10.34727/2021/ISBN.978-3-85448-
046-4_36.

[27] Ankit Kumar, Andrew T. Walter & Panagiotis Manolios (2022): Automated Grading of Automata with ACL2s.
In Pedro Quaresma, João Marcos & Walther Neuper, editors: Proceedings 11th International Workshop
on Theorem Proving Components for Educational Software, ThEdu@FLoC 2022, EPTCS 375, pp. 77–91,
doi:10.4204/EPTCS.375.7.

[28] Panagiotis Manolios & Sudarshan K. Srinivasan (2004): A Suite of Hard ACL2 Theorems Arising in
Refinement-Based Processor Verification. In: Proceedings of the Fifth International Workshop on the ACL2
Theorem Prover and Its Applications (ACL2 ’04).

[29] Panagiotis Manolios & Sudarshan K. Srinivasan (2005): Verification of executable pipelined machines with
bit-level interfaces. In: 2005 International Conference on Computer-Aided Design, ICCAD 2005, IEEE
Computer Society, pp. 855–862, doi:10.1109/ICCAD.2005.1560182.

[30] Panagiotis Manolios & Sudarshan K. Srinivasan (2006): A Framework for Verifying Bit-Level Pipelined
Machines Based on Automated Deduction and Decision Procedures. J. Autom. Reason. 37(1-2), pp. 93–116,
doi:10.1007/S10817-006-9035-0.

[31] Panagiotis Manolios & Daron Vroon (2003): Algorithms for Ordinal Arithmetic. In Franz Baader, editor:
19th International Conference on Automated Deduction (CADE), Lecture Notes in Computer Science 2741,
Springer, pp. 243–257, doi:10.1007/978-3-540-45085-6_19.

[32] Panagiotis Manolios & Daron Vroon (2004): Integrating Reasoning About Ordinal Arithmetic into ACL2.
In Alan J. Hu & Andrew K. Martin, editors: 5th International Conference on Formal Methods in Computer-
Aided Design (FMCAD), Lecture Notes in Computer Science 3312, Springer, pp. 82–97, doi:10.1007/978-
3-540-30494-4_7.

[33] Panagiotis Manolios & Daron Vroon (2005): Ordinal Arithmetic: Algorithms and Mechanization. Journal of
Automated Reasoning 34(4), pp. 387–423, doi:10.1007/s10817-005-9023-9.

[34] Panagiotis Manolios & Daron Vroon (2006): Termination Analysis with Calling Context Graphs. In Thomas
Ball & Robert B. Jones, editors: Computer Aided Verification, Lecture Notes in Computer Science 4144,
Springer, pp. 401–414, doi:10.1007/11817963_36.

[35] Leonardo Mendonça de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In C. R. Ramakr-
ishnan & Jakob Rehof, editors: Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Proceedings, LNCS 4963, Springer, pp. 337–340, doi:10.1007/978-
3-540-78800-3_24.

[36] Yan Peng & Mark R. Greenstreet (2015): Extending ACL2 with SMT Solvers. In Matt Kaufmann & David L.
Rager, editors: Proceedings Thirteenth International Workshop on the ACL2 Theorem Prover and Its Appli-
cations, EPTCS 192, pp. 61–77, doi:10.4204/EPTCS.192.6.

[37] Yan Peng & Mark R. Greenstreet (2018): Smtlink 2.0. In Shilpi Goel & Matt Kaufmann, editors: Proceedings
of the 15th International Workshop on the ACL2 Theorem Prover and Its Applications, EPTCS 280, pp. 143–
160, doi:10.4204/EPTCS.280.11.

[38] Justin Slepak, Panagiotis Manolios & Olin Shivers (2018): Rank polymorphism viewed as a constraint prob-
lem. In Sven-Bodo Scholz & Olin Shivers, editors: Proceedings of the 5th ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming, ARRAY@PLDI 2018, ACM,
pp. 34–41, doi:10.1145/3219753.3219758.

https://www.cs.utexas.edu/users/moore/acl2/
https://www.cs.utexas.edu/users/moore/acl2/
https://doi.org/10.1145/2642937.2643003
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_36
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_36
https://doi.org/10.4204/EPTCS.375.7
https://doi.org/10.1109/ICCAD.2005.1560182
https://doi.org/10.1007/S10817-006-9035-0
https://doi.org/10.1007/978-3-540-45085-6_19
https://doi.org/10.1007/978-3-540-30494-4_7
https://doi.org/10.1007/978-3-540-30494-4_7
https://doi.org/10.1007/s10817-005-9023-9
https://doi.org/10.1007/11817963_36
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4204/EPTCS.192.6
https://doi.org/10.4204/EPTCS.280.11
https://doi.org/10.1145/3219753.3219758

A.T. Walter & P. Manolios 123

[39] Sudarshan Kumar Srinivasan (2007): Efficient verification of bit-level pipelined machines using refinement.
Ph.D. thesis, USA. AAI3294559.

[40] Andrew T. Walter: Lisp-Z3 Repo. https://github.com/mister-walter/cl-z3.
[41] Andrew T. Walter, Benjamin Boskin, Seth Cooper & Panagiotis Manolios (2019): Gamification of Loop-

Invariant Discovery from Code. In Edith Law & Jennifer Wortman Vaughan, editors: Proceedings of the
Seventh AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2019, AAAI Press, pp.
188–196, doi:10.1609/HCOMP.V7I1.5277.

[42] Andrew T. Walter, David A. Greve & Panagiotis Manolios (2022): Enumerative Data Types with Constraints.
In Alberto Griggio & Neha Rungta, editors: 22nd Formal Methods in Computer-Aided Design, FMCAD
2022, IEEE, pp. 189–198, doi:10.34727/2022/ISBN.978-3-85448-053-2_25.

[43] Andrew T. Walter, Ankit Kumar & Panagiotis Manolios (2023): Proving Calculational Proofs Correct. In
Alessandro Coglio & Sol Swords, editors: Proceedings of the 18th International Workshop on the ACL2
Theorem Prover and Its Applications, EPTCS 393, pp. 133–150, doi:10.4204/EPTCS.393.11.

[44] Andrew T. Walter & Panagiotis Manolios (2022): ACL2s Systems Programming. In: Proceedings of
the Seventeenth International Workshop on the ACL2 Theorem Prover and its Applications, EPTCS,
doi:10.4204/EPTCS.359.12.

https://github.com/mister-walter/cl-z3
https://doi.org/10.1609/HCOMP.V7I1.5277
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_25
https://doi.org/10.4204/EPTCS.393.11
https://doi.org/10.4204/EPTCS.359.12

Gamboa and Manolios (Eds):
ACL2 Workshop 2025
EPTCS 423, 2025, pp. 124–144, doi:10.4204/EPTCS.423.11

© S. Xifaras, P. Manolios, A. T. Walter, W. Robertson
This work is licensed under the
Creative Commons Attribution License.

An Enumerative Embedding of the Python Type System in
ACL2s

Samuel Xifaras Panagiotis Manolios Andrew T. Walter William Robertson
Khoury College

Northeastern University
Boston, Massachusetts, USA

{xifaras.s,p.manolios,walter.a,w.robertson}@northeastern.edu

Python is a high-level interpreted language that has become an industry standard in a wide variety
of applications. In this paper, we take a first step towards using ACL2s to reason about Python
code by developing an embedding of a subset of the Python type system in ACL2s. The subset of
Python types we support includes many of the most commonly used type annotations as well as
user-defined types comprised of supported types. We provide ACL2s definitions of these types, as
well as defdata enumerators that are customized to provide code coverage and identify errors in
Python programs. Using the ACL2s embedding, we can generate instances of types that can then be
used as inputs to fuzz Python programs, which allows us to identify bugs in Python code that are not
detected by state-of-the-art Python type checkers. We evaluate our work against four open-source
repositories, extracting their type information and generating inputs for fuzzing functions with type
signatures that are in the supported subset of Python types. Note that we only use the type signatures
of functions to generate inputs and treat the bodies of functions as black boxes. We measure code
coverage, which ranges from about 68% to more than 80%, and identify code patterns that hinder
coverage such as complex branch conditions and external file system dependencies. We conclude
with a discussion of the results and recommendations for future work.

1 Introduction

Python is an industry-standard language that is used in software engineering disciplines ranging from
web development to machine learning [14]. Its versatility and ease of use have propelled it to its position
as the second most popular programming language by usage on GitHub, behind only JavaScript [3].
With this popularity has come many proposed improvements to the language, including type annotations
which were introduced in Python Enhancement Proposal (PEP) 484 [41]. This is a reasonable addition,
as static typing in programming has been shown to have a host of benefits [17]. As these type annotations
continue to be adopted by developers, they represent a rich source of data for application analysis.

