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Preface

Alessandro Coglio

Kestrel Institute & Aleo Systems, Inc.

coglio@kestrel.edu

Sol Swords

Intel Corp.

sol.swords@intel.com

This volume contains the proceedings of the Eighteenth International Workshop on the ACL2 The-

orem Prover and Its Applications (ACL2-2023), a two-day workshop held at the University of Texas at

Austin and online, on November 13-14. ACL2 workshops occur at approximately 18-month intervals,

and they provide a major technical forum for users of the ACL2 theorem proving system to present

research related to the ACL2 theorem prover and its applications.

ACL2 is an industrial-strength automated reasoning system, the latest in the Boyer-Moore family of

theorem provers. The 2005 ACM Software System Award was awarded to Boyer, Kaufmann, and Moore

for their work in ACL2 and the other theorem provers in the Boyer-Moore family.

The proceedings of ACL2-2023 include ten long papers and three extended abstracts. Each submis-

sion received three reviews. The workshop also included several ”rump session” talks — short unpub-

lished presentations that discussed ongoing research — as well as two invited talks from Jim Grundy of

Amazon Web Services and Eric Smith of Kestrel Institute.

As program co-chairs we are grateful for the other leaders of this workshop: the organizing chairs,

Matt Kaufmann and Mayank Manjrekar; the arrangements chair, Rob Sumners; and the registration

chair, David Rager. We appreciate the great community of researchers who continue to develop exciting

projects and tools using ACL2, as well as contributing papers to the workshop. We also wish to thank

the program committee for helping the editorial process proceed very smoothly.

This workshop would not have been possible without the support of a large number of people. We

thank those who authored, submitted, and presented papers. We also wish to thank the Program Com-

mittee for their diligence in reviewing the papers in a timely manner and for further discussions after the

reviews. We are very grateful to the invited speakers for agreeing to provide their unique and extensive

perspectives to the workshop participants.

Alessandro Coglio and Sol Swords, program chairs

November 2023

ACL2 2023 Program Committee:

• Matt Kaufmann, The University of Texas at Austin (retired)

• David Greve, Collins Aerospace

• Anna Slobodova, Intel Corp.

• Panagiotis Manolios, Northeastern University

• David Russinoff, Arm Inc.

• Mayank Manjrekar, Arm Inc.

• Cuong Chau, Intel Corp.

• Freek Verbeek, Open University of The Netherlands
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• Eric McCarthy, Kestrel Institute
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Classical LU Decomposition in ACL2

Carl Kwan
Department of Computer Science
The University of Texas at Austin

Austin, TX, USA
carlkwan@cs.utexas.edu

We present an ACL2 formalization and verification of a classical LU decomposition algorithm. LU
decomposition plays a crucial role in numerical computations, linear algebra algorithms, and ap-
plications that involve matrix operations or solving systems of linear equations. However, theorem
proving with matrices can be challenging because typical implementations of matrix algorithms often
involve the heavy use of indexing, among other issues. Our approach to formalizing LU decompo-
sition in ACL2 adopts a methodical and constructive derivation process that is more amenable to
formal verification. We also provide an ACL2 implementation for Gaussian elimination as one of
several interesting consequences of our formalization.

The broad application of LU decomposition to linear algebra, and thus science as a whole, mo-
tivates our formalization in ACL2. We are interested in building reliable numerical linear algebra
software for use in the design of critical systems. To our knowledge, this is the first formalization of
an LU decomposition algorithm.

Linear algebra algorithms are used widely in scientific computing, data analysis, policy and decision
making, the design of reliable infrastructure, etc. Their broad applications to critical systems make linear
algebra methods a prime target for formal verification. However, computational linear algebra algorithms
have seen few theorem prover formalizations. On one hand, these algorithms are often expressed in terms
of operations on the indexed elements of a matrix. The use of indexing can obscure the design goals of
the matrix algorithm, reduce human readability, and make reasoning for theorem provers difficult, among
other drawbacks. On the other hand, many theorem provers tend to have limited support for the efficient
computation of operations involving numeric values. This limits the utility of formalizing particularly
computational linear algebra methods in such theorem provers.

Targeting the need for reliable but efficient linear algebra computation, we present a formalization
of an LU decomposition algorithm and verify it in ACL2. LU decomposition, also known as LU factor-
ization, is a fundamental linear algebra algorithm that decomposes a given matrix into upper and lower
triangular factors. It is a crucial step in methods that aim to efficiently solve systems of linear equations,
invert matrices, and compute matrix determinants.

As part of our formalization, we also verify the derivation of the LU decomposition algorithm. The
algorithm we verify is sometimes known as “classical” or “right-looking”, and many mathematical texts
introduce it as a sequence of Gauss transformation multiplications [1, 2, 8, 9]. Since we are using
ACL2, we need to translate into recursion and induction. One typical derivation partitions a given matrix
into a form that suggests recursing along the principal submatrices. However, algorithms following this
derivation tend to remain heavily reliant on loops or indexing to express matrix operations. We take the
more ACL2 natural approach.

An LU decomposition of a matrix A are lower and upper triangular matrices L and U , respectively,
such that A = LU . We also make the requirement that L is unit lower triangular, i.e. L has 1s on the
diagonal. In the interest of memory optimization, this extra requirement makes it possible to overwrite
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2 Classical LU Decomposition in ACL2

the upper part of A with the upper part of U and the strictly lower part of A with the strictly lower part of
L during the algorithm. Partition A = LU as follows:(

α11 aT
12

a21 A22

)
= A = LU =

(
1
`21 L22

)(
υ11 uT

12
U22

)
. (1)

Regarding notation: lower-case Greek letters are field scalars; lower-case Latin letters are vectors; upper-
case Latin letters are matrices; and assume that any posed variables are “conformal”, e.g. if A is m× n,
then a21 is (m−1)×1 and aT

12 is 1× (n−1). Moving forward, we will drop the “bars” in partitions for
simplicity. Instead of looping through the rows or columns of A, the partition suggests we recurse along
the principal submatrices. We want Equation (1) to hold after performing the algorithm, i.e.