Since Python software has become ubiquitous, this paper is motivated by the need for robust software
verification in Python. Python code is typically tested with unit testing, which tests a property of the code
in a single example scenario. Although unit testing can be effective when done well, it has a reputation
for being burdensome, and there is evidence that developers find it challenging–or are not motivated–
to cover deeply nested code [53]. In this paper, we introduce an extensible, enumerative embedding
of the Python type system that can generate representative examples of simple and complex Python
types, and evaluate its effectiveness by measuring code coverage on real-world open source repositories.
The representative examples generated by this embedding can drive fuzzing and property-based testing
(PBT), among other techniques.

Importantly, the goal of this work is not to model the semantics of the type system. This is mostly
because it is unclear what the semantics of the type system of Python are. Rak-amnouykit et al. [38], for

http://dx.doi.org/10.4204/EPTCS.423.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

S. Xifaras, P. Manolios, A. T. Walter, W. Robertson 125

instance, find that two of the most popular Python type checkers, mypy [46] and pytype [2], implement
and check different type systems. Nor is it the goal to model the semantics of Python, which are complex
and subject to change in new Python versions. For a preview of the complex considerations involved
in modeling the semantics of Python, including scoping and generators, see [35]. Instead, our goal is
to facilitate fuzzing and PBT of Python programs with an embedding of the Python type system that
supports extension and can be used to generate test cases.

Our embedding is extensible in that it can be extended with new types. This is necessary as Python
primitive types can be composed in infinitely many ways with compound types such as lists, tuples,
and dictionaries. User-defined classes are also frequently used by Python programmers, and we support
embedding classes as record types, as long as their field types are recursively representable in the em-
bedding. The embedding also supports extension with union types. How the type system works and how
it can be extended are discussed in Section 4.

Our embedding is enumerative because it leverages the enumerative data definition framework of
ACL2s [12]. We say a data type is enumerative when it is associated with an enumerator function
that maps natural numbers to elements of the type. After the embedding is extended to include user-
defined types, the enumerative property of the embedding allows examples of these types to be generated
immediately. This is useful for test data generation in unit testing, producing large numbers of test cases
for PBT, and producing seed inputs for fuzzing. We discuss this aspect of the embedding further in
Section 5.

We chose to implement this embedding in ACL2s because we view it as uniquely positioned to
support the goals of this work. Its logical foundation enables formal reasoning and theorem proving for
Python types and constructs, and the ACL2s defdata framework [12] grants the enumerative property
of the embedding. Taken together, these enable seamless integration with dynamic approaches, such as
fuzzing and PBT. Accordingly, the contributions of this paper are being used in ongoing work related to
fuzzing in Python.

In summary, we claim the following contributions in this paper:

• An extensible, enumerative embedding of the Python type system in ACL2s. The code is open-
sourced and available.1

• Custom enumerators for Python primitive types. The enumerators are designed to produce rep-
resentative examples of Python types.

• An evaluation of code covered in four open source repositories with inputs generated by the
embedding’s enumerators.

Note that conversion of the embedding’s generated examples to Python objects is not specified in
this paper. Details are given in Xifaras’s master’s thesis [52], and we also plan to publish a specification
of the conversion process in a forthcoming software engineering paper. To motivate why this problem is
interesting and nontrivial in the context of our ongoing work in fuzzing, consider the fact that pickle [1],
Python’s built-in object serialization protocol, does not flatly encode the data. It instead encodes objects
as instructions to a virtual machine that, when played back, reconstruct the original object [45]. We have
observed that this storage format is far from ideal for fuzzing and poses significant security concerns [52].

We invite the community to extend the embedding and implement new features or program analyses
on top of it. There are many features of the type system that are missing from our embedding, such as
protocol types [28], and new features are added with every update to the Python language. This leaves
many opportunities for future work.

1https://github.com/acl2/acl2/tree/master/books/projects/python/embedding

https://github.com/acl2/acl2/tree/master/books/projects/python/embedding

126 An Enumerative Embedding of the Python Type System in ACL2s

The remainder of the paper is organized as follows. In Section 2, we discuss some background
information and a motivating example. Section 3 gives an overview of related work. Section 4 describes
how the model is embedded and how it can be extended. Section 5 contains definitions of custom
enumerators that produce representative examples of Python primitive types. We provide examples of the
usage of the embedding in Section 6, and we evaluate its performance on several open source repositories
in Section 7. We discuss the results and future work in Section 8, and conclude in Section 9.

2 Background and Motivating Example

As Python has seen increasing use across the software engineering industry, the need to collaborate in
large-scale codebases has grown. This has led to the emergence of static typing in Python through the
PEP-484 system of type hints [41]. These hints are optional and not checked by the language implemen-
tation. Type checkers, such as mypy [46] and pytype [2], have emerged to statically verify the correctness
of these type hints. In fact, Python’s type system semantics are heavily influenced by mypy’s design de-
cisions [26, 41]. Due, however, to the complex semantics of Python and the complexity of the type
hints themselves [43], these type checkers are neither sound nor complete [38]. When Python code is de-
ployed in a production environment, false negatives are particularly dangerous because they could lead to
unhandled crashes, resulting in reduced availability, customer dissatisfaction, and developer frustration.

Consider, for instance, Listing 1. This listing contains a function, create_decimal, that takes an
integer and a floating-point number, converts them to their string representations, concatenates them, then
converts the result to a float and returns it. This is a seemingly innocuous function. Its stated purpose
is to construct a floating-point value out of an integer component representing the digits to the left of a
decimal point and a floating-point value representing the digits to the right of a decimal point. At the
time of this writing, the latest versions of two Python type checkers on Python 3.12, mypy (v1.14.1) and
pytype (v2024.10.11), do not report any errors in this definition. However, there are several corner cases
that this function does not account for that trigger unhandled exceptions. For instance, consider when the
floating-point argument takes a negative value, or a value of inf (infinity), or nan (not-a-number). When
an integer is concatenated with the string "nan", the result cannot be cast back into a float, resulting in
an exception. Property-based testing with input data that covers these special-case floating-point values
can find this issue, highlighting the importance of both strong testing discipline and representative test
data.

1 def create_decimal(whole_part: int, decimal_part: float) -> float:
2 """Create a decimal number from the given whole part and decimal part"""
3 return float(str(whole_part) + str(decimal_part).lstrip('0'))

Listing 1: Motivating example: A function that behaves well when decimal_part is non-negative and
not "nan", "inf", or "-inf".

The embedding we present in this paper enables the discovery of this and other bugs in Python
programs through the generation of representative test data. In the case of the function given in Listing 1,
we find this bug because of the customized enumerative floating-point data type that accurately represents
Python’s float type. Our goal with this work is to augment type checking with dynamic execution
and formal reasoning, thereby enabling Python developers to extract more value from their tooling and
investment in type annotations. We hope this grants developers greater confidence in their code.

S. Xifaras, P. Manolios, A. T. Walter, W. Robertson 127

3 Related Work

In this section, we cover various areas of the literature that are related to our work, and offer brief
discussions about how our work fits in with each.

Type annotations in Python. The Python language has gone through many iterations, in particular
with its system of type annotations (also referred to as type hints). Multiple PEP documents have been
published about Python’s type system, such as PEP-484 [41], the specification of type hints in Python,
PEP-483 [42], which specifies the theory behind type hints, and PEP-544 [28] which introduces structural
subtyping into the language. Di Grazia and Pradel [16] perform a comprehensive study of open source
Python code and measure the state of type annotation usage in the ecosystem. They find that there is
an upward trend in type annotation usage, but fewer than 10% of code elements are annotated. There
are also distinct usage patterns among different repositories, and they find that repositories with higher
numbers of contributors tend to utilize type annotations more. The upward trend in usage of Python type
annotations is a positive signal for the potential adoption of our work.

Type checking in Python. We have chosen Python types as an aspect of Python to model in ACL2s
because they are relatively simple to model, we anticipate that type annotations’ popularity will continue
to grow, and tooling for type checking in Python has several issues. Third-party tooling for supporting
the Python type system is necessary because PEP-484 clearly states that it is not the intent of the Python
implementation to statically check types [41]. Static type checkers have therefore arisen to offer compile-
time guarantees of type safety. mypy [46] and pytype [2] are notable examples. Rak-amnouykit et al. [38]
perform a study on the outputs of these type checkers, and they find that mypy and pytype implement
two different type systems. They also find, in corroboration of the results of Di Grazia and Pradel [16],
that statically detectable type errors often do not seem to inhibit developers from committing code. This
suggests that although type annotations are seeing increased use, there is much work to do in fixing type
errors in Python code. Evidence that this is a practical problem is provided by Rak-amnouykit et al.
who find that these tools emit false positives [38]. Finally, Roth shows that Python type hints are Turing
complete [43], indicating that type checking in Python is an undecidable problem. No solution can be
both sound and complete.

Formal verification of Python. Given Python’s importance in the modern software landscape, formal
verification of its semantics is an appealing academic pursuit. While the goal of the present work is not
to formally verify Python programs, we consider these works related because they relate to the theme of
tooling for Python software verification. Several attempts have been made to formally specify or verify
subsets of Python. Ranson formally specifies an operational semantics of a heavily restricted subset of
Python 2 called IntegerPython, which only has integers and booleans as data types [39]. IntegerPython
is implemented in the Isabelle/HOL proof assistant, and Ranson proves correctness of a Turing machine
simulator written in the language [39]. Politz et al. implement a small-step operational semantics for
Python, and they contribute a translator from general Python programs to a "core language" for which
the semantics are modeled [35]. They test their implementation on many test cases from the CPython
implementation. Smeding, in a master’s thesis regarded by Politz et al. as "sadly unheralded" [35],
implements an executable semantics in literate Haskell and tests it against 134 test cases [44]. Smeding’s
semantics are for Python 2.5, however, which is a deprecated version of the language. Also in a master’s
thesis, Köhl implements an operational, executable semantics of Python using the K semantic framework
[24]. Köhl’s semantics are based on Python 3.7, which is also a deprecated version of the language, but
closer to the language’s current state. To our knowledge, there are no works that formally specify or
verify any part of Python in ACL2/ACL2s, rendering the present work the first to do so.

Fuzzing in Python. As previously mentioned, we are engaged in ongoing work on utilizing the

128 An Enumerative Embedding of the Python Type System in ACL2s

1 (defun add-nonparametric-type (name defdata-ty)
2 (setf (gethash name *type-table*)
3 `(:name ,name
4 :kind "nonparametric"
5 :defdata-ty ,defdata-ty)))
6
7 (defun add-parametric-type (name defdata-ty-lambda)
8 (setf (gethash name *type-table*)
9 `(:name ,name

10 :kind "parametric"
11 :defdata-ty ,defdata-ty-lambda)))
12
13 (defun add-alias-type (name alias-of)
14 (let ((name (string-downcase name))
15 (alias-of (string-downcase alias-of)))
16 (when (equal (gethash alias-of *alias-table*) name)
17 (error "It is illegal to set ~a as an alias for ~a because ~a is already an alias for ~a

." name alias-of alias-of name))
18 (setf (gethash name *alias-table*)
19 alias-of)))

Listing 2: Definitions of add-nonparametric-type, add-parametric-type, and add-alias-type.

enumerative embedding for fuzzing Python code. Fuzzing in Python is a nascent area of study as Python
becomes increasingly widespread in industry. PyRTFuzz [29] is a recent paper that proposes an approach
to fuzzing the Python interpreter, and claims several bug discoveries. Our ongoing work focuses on
fuzzing arbitrary Python code, rather than the interpreter, and the ACL2s-based type example generation
introduced in the present paper is used to create seed inputs for fuzzing. HypoFuzz [19], maintained by
Zac Hatfield-Dodds, is a Python library based on the PBT library Hypothesis [30] that uses advanced
fuzzing techniques and long time budgets to find counterexamples to properties. In his master’s thesis,
Xifaras covers the embedding presented here in greater depth, as well as how it integrates with a larger
fuzzing system [52]. Experimental results on fuzzing in Python are also presented [52].

ACL2s. The ACL2 Sedan (ACL2s) [15, 9] is an extension of the ACL2 theorem prover[20, 21, 22].
On top of the capabilities of ACL2, ACL2s provides the following: 1) a powerful type system via the
defdata data definition framework [12] and the definec and property forms, which support typed
definitions and properties, 2) counterexample generation capability via the cgen framework, which is
based on the synergistic integration of theorem proving, type reasoning and testing [11, 13, 10], 3)
a powerful termination analysis based on calling-context graphs [34] and ordinals [31, 32, 33], 4) an
(optional) Eclipse IDE plugin [9], and 5) the ACL2s systems programming framework (ASPF) [50]
which enables the development of tools in Common Lisp that use ACL2, ACL2s and Z3 as a service [51,
48, 47, 25, 49]. Our work builds on ACL2s and uses its data definition framework to model Python
types. Walter et al. also build on the enumerative data types in ACL2s, adding dependent types and
showing how dependent type enumerators can generate a great breadth of examples of 802.11 Wi-Fi
packets [48]. These "enumerative data types with constraints" may become useful for this embedding in
future work. We additionally leverage the aforementioned ACL2s systems programming framework in
our work to enable integration with foreign function interfaces and other application libraries such as an
HTTP server.

S. Xifaras, P. Manolios, A. T. Walter, W. Robertson 129

1 (defun init-types ()
2 (add-nonparametric-type "integer" 'acl2s::py-integer)
3 (add-alias-type "int" "integer")
4 (add-nonparametric-type "float" 'acl2s::py-float)
5 (add-nonparametric-type "bool" 'acl2s::py-bool)
6 (add-nonparametric-type "unicode-codepoint-string"
7 'acl2s::unicode-codepoint-string)
8 (add-alias-type "unicode" "unicode-codepoint-string")
9 (add-alias-type "str" "unicode-codepoint-string")

10 (add-alias-type "boolean" "bool")
11 (add-parametric-type "list"
12 (lambda (el-ty)
13 (let ((elt-ty-sym (translate-type-to-defdata
14 (if (stringp el-ty) el-ty (alist-to-plist el-ty)))))
15 `(acl2s::listof ,elt-ty-sym))))
16 (add-parametric-type "dictionary"
17 (lambda (key-ty val-ty)
18 (let ((key-ty-sym (translate-type-to-defdata
19 (if (stringp key-ty) key-ty (alist-to-plist key-ty))))
20 (val-ty-sym (translate-type-to-defdata
21 (if (stringp val-ty) val-ty (alist-to-plist val-ty)))))
22 `(acl2s::map ,key-ty-sym ,val-ty-sym))))
23 (add-parametric-type "fixedtuple"
24 (lambda (&rest types)
25 (let ((ty-syms (mapcar (lambda (ty)
26 (translate-type-to-defdata
27 (if (stringp ty) ty (alist-to-plist ty))))
28 types)))
29 `(acl2s::list ,@ty-syms))))
30 (add-nonparametric-type "nonetype" 'acl2s::py-none)
31 (add-nonparametric-type "bytes" 'acl2s::py-bytes))

Listing 3: Initial setup of the type table.

4 Embedding Construction

To implement the embedding, we leverage ACL2s Systems Programming [50] to create an API in Com-
mon Lisp that makes calls which affect an underlying ACL2s theory (the "world"). We use ACL2s
Systems Programming as a foundation because it simplifies interfacing with foreign systems. In our
ongoing fuzzing work, for instance, we implement an HTTP server on top of the Common Lisp API that
accepts requests to update the embedding with new types and get examples of embedded types. Xifaras
describes this HTTP interface in [52]. At this stage of the implementation, the only ACL2s calls that are
being made are defdata calls, which in turn make several calls to defthm.

The embedding uses two data structures to track information about known types: a type table and
an alias table. The type table is a hash table that maps type names to property lists (plists) that con-
tain metadata about the types. Lines 1-11 of Listing 2 show the two functions that extend this table,
add-nonparametric-type and add-parametric-type.

As shown in Listing 2, the values of the hash table are plists that have three keys, :name, :kind,
and :defdata-ty. If the type’s kind is non-parametric, defdata-ty takes the value of an S-expression
containing the defdata definition syntax. See [12] for a reference on this syntax. Otherwise, it takes

130 An Enumerative Embedding of the Python Type System in ACL2s

a lambda which defines how to produce the defdata definition expression from the parameters of the
type.

Types may be known by different names, or a programmer may want to assign multiple names to
the same underlying type. Type aliases enable this. Extension of the type alias table is done via the
add-alias-type function, whose definition is also given in Listing 2 (lines 13-19). This function takes
two string values that represent the alias and the name to be aliased. They are both converted to lowercase
(lines 14-15) to maintain case insensitivity. Lines 16-17 perform a simple cycle check, to ensure that the
name to be aliased is not already an alias for the given alias. This check could be generalized to arbitrary-
length cycles.

The model of the type system starts with a set of base types defined in Common Lisp as shown in
Listing 3. Note the use of add-nonparametric-type, add-parametric-type, and add-alias-type

as defined in Listing 2. This set of initial types was mostly derived from the set of most commonly used
types in annotations, as identified by the work of Di Grazia and Pradel [16]. The acl2s symbols that are
shown are associated with defdata definitions of the embedding.

The embedding can also be extended with complex types in Python. Any user-defined class that
has field types that are recursively representable in the embedding can be admitted to the model, with
the caveat that the embedding does not support self-referential or mutually recursive class definitions at
this time. Admission of recursively representable types is implemented by an iterative type extraction
procedure that continues until a maximum number of iterations has been reached or until a fixed point.

This extraction process is given in Algorithm 1. Lines 1-4 set up the state variables. S′ is the final
set of types, S′prev maintains the set from the previous iteration to check whether a fixed point has been
reached. On line 3, C is set to the domain of A, which is the set of extracted user-defined classes in the
subject codebase. In this definition, maxIters, the maximum number of iterations to perform if no fixed
point is reached, is set to 5. If the time budget allows, it is advisable to increase this value so that as many
user-defined types can be registered as possible. The remainder of the lines in this algorithm define the
main loop. Line 7 contains the check for whether a type can be registered under the current model. types
is a helper function that returns the types used in a function signature. registerType (line 8) registers
(i.e. admits) the type in the embedding. Refer to Xifaras for further details on this extraction [52].

Listing 4 contains examples of user-defined types that can be registered with the type extraction
process. The second of the two classes, TestClassB, references the first, TestClassA. These class types
are used in the definitions of two functions, use_a and use_b. The defdata calls used to embed this
type information are given in Listing 5. Note that the listed defdata calls fully represent all types that
appear in this example. This implies that use_a and use_b are extractable as "appropriate functions," as
defined in Section 7.

4.1 Note on Embedding Philosophy

Note that we have chosen to adopt a conservative philosophy when embedding classes in Python. The
runtime type system of Python has duck typing semantics, and Python supports runtime operations that
add and remove arbitrary attributes of objects while preserving the Python isinstance relation, which
checks that an object is an instance of a given class. This means that, at runtime, an instance of class
Bar that behaves exactly like an instance of class Foo (if it walks like a duck, talks like a duck...) can be
passed off as an instance of Foo, and an instance of Foo can be mutated to look like an instance of Baz, at
which point code that operates on instances of Foo no longer recognize it as an object of type Foo, except
by isinstance. Attempting to generate examples that capture the broadness of duck typing semantics
may be "representative" of what is possible in Python, but this may lead to error reports that would be

S. Xifaras, P. Manolios, A. T. Walter, W. Robertson 131

Algorithm 1 Type Registration
Input: Initial type set S; mapping of class name to set of attribute types A; mapping of class name to set of method

signatures M
Output: Final type set S′

1: S′← S
2: S′prev← S′

3: C← dom(A)
4: maxIters← 5
5: for i← 1 to maxIters do
6: for each c ∈C do
7: if A(c)⊆ S′ and

(⋃
m∈M(c) types(m)

)
⊆ S′ then

8: registerType(c)
9: S′← S′∪{c}

10: end if
11: end for
12: if S′ = S′prev then ▷ check for fixed point
13: break
14: end if
15: S′prev← S′

16: end for
17: return S′

easily rejected by a user as false positives, since an instance of Foo that looks and acts like an instance
of Baz, for instance, would never be created by their code. This is what we mean by "conservative." We
take the type annotations and corresponding class definitions at face value, in the same way that mypy
does [27].

5 Custom Enumerators

In ACL2s, data types are enumerative. This means that each type is associated with an enumerator
function that maps the natural numbers to examples of the type [12]. This is useful in the context of
fuzzing and property-based testing because if one can define a type of data in ACL2s, one immediately
has access to examples of it. We say that each data type in ACL2s has an enumerator attached to it, and
the attached enumerator can be changed programmatically.

In our ongoing work on fuzzing in Python, we found that the default ACL2s defdata enumerators
for certain primitive types do not produce a wide variety of examples. These default enumerators are in-
tended to produce examples that would be readable by a student in case one causes their code to fail [13].
We are not concerned with readability of the examples, so we instead defined custom enumerators that
produce a much wider range of values suitable for fuzzing. The definitions of these custom enumerators
are given in this section.

5.1 Integers

To test code that works with integers, we have created a custom enumerator for integers that generates
small-magnitude and very large-magnitude integer values of positive and negative sign. The Python
integer type has arbitrary precision, but Python code often interfaces with native code which uses machine
integers that may be 8, 16, 32, or 64 bits. Feedback from running code annotated with Python integers

132 An Enumerative Embedding of the Python Type System in ACL2s

1 from typing import List, Tuple
2
3 class TestClassA:
4 def __init__(self, a: float, b: List[int]) -> None:
5 self.a = a
6 self.b = b
7
8 class TestClassB:
9 def __init__(self, a: int, b: TestClassA) -> None:

10 self.a = a
11 self.b = b
12
13 def use_a(a: TestClassA) -> Tuple[float, List[int]]:
14 return (a.a, a.b)
15
16 def use_b(b: TestClassB) -> Tuple[int, TestClassA]:
17 return (b.a, b.b)
18
19 a_inst = TestClassA(3.5, [1, 2, 3])
20 b_inst = TestClassB(4, a_inst)
21
22 use_a(a_inst)
23 use_b(b_inst)

Listing 4: Example of Python class definitions and functions that use them.

can help the programmer narrow down the integer type that their code actually expects. For example, a
function that makes a call to a native routine in the popular library numpy [18] may be annotated as taking
a Python integer, but any integer that does not fit within 64 bits may cause unexpected behavior because
the underlying native code expects a numpy.int64 value. The custom enumerator generates integers
from several cases with probabilities given in Table 1. For convenience of notation, where l, i,h ∈ Z, let
P+

2 (l,h) := {2i | l ≤ i≤ h}, P−2 (l,h) := {−2i | l ≤ i≤ h}, and P±2 (l,h) := P+
2 (l,h)∪P−2 (l,h).

Description % Set

Sum of powers of two 85 {a+b | a ∈ P±2 (0,64)∧b ∈ P±2 (0,16)}

65-bit integers 6 UnionAll({{a,−a} | 2≤ a≤ 265})

Powers of 2, with off by one 6 UnionAll({{a,a−1,a+1} | a ∈ P±2 (0,65)})

One 1 {1}

Zero 1 {0}

Negative one 1 {−1}

Table 1: Custom integer enumerator cases

As an example of how one may define a custom enumerator the integer enumerator source code
is given in Listing 6. Note the correspondence between this definition and Table 1. The probability
distribution is given on line 5, in the expression ’(85 6 6 1 1 1). Lines 6-21 define the cases of the

S. Xifaras, P. Manolios, A. T. Walter, W. Robertson 133

1 (DEFDATA TY1039 PY-INTEGER) ;; int
2 (DEFDATA TY1041 PY-FLOAT) ;; float
3 (DEFDATA TY1043 (LISTOF TY1039) DO-NOT-ALIAS T) ;; List[int]
4
5 ;; class TestClassA[a: float, b: List[int]]
6 (DEFDATA ACL2S::CLASSTEST.TESTCLASSA
7 (DEFDATA::RECORD (A . ACL2S::TY1041) (B . ACL2S::TY1043))
8
9 ;; class TestClassB[a: int, b: TestClassA]

10 (DEFDATA ACL2S::CLASSTEST.TESTCLASSB
11 (DEFDATA::RECORD (A . ACL2S::TY1039)
12 (B . ACL2S::CLASSTEST.TESTCLASSA))
13
14 ;; Tuple[float, List[int]]
15 (DEFDATA TY1096 (LIST TY1041 TY1043))
16
17 ;; Tuple[int, TestClassB]
18 (DEFDATA TY1100 (LIST TY1039 CLASSTEST.TESTCLASSB))

Listing 5: defdata calls issued by type extraction procedure when analyzing Listing 4.

enumerator. In the first case, two values are generated then added. In the second case, three 32 bit
integers are generated, and then a helper function, make-nat-upto-2-expt-65, is called to produce a
65-bit integer. In the third case, a power of two is generated, and an offset of either -1, 0, or 1 is selected
by generating a random number between zero and two and subtracting one from it (lines 17-18). The
remaining three cases are trivial.

5.2 Strings

Python supports Unicode strings, so our enumerator generates many different varieties of Unicode
strings. The probabilities are broken down as specified in Table 2. Note the use of Cn(S) notation.
We let the notation Cn(S) denote the set of strings of length at most n composed of characters in S.
Formally, Cn(S) := {c0 . . .ci . . .cn | c0 ∈ S∧ ·· ·∧ ci ∈ S∧ ·· ·∧ cn ∈ S}. The set ASCII denotes the set of
ASCII characters. The Emoji set denotes the set of Emoji Unicode characters. The set Gr denotes the set
of Greek letter characters. The set MathSym denotes the set of mathematical symbol characters. The set
LtnDiac denotes the set of latin letters with diacritic marks (such as ä and á). The set CmpEmoji denotes
the set of compound emojis, which are emoji characters that span two or more codepoints.

Note that there is a distinction between string literals and the str class in Python. There are sev-
eral string literals in Python that have different semantics. The standard string literal, denoted with
quotes (""), produces an instance of the str class. The str class, according to Python’s documenta-
tion, represents a sequence of Unicode codepoints [36]. Our enumerator produces sequences of Unicode
codepoints, satisfying this definition. Raw strings, denoted r"", also produce str instances, but escape
sequences are ignored. "F-strings," short for format strings, are denoted f"". These string literals sup-
port printf-like interpolation of variables into strings, and they also produce str instances. Byte string
literals, despite having similar syntax to the aforementioned literals (b""), produce bytes instances. The
bytes type represents a sequence of 8-bit integers, and its representation in the embedding is defined in
the defdata framework as shown in Listing 7.

134 An Enumerative Embedding of the Python Type System in ACL2s

1 (defun python-int-enum/acc (n seed)
2 (declare (xargs :mode :program))
3 (declare (ignore n) (type (unsigned-byte 31) seed))
4 (b* (((mv choice seed)
5 (defdata::weighted-switch-nat '(85 6 6 1 1 1) seed)))
6 (case choice
7 (0 (b* (((mv val-64 seed) (signed-power-of-two-enum-seed 0 64 seed))
8 ((mv val-16 seed) (signed-power-of-two-enum-seed 0 16 seed)))
9 (mv (+ val-64 val-16) seed)))

10 (1 (b* (((mv r1 seed) (defdata::genrandom-seed (1- (expt 2 31)) seed))
11 ((mv r2 seed) (defdata::genrandom-seed (1- (expt 2 31)) seed))
12 ((mv r3 seed) (defdata::genrandom-seed (1- (expt 2 31)) seed))
13 (v (make-nat-upto-2-expt-65 r1 r2 r3))
14 ((mv sign seed) (random-bool seed)))
15 (mv (* (if sign 1 -1) (1+ v)) seed)))
16 (2 (b* (((mv pow-2 seed) (signed-power-of-two-enum-seed 1 65 seed))
17 ((mv constant+1 seed) (switch-nat-safe-seed 3 seed)))
18 (mv (+ pow-2 (1- constant+1)) seed)))
19 (3 (mv -1 seed))
20 (4 (mv 0 seed))
21 (t (mv 1 seed)))))
22
23 (defun python-int-enum (n)
24 (declare (xargs :mode :program))
25 (b* (((mv x &) (python-int-enum/acc 0 n)))
26 x))

Listing 6: The integer enumerator.

1 (defnatrange u8 (expt 2 8)) ;; alternatively, (defdata u8 (range integer (0 <= _ < (expt 2 8))))
2 (defdata py-bytes (listof u8) :do-not-alias t)

Listing 7: The defdata of Python’s bytes type.

5.3 Floats

Python, like many other programming languages, has a float type, which represents a 64-bit double-
precision IEEE floating-point number. Although ACL2s does not have a built-in float type, it supports
arbitrary precision rational numbers. We observe that all values a floating-point number can take are
rational numbers, except for the special values of -inf, inf, and nan. Therefore, we represent the
Python floating-point type as a union between the ACL2s rationals and ACL2s representations of the
special floating-point values.

In order to define a floating-point type that is representative of Python’s float type, we define a
custom enumerator that produces rational numbers in predefined interesting categories, as well as the
aforementioned special case values. We use the same P+

2 /P−2 /P±2 notation from the previous integer
enumerator definition. There is bias towards generating "edge case" values that may be likely to trigger
interesting behavior. Table 3 contains the cases of the enumerator. Note that the terms "normal" and
"subnormal" are used. A "normal" floating-point number is one that has no leading zeros in its mantissa.
A "subnormal" floating-point number is one that has one or more leading zeros in its mantissa.

S. Xifaras, P. Manolios, A. T. Walter, W. Robertson 135

Description % Set

ASCII strings 50 C104(ASCII)

Emoji strings 2 C104(Emoji)

Greek-letter strings 2 C104(Gr)

Mathematical symbols 2 C104(MathSym)

Latin diacritics 2 C104(LtnDiac)

Compound emojis 2 C104(CmpEmoji)

Mixed strings 40 C104(ASCII∪Emoji∪Gr∪MathSym∪LtnDiac∪CmpEmoji)

Table 2: Custom string enumerator cases.

6 Usage

The functionality of this embedding is exposed through a Common Lisp API. In this section, we cover
usage examples of several of these API calls. Available functions include a setter for the random seed,
the add-parametric-type and add-nonparametric-type functions for extending the type system,
and the generate-examples function for retrieving examples.

1 (include-book "top") ;; load the embedding's ACL2s book
2 :q ;; quit into raw lisp
3 (load "api.lsp") ;; Load the backend module, which contains the API
4 (in-package :acl2s-python-types) ;; "acl2s-python-types" is the name of the API package
5
6 (defvar *enum-random-state*) ;; create variable to hold random state
7 (setf *enum-random-state* (make-cl-seed 1)) ;; Set seed
8
9 ;; Generate 100 examples of floats

10 (generate-examples "float" 100 *enum-random-state*)
11
12 ;; Register a union between integers, floats, and strings called intfloatstr
13 (register-union "intfloatstr" '("int" "float" "str"))
14
15 ;; Generate 100 examples of intfloatstr
16 (generate-examples "intfloatstr" 100 *enum-random-state*)

Listing 8: Example of API usage.

Before any API calls can be used, the environment must be initialized properly. Lines 1-7 of Listing 8
contain setup code that is needed to import the ACL2s book, exit into the Common Lisp environment,
load the Common Lisp API module (api.lsp), then initialize the random state. In the code listing, the
working directory is assumed to be the root of the embedding implementation’s source code.

Now that the environment is initialized, examples of types can be generated. Line 10 of Listing 8
contains a call to generate-examples that generates 100 examples of Python floating-point numbers. If
you were to run this code, it would produce an S-expression containing rational numbers and occasionally

136 An Enumerative Embedding of the Python Type System in ACL2s

Description % Set

Rational numbers 76
{

n/k | n,k generated using
the integer enumerator

}
Powers of 2 with small-magnitude
exponents 5 UnionAll

(
{{a,a−1,a+1} | a ∈ P±2 (−64,64)}

)
Powers of 2 with large-magnitude
exponents 5 UnionAll

(
{{a,a−1,a+1} |a ∈ P±2 (65,1024)∪

P±2 (−1024,−65)}

)

Min and max normal 32-bit floats 3


2−126,2−126 +1,2−126−1,

2127(2−23−2),2127(2−23−2)−1,

2127(2−23−2)+1


Min and max normal 64-bit floats,
with off by one 3


2−1022,2−1022−1,2−1022 +1,

21023(2−52−2),21023(2−52−2)−1,

21023(2−52−2)+1


Max integer representable as a 32 or
64-bit float 2 {224,−224,253,−253}

Min and max subnormal 32 and 64-
bit floats 2


2−149,−2−149,2−126(1−2−23),

−2−126(1−2−23),2−1074,−2−1074,

2−1022(1−2−52),−2−1022(1−2−52)


Not-a-number 1 {nan}

Positive infinity 1 {inf}

Negative infinity 1 {-inf}

Negative zero 1 {−0}

Table 3: Custom floating-point number enumerator cases.

data structures that encode special float values in Python such as nan. These values can be deserialized
into Python values, but the procedure for this is beyond the scope of this paper.

Union types can be admitted to the embedding via the register-union API. Line 13 of Listing 8
contains an example of embedding a union of Python’s integer, floating-point, and string types. 100
examples of this union type are then generated in the subsequent expression (line 16). The equivalent
Python type annotations for this union are int | float | str and Union[int, float, str].

7 Evaluation

With this embedding, our hope is to pave the way to formal reasoning about Python’s types and to enable
fuzzing and property-based testing of Python code. For our work to be suitable for these use cases,
the examples of types that the embedding generates must be representative of values that actual Python
code interacting with those types would expect. To verify that our embedding satisfies this criterion,
we perform an evaluation of code coverage in four open source repositories: mypy [7], mindsdb [6],
black [5], and manticore [4]. These repositories were chosen because they were noted as having a high

S. Xifaras, P. Manolios, A. T. Walter, W. Robertson 137

type annotation density in the type annotation study of Di Grazia and Pradel [16]. Our focal evaluation
goal is to verify that we cover code that we expect to cover, given that we only have knowledge of
the types of function signatures. Importantly, we expect not to cover code that has external file system
dependencies, or code that has complex conditionals that block execution paths.

7.1 Setup

To prepare the repositories for fuzzing using the enumerative data types in our embedding, we extract
type information from each codebase, and iteratively extend the embedding to embed as much type
information in the codebase as possible with respect to the current limitations of our implementation.
Recall that this procedure is given in Algorithm 1 and explained in Section 4. Further details of this
information extraction are given in Xifaras’s previous work [52].

Algorithm 2 Function Signature Extraction
Input: Type set S; set of function signatures in codebase F
Output: Set of fuzzable functions G

1: G← /0
2: for each f in F do
3: if types(f)⊆ S then
4: G← G∪{ f}
5: end if
6: end for
7: return G

After type registration is completed, function signature extraction can take place. The definition for
this procedure is given in Algorithm 2. It iterates over all functions in the target codebase, and adds
functions for which all types in the signature are present in the set of recognized types S. The helper
function types is again used to extract this set from each signature.

The output of the function signature extraction step is a set of appropriate functions. In summary, a
function is appropriate if its signature is fully annotated and every type that appears in the signature is
embedded in ACL2s. These functions are then fuzzed in the manner described in the following subsec-
tion.

7.2 Experiment Design

After performing the previously described setup, we perform a small fuzz testing experiment on the set of
appropriate functions with the intent of gathering code coverage information. We use the coverage.py [8]
library to measure coverage. By default, this library measures line coverage (although it does not count
whitespace lines, and it counts statements that wrap onto multiple lines as a single line).

We perform five independent trials, following evaluation guidance from Klees et al. [23]. In each
trial, we fuzz each appropriate function using a stream of examples generated by the embedding’s enu-
merators for 440 seconds. During fuzzing, the input-output samples are collected and stored, and "re-
played" after fuzzing is complete to obtain code coverage.

7.3 Results

To provide insight into the coverage profile as the fuzz testing was taking place, we present coverage
over time for the four repositories, averaged across the five independent trials. Figure 1 contains the

138 An Enumerative Embedding of the Python Type System in ACL2s

coverage results. Code coverage for a fuzzing trial in a repository is measured as the percentage of
covered statements in the union of the sets of statements in the bodies of that repository’s appropriate
functions. The solid lines presented in Figure 1 represent the average of this coverage. The dashed and
dotted lines above and below each solid indicate 95% confidence intervals for coverage. Note that the
confidence interval lines are still being rendered for mindsdb and manticore, but they visually overlap
with the solid average line.

Figure 1: Results of coverage evaluation.

Coverage is generally obtained very quickly. Note also that mypy and black seem to have longer
"knees" on their curves than mindsdb and manticore. An explanation for this is that, as shown in Table
4, the former repositories have significantly higher numbers of appropriate functions than the latter. This
might introduce more variability into the results for the former repositories. Code coverage is also rather
good. It ranges from about 68% to greater than 80%. Importantly, this code coverage is obtained without
knowledge of the bodies of these functions, only their type signatures.

Repository Total Functions Annotated Functions Appropriate Functions

mypy 1028 1028 132
mindsdb 400 55 5
black 248 248 35
manticore 211 26 5

Table 4: Function breakdown by repository.

Table 4 presents the breakdown of function totals across the four repositories studied. Importantly,
a "function" in this context is a top-level function defined in Python. We do not currently consider
functions that are defined as methods of classes. These are not counted in the totals, and they are not
eligible to be appropriate functions. Python also supports the definition of nested functions. Functions
that are nested within other functions are not counted in the total number of functions and are not eligible
to be appropriate functions.

Although we obtained good coverage overall, there were certain function bodies for which we
achieved lower coverage. Broadly, the reasons for lower coverage that we have observed can be bucketed
into 1) overly broad type annotations that do not represent the data the function is expecting, 2) external

S. Xifaras, P. Manolios, A. T. Walter, W. Robertson 139

dependencies that the function has on either the file system or global program state, and 3) complex
branch conditions that are hard to satisfy.

Figure 2 contains the coverage.py report output for one of the appropriate functions in mypy that was
fuzzed, infer_method_ret_type. The low coverage here is because of the complex branch condition,
which is checking whether the given string starts and ends with two underscore characters.

Figure 2: Complex string condition that is difficult to pass when the input can be any string.

Figure 3 shows an example of low coverage from the black repository which is not getting fully
covered due to an unmet file system dependency. In this case, the argument to the function, path_-
config, represents a path to a valid TOML file. It is highly unlikely to spontaneously generate a valid
file path, and we do not intentionally set up TOML files in a test bed for fuzzing. Therefore, execution
results in an exception and the remainder of the function is not covered.

Figure 3: Unmet file system dependency causing function call to fail.

Figure 4a contains an example of low code coverage from mindsdb. This example represents a
deficiency in the parameter type annotation of the function. The function expects that ’tree’ and
’pointer’ are both present as keys in the given dictionary, but the type annotation broadly specifies
a dictionary with keys and values of any type. A KeyError exception is thrown that interrupts execution.

Finally, Figure 4b shows an example where we obtain full coverage of the function body. In this
case, the enumerator for the keys argument, which is a list of strings, produces values that cover the
three main branches in the function: keys having length 0, 1, or more than 1.

8 Discussion and Future Work

In this paper, we introduce an enumerative embedding of the Python type system in ACL2s. In our
estimation, the principal application of the embedding, because it is enumerative, is fuzzing. Fuzzing

140 An Enumerative Embedding of the Python Type System in ACL2s

(a) Dictionary lookup failed due to implicit dictio-
nary structure.

(b) Function with no external dependencies and
simple conditionals is fully covered.

Figure 4: Additional code coverage examples.

1 def create_decimal(whole_part: int, decimal_part: float) -> float:
2 """Create a decimal number from the given whole part and decimal part"""
3 return float(str(whole_part) + str(decimal_part).lstrip('0'))
4
5 def test_create_decimal_no_exception(x: int, y: float) -> bool:
6 """Property-based test to ensure create_decimal doesn't throw (obviously, this fails)"""
7 try:
8 create_decimal(x, y)
9 except:

10 return False
11 return True

Listing 9: Example of a property-based test that could be serviced by the enumerative embedding.

requires high-quality inputs to be successful, and the customizability of enumerators enables users to
create representative examples of their data [52].

In light of its use as the foundation for fuzzing, we validated in our evaluation (Section 7) that the
inputs generated by our custom enumerators cover code effectively in functions whose type signatures
are embedded. However, we also found that code coverage is limited by type annotations that are too
broad, external dependencies on program or system state, and complex branch conditions. These can be
addressed in future work in the following ways:

1. Overly broad annotations: Analyze the errors that are raised when sending inputs into functions,
or send in mock objects that are instrumented to track how they are used, to constrain the type
definitions.

2. External dependencies: Implement mocks of global program state and the file system that the
code being tested can interact with.

3. Complex branch conditions: Extract branch conditions, embed them in ACL2s, and use ACL2s
to produce examples that satisfy and do not satisfy them.

A threat to the validity of these results is that the latest source code for the custom enumerators is
different from the enumerators that were used to collect this data, but the adjustments are minor enough
that we do not anticipate significant effects on the results.

The validity of the results and the embedding itself are also limited by the set of supported types. A
core set of types has been implemented, but there are many types in Python’s typing module, such as

S. Xifaras, P. Manolios, A. T. Walter, W. Robertson 141

Sequence and Iterable, that are used often in Python code. In particular, function types are impor-
tant because functions are first-class objects in Python. They are denoted in type annotations using the
Callable annotation in the typing module. This embedding becomes significantly more usable on the
average repository when these types are embedded. This is a top priority for future work.

Given its suitability for fuzzing, this embedding further enables property-based testing for typed
properties written as Python functions. For instance, Listing 9 specifies the property "create_decimal()
does not throw an exception." Examples for Python integers and floats generated by enumerators can be
streamed as inputs to test_create_decimal_no_exception, and if this function returns False, the
property is violated. This testing methodology represents a practical compromise between unit testing,
where fixed scenarios with strong assumptions are tested, and formal verification. Property-based testing
libraries exist for Python [30, 19], and we look forward to evaluating opportunities for integration and
collaboration in future work.

Another compelling application for this embedding is type checking. Once the full type system
semantics are embedded and additional information about the code such as basic control flow skeletons
is extracted, a theorem-prover-based type checker could be built which may have better soundness and
completeness properties than current solutions. We leave this as another exciting direction for future
work.

9 Conclusion

As Python continues to grow in popularity, the ability to test applications written in it grows in im-
portance. Meanwhile, the growing prevalence of developer-added type annotations in Python renders
automated analyses more tractable [16]. In this paper, we enable tool developers to leverage this situa-
tion with an embedding of the Python type system in ACL2s. This embedding is enumerative, meaning
that examples of types can be generated easily. This enables dynamic testing of Python code, which is
useful in the absence of a formal model of Python’s complex semantics. The embedding is additionally
extensible. We invite the community to extend this embedding with additional types and typing con-
structs. Python’s documentation contains information on what types and typing constructs are available
in the language [37].

Our long-term goal is to create data definitions and enumerators that support the entire type system.
Eventually, this embedding may serve as a foundation for advanced property-based testing and reasoning
in Python, and we hope to advance further toward this vision in future work.

Acknowledgments

We would like to acknowledge the MIT SuperCloud team for granting us access to their high-performance
computing environment on which we ran our experiments [40].

References

[1] pickle — Python object serialization. Available at https://docs.python.org/3/library/pickle.html.

[2] (2015): pytype. Available at https://github.com/google/pytype.

[3] (2022): The top programming languages. Available at https://octoverse.github.com/2022/top-pro
gramming-languages.

https://docs.python.org/3/library/pickle.html
https://github.com/google/pytype
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages

142 An Enumerative Embedding of the Python Type System in ACL2s

[4] (2023): Manticore. Available at https://github.com/trailofbits/manticore.

[5] (2025): Black: The Uncompromising Code Formatter. Available at https://github.com/psf/black.

[6] (2025): mindsdb. Available at https://github.com/mindsdb/mindsdb.

[7] (2025): Mypy: Static Typing for Python. Available at https://github.com/python/mypy.

[8] Ned Batchelder (2023): Coverage.py. Available at https://coverage.readthedocs.io/en/7.1.0/.

[9] Harsh Chamarthi, Peter C. Dillinger, Panagiotis Manolios & Daron Vroon (2011): The "ACL2" Sedan The-
orem Proving System. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
doi:10.1007/978-3-642-19835-9_27.

[10] Harsh Raju Chamarthi (2016): Interactive Non-theorem Disproving. Ph.D. thesis, Northeastern University,
doi:10.17760/D20467205.

[11] Harsh Raju Chamarthi, Peter C. Dillinger, Matt Kaufmann & Panagiotis Manolios (2011): Integrating
Testing and Interactive Theorem Proving. In David S. Hardin & Julien Schmaltz, editors: Proceedings
10th International Workshop on the ACL2 Theorem Prover and its Applications, EPTCS 70, pp. 4–19,
doi:10.4204/EPTCS.70.1.

[12] Harsh Raju Chamarthi, Peter C. Dillinger & Panagiotis Manolios (2014): Data Definitions in the ACL2
Sedan. In: Proceedings Twelfth International Workshop on the ACL2 Theorem Prover and its Applications,
doi:10.4204/EPTCS.152.3.

[13] Harsh Raju Chamarthi & Panagiotis Manolios (2011): Automated specification analysis using an interactive
theorem prover. In Per Bjesse & Anna Slobodová, editors: International Conference on Formal Methods in
Computer-Aided Design, FMCAD ’11, FMCAD Inc., pp. 46–53. Available at https://dl.acm.org/doi
/10.5555/2157654.2157665.

[14] Anna van Deusen (2023): Python Popularity: The Rise of a Global Programming Language. Available
at https://flatironschool.com/blog/python-popularity-the-rise-of-a-global-programming
-language/.

[15] Peter C. Dillinger, Panagiotis Manolios, Daron Vroon & J. Strother Moore (2007): ACL2s: “The ACL2
Sedan”. In: Proceedings of the 7th Workshop on User Interfaces for Theorem Provers (UITP 2006), Elec-
tronic Notes in Theoretical Computer Science, doi:10.1016/j.entcs.2006.09.018.

[16] Luca Di Grazia & Michael Pradel (2022): The evolution of type annotations in python: an empirical study. In
Abhik Roychoudhury, Cristian Cadar & Miryung Kim, editors: Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2022, Singapore, Singapore, November 14-18, 2022, ACM, pp. 209–220, doi:10.1145/3540250.3549114.

[17] Stefan Hanenberg, Sebastian Kleinschmager, Romain Robbes, Éric Tanter & Andreas Stefik (2014): An
empirical study on the impact of static typing on software maintainability. Empirical Software Engineering
19(5), pp. 1335–1382, doi:10.1007/s10664-013-9289-1.

[18] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke & Travis E. Oliphant (2020): Array programming with NumPy. Nature 585(7825), pp.
357–362, doi:10.1038/s41586-020-2649-2.

[19] Zac Hatfield-Dodds (2022): HypoFuzz. Available at https://hypofuzz.com/.

[20] Matt Kaufmann, Panagiotis Manolios & J Strother Moore (2000): Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, doi:10.1007/978-1-4615-4449-4.

[21] Matt Kaufmann, Panagiotis Manolios & J Strother Moore (2000): Computer-Aided Reasoning: Case Studies.
Kluwer Academic Publishers, doi:10.1007/978-1-4757-3188-0.

[22] Matt Kaufmann & J Strother Moore (2025): ACL2 homepage. Available at https://www.cs.utexas.edu/
users/moore/acl2/.

https://github.com/trailofbits/manticore
https://github.com/psf/black
https://github.com/mindsdb/mindsdb
https://github.com/python/mypy
https://coverage.readthedocs.io/en/7.1.0/
https://doi.org/10.1007/978-3-642-19835-9_27
https://doi.org/10.17760/D20467205
https://doi.org/10.4204/EPTCS.70.1
https://doi.org/10.4204/EPTCS.152.3
https://dl.acm.org/doi/10.5555/2157654.2157665
https://dl.acm.org/doi/10.5555/2157654.2157665
https://flatironschool.com/blog/python-popularity-the-rise-of-a-global-programming-language/
https://flatironschool.com/blog/python-popularity-the-rise-of-a-global-programming-language/
https://doi.org/10.1016/j.entcs.2006.09.018
https://doi.org/10.1145/3540250.3549114
https://doi.org/10.1007/s10664-013-9289-1
https://doi.org/10.1038/s41586-020-2649-2
https://hypofuzz.com/
https://doi.org/10.1007/978-1-4615-4449-4
https://doi.org/10.1007/978-1-4757-3188-0
https://www.cs.utexas.edu/users/moore/acl2/
https://www.cs.utexas.edu/users/moore/acl2/

S. Xifaras, P. Manolios, A. T. Walter, W. Robertson 143

[23] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei & Michael Hicks (2018): Evaluating Fuzz Testing. In
David Lie, Mohammad Mannan, Michael Backes & XiaoFeng Wang, editors: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, ACM, pp. 2123–2138, doi:10.1145/3243734.3243804.

[24] Maximilian A. Köhl (2021): An Executable Structural Operational Formal Semantics for Python.
arXiv:2109.03139.

[25] Ankit Kumar & Panagiotis Manolios (2021): Mathematical Programming Modulo Strings. In: Formal Meth-
ods in Computer Aided Design, FMCAD 2021, New Haven, CT, USA, October 19-22, 2021, IEEE, pp.
261–270, doi:10.34727/2021/ISBN.978-3-85448-046-4_36.

[26] Jukka Lehtosalo (2019): Our journey to type checking 4 million lines of Python. Available at https://drop
box.tech/application/our-journey-to-type-checking-4-million-lines-of-python.

[27] Jukka Lehtosalo (2024): Mypy Documentation. Available at https://mypy.readthedocs.io/_/downlo
ads/en/stable/pdf/.

[28] Ivan Levkivskyi, Jukka Lehtosalo & Łukasz Langa (2017): PEP 544 - Protocols: Structural Subtyping (static
duck typing). Available at https://peps.python.org/pep-0544/.

[29] Wen Li, Haoran Yang, Xiapu Luo, Long Cheng & Haipeng Cai (2023): PyRTFuzz: Detecting Bugs in
Python Runtimes via Two-Level Collaborative Fuzzing. In Weizhi Meng, Christian Damsgaard Jensen, Cas
Cremers & Engin Kirda, editors: Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023, ACM, pp. 1645–
1659, doi:10.1145/3576915.3623166.

[30] David MacIver & Zac Hatfield-Dodds (2019): Hypothesis: A new approach to property-based testing. J.
Open Source Softw. 4(43), p. 1891, doi:10.21105/JOSS.01891.

[31] Panagiotis Manolios & Daron Vroon (2003): Algorithms for Ordinal Arithmetic. In Franz Baader, editor:
19th International Conference on Automated Deduction (CADE), Lecture Notes in Computer Science 2741,
Springer, pp. 243–257, doi:10.1007/978-3-540-45085-6_19.

[32] Panagiotis Manolios & Daron Vroon (2004): Integrating Reasoning About Ordinal Arithmetic into ACL2.
In Alan J. Hu & Andrew K. Martin, editors: 5th International Conference on Formal Methods in Computer-
Aided Design (FMCAD), Lecture Notes in Computer Science 3312, Springer, pp. 82–97, doi:10.1007/978-
3-540-30494-4_7.

[33] Panagiotis Manolios & Daron Vroon (2005): Ordinal Arithmetic: Algorithms and Mechanization. Journal of
Automated Reasoning 34(4), pp. 387–423, doi:10.1007/s10817-005-9023-9.

[34] Panagiotis Manolios & Daron Vroon (2006): Termination Analysis with Calling Context Graphs. In Thomas
Ball & Robert B. Jones, editors: Computer Aided Verification, Lecture Notes in Computer Science 4144,
Springer, pp. 401–414, doi:10.1007/11817963_36.

[35] Joe Gibbs Politz, Alejandro Martinez, Mae Milano, Sumner Warren, Daniel Patterson, Junsong Li, Anand
Chitipothu & Shriram Krishnamurthi (2013): Python: the full monty. In Antony L. Hosking, Patrick Th.
Eugster & Cristina V. Lopes, editors: Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013, ACM, pp. 217–232, doi:10.1145/2509136.2509536.

[36] Python Software Foundation (2025): Built-in Types. Available at https://docs.python.org/3/librar
y/stdtypes.html.

[37] Python Software Foundation (2025): typing – Support for type hints. Available at https://docs.python.
org/3/library/typing.html.

[38] Ingkarat Rak-amnouykit, Daniel McCrevan, Ana L. Milanova, Martin Hirzel & Julian Dolby (2020): Python
3 types in the wild: a tale of two type systems. In Matthew Flat, editor: DLS 2020: Proceedings of the
16th ACM SIGPLAN International Symposium on Dynamic Languages, Virtual Event, USA, November 17,
2020, ACM, pp. 57–70, doi:10.1145/3426422.3426981.

https://doi.org/10.1145/3243734.3243804
https://arxiv.org/abs/2109.03139
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_36
https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://mypy.readthedocs.io/_/downloads/en/stable/pdf/
https://mypy.readthedocs.io/_/downloads/en/stable/pdf/
https://peps.python.org/pep-0544/
https://doi.org/10.1145/3576915.3623166
https://doi.org/10.21105/JOSS.01891
https://doi.org/10.1007/978-3-540-45085-6_19
https://doi.org/10.1007/978-3-540-30494-4_7
https://doi.org/10.1007/978-3-540-30494-4_7
https://doi.org/10.1007/s10817-005-9023-9
https://doi.org/10.1007/11817963_36
https://doi.org/10.1145/2509136.2509536
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/typing.html
https://doi.org/10.1145/3426422.3426981

144 An Enumerative Embedding of the Python Type System in ACL2s

[39] James Franklin Ranson (2008): A semantics of Python in Isabelle/HOL. Faculty of Graduate Studies and
Research, University of Regina.

[40] Albert Reuther, Jeremy Kepner, Chansup Byun, Siddharth Samsi, William Arcand, David Bestor, Bill Berg-
eron, Vijay Gadepally, Michael Houle, Matthew Hubbell, Michael Jones, Anna Klein, Lauren Milechin, Julia
Mullen, Andrew Prout, Antonio Rosa, Charles Yee & Peter Michaleas (2018): Interactive supercomputing on
40,000 cores for machine learning and data analysis. In: 2018 IEEE High Performance extreme Computing
Conference (HPEC), IEEE, pp. 1–6, doi:10.1109/HPEC.2018.8547629.

[41] Guido van Rossum, Jukka Lehtosalo & Łukasz Langa (2014): PEP 484 - Type Hints. Available at https:
//peps.python.org/pep-0484/.

[42] Guido van Rossum & Ivan Levkivskyi (2014): PEP 483 - The Theory of Type Hints. Available at https:
//peps.python.org/pep-0483/.

[43] Ori Roth (2022): Python Type Hints are Turing Complete. CoRR abs/2208.14755,
doi:10.48550/ARXIV.2208.14755. arXiv:2208.14755.

[44] Gideon Joachim Smeding (2009): An executable operational semantics for Python. Universiteit Utrecht.
[45] Evan Sultanik (2021): Never a dill moment: Exploiting machine learning pickle files. Available

at https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-lea
rning-pickle-files/.

[46] the mypy project (2014): mypy. Available at https://mypy-lang.org/.
[47] Andrew T. Walter, Benjamin Boskin, Seth Cooper & Panagiotis Manolios (2019): Gamification of Loop-

Invariant Discovery from Code. In Edith Law & Jennifer Wortman Vaughan, editors: Proceedings of the
Seventh AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2019, Stevenson, WA,
USA, October 28-30, 2019, AAAI Press, pp. 188–196, doi:10.1609/HCOMP.V7I1.5277.

[48] Andrew T. Walter, David A. Greve & Panagiotis Manolios (2022): Enumerative Data Types with Constraints.
In Alberto Griggio & Neha Rungta, editors: 22nd Formal Methods in Computer-Aided Design, FMCAD
2022, Trento, Italy, October 17-21, 2022, IEEE, pp. 189–198, doi:10.34727/2022/ISBN.978-3-85448-053-
2_25.

[49] Andrew T. Walter, Ankit Kumar & Panagiotis Manolios (2023): Proving Calculational Proofs Correct. In
Alessandro Coglio & Sol Swords, editors: Proceedings of the 18th International Workshop on the ACL2
Theorem Prover and Its Applications, EPTCS 393, pp. 133–150, doi:10.4204/EPTCS.393.11.

[50] Andrew T. Walter & Panagiotis Manolios (2022): ACL2s Systems Programming. In: Proceedings of
the Seventeenth International Workshop on the ACL2 Theorem Prover and its Applications, EPTCS,
doi:10.4204/EPTCS.359.12.

[51] Andrew T. Walter & Panagiotis Manolios (2025): An ACL2s Interface to Z3. Electronic Proceedings in
Theoretical Computer Science 423, Open Publishing Association, pp. 104–123, doi:10.4204/EPTCS.423.10.

[52] Samuel Xifaras (2024): Leveraging Type Annotations for Effective Fuzzing of Python Programs. Master’s
thesis, Northeastern University, doi:10.17760/D20705205.

[53] Hongyu Zhai, Casey Casalnuovo & Prem Devanbu (2019): Test Coverage in Python Programs. In: 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), IEEE, Montreal, QC,
Canada, pp. 116–120, doi:10.1109/MSR.2019.00027.

https://doi.org/10.1109/HPEC.2018.8547629
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0483/
https://doi.org/10.48550/ARXIV.2208.14755
https://arxiv.org/abs/2208.14755
https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/
https://blog.trailofbits.com/2021/03/15/never-a-dill-moment-exploiting-machine-learning-pickle-files/
https://mypy-lang.org/
https://doi.org/10.1609/HCOMP.V7I1.5277
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_25
https://doi.org/10.34727/2022/ISBN.978-3-85448-053-2_25
https://doi.org/10.4204/EPTCS.393.11
https://doi.org/10.4204/EPTCS.359.12
https://doi.org/10.4204/EPTCS.423.10
https://doi.org/10.17760/D20705205
https://doi.org/10.1109/MSR.2019.00027

	Introduction
	Commutative Rings
	Matrices
	Transpose
	Multiplication

	Determinants
	Properties
	Uniqueness
	Multiplicativity

	Cofactors
	Cofactor Expansion
	Classical Adjoint

	Introduction
	Row Reduction
	Reduced Row-Echelon Form
	Conversion to Reduced Row-Echelon Form
	Row Reduction as Matrix Multiplication
	Invertibility

	Simultaneous Systems of Linear equations
	Uniquely Solvable Case
	General Solvable Case

	Future Work
	1 Introduction
	2 The Informal Proof
	2.1 A Theory of Chains
	2.2 Definition and Proof of the Bijection

	3 ACL2 Formalization
	3.1 Setup
	3.2 Function Inverses
	3.3 The Theory of Chains
	3.4 The Bijective Witness

	4 Conclusion
	Introduction
	Algorithm
	Observations and Related Work
	Introduction
	A Toy Implementation Illustrating FP Support
	Background and Acknowledgments
	Overview
	Performance
	Implementation Notes
	Introduction
	Background on Yul
	Yul Formalization
	Abstract Syntax
	Concrete Syntax
	Static Semantics
	Dynamic Semantics
	Static Soundness

	Yul Transformations
	Approach
	Definitions
	Restrictions
	Proofs

	Related Work
	Future Work
	Conclusion
	1 Introduction
	2 Model Descriptions
	2.1 Broadcastnet
	2.2 Floodnet

	3 Correctness and the Refinement Theorem
	4 Proof Organization
	5 Related Work
	6 Conclusions and Future Work
	Introduction
	Usage
	Short Introduction to Z3 and SMT-LIB2
	Implementation
	The Low-Level Interface
	The High-Level Interface

	Sudoku
	Application: String Solving
	Application: Wi-Fi Fuzzing
	Enumerative Data Types Modulo Theories

	Related Work
	Conclusion and Future Work
	Introduction
	Background and Motivating Example
	Related Work
	Embedding Construction
	Note on Embedding Philosophy

	Custom Enumerators
	Integers
	Strings
	Floats

	Usage
	Evaluation
	Setup
	Experiment Design
	Results

	Discussion and Future Work
	Conclusion