α11 = υ11 , a21 = υ11`21 , aT
12 = uT

12 , A22 = `21uT
21 +L22U22 .

Since A is given, uT
12 and υ11 are obvious. Solving for the remaining components of L and U forces

`21 = a21α
−1
11 , (2) L22U22 = A22−a21α

−1
11 aT

12 . (3)

This suggests an algorithm which requires merely updating a21 and A22. Indeed, consider Algorithm 1.
Since the algorithm is recursive, we need to handle a few base cases. If the matrix is empty, then we just
return an empty matrix. In the case that the matrix is a column vector, then Equation (2) indicates we
should return a21α

−1
11 . Similarly, if we are given a row vector, then no updates are necessary. Otherwise,

we can update the components of A suggested by Equations (2) and (3) and proceed with the recursion.
The ACL2 implementation of Algorithm 1 is Program 1. Descriptions of the ACL2 linear algebra

functions used in this paper are in Table 1. We use existing ACL2 primitive matrix operations and
functions in our formalization [3]. However, we also define both new and alternative operations that are
necessary in order to implement and verify the LU decomposition algorithm. In cases where we define
alternative operations, we prove they are equivalent to those already in ACL2. We defer the discussion
of most of these new functions to the future, but those that appear in this paper are out-*, get-U, and
get-L. It is also important to know that get-L fills the diagonal with 1s.

Algorithm 1 Classical LU decomposition

procedure LU(A ∈ Rm×n)

Partition A =
(

α11 aT
12

a21 A22

)
if m = 0 or n = 0 then

return ( )

else if n = 1 then

return
(

α11
a21α

−1
11

)
else if m = 1 then

return A
else

a21 := a21α
−1
11

A22 := A22−a21aT
12

return
(

α11 aT
12

a21 LU(A22)

)

Program 1 ACL2 implementation of Algorithm 1

(define lu ((A matrixp)) ...

(b* (((unless (matrixp A)) (m-empty))

((if (m-emptyp A)) A)

(alph (car (col-car A)))

((if (zerop alph))

(mzero (row-count A)

(col-count A)))

((if (m-emptyp (col-cdr A)))

(row-cons (list alph)

(sm* (/ alph)

(row-cdr A))))

((if (m-emptyp (row-cdr A))) A)

(a21 (col-car (row-cdr A)))

(a12 (row-car (col-cdr A)))

(A22 (col-cdr (row-cdr A)))

(a21 (sv* (/ alph) a21))

(A22 (m+ A22 (sm* -1 (out-* a21 a12)))))

(row-cons (row-car A)

(col-cons a21 (lu A22))))
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With the exception of some extra edge cases, Program 1 directly implements Algorithm 1. In order
for the decomposition to succeed, we require only that α11 6= 0 and L22U22 = A22− a21α

−1
11 aT

12. The
ACL2 theorem for this requirement is Program 2. This requirement is interesting because, given that
α11 is nonsingular, it reduces the condition for a matrix to be LU decomposable into a condition about
a smaller matrix, which is reminiscent of some “induction step”. Indeed, the RHS of Equation (3) is the
Schur complement of α11 in A and is a key tool in statistics, probability, numerical analysis, and matrix
analysis. While mathematical references commonly describe the conditions for the algorithm to succeed
in terms of the leading principal submatrices, the proof that these conditions are sufficient reduces to an
induction step that depends on Equation (3) [8].

In order to avoid writing an ACL2 statement about all the leading principal submatrices of a matrix,
we recurse along the Schur complements, i.e. ensure α11 is nonzero and recurse on S := A22−a21α

−1
11 aT

12.
This recognizes matrices with nonsingular leading principal submatrices. Indeed, consider Program 3.
The function nonsingular-leading-principal-submatrices-p only returns nil on a matrix if it
encounters an α11 that is zero. One way to think about this condition is that if no zeros appear after
k recursive steps, then the k-th leading principal submatrix is nonsingular because its determinant is
nonzero. Instead of reasoning with determinants, which are rarely useful in numerical algorithms [9],
Schur complements provide a more concise ACL2 condition for success and presents opportunites for
further rich ACL2 explorations in numerical linear algebra.

To prove the correctness of the classical LU decomposition for a square matrix, we want to assume
that the matrix has nonsingular leading principal submatrices and induct along their Shur complements.
In ACL2, these are both satisfied by assuming nonsingular-leading-principal-submatrices-p

from Program 3 in the hypothesis. Indeed, as seen in Program 4, including such a hypothesis enables
ACL2 to prove the desired theorem without any user-provided hints. ACL2 automatically inducts ac-
cording to a scheme suggested by nonsingular-leading-principal-submatrices-p, the induc-
tion step for which enables the use of lu-correctness-induction-step from Program 2.

Table 1 ACL2 linear algebra functions
Function Description
matrixp Recognizer for matrices
m-emptyp Recognizer for empty matrices
m-empty Returns an empty matrix
mzero Returns a zero matrix
row-car Returns first row of a matrix
col-car Returns first column of a matrix
row-cdr Remove a matrix’s first row
col-cdr Remove a matrix’s first column
row-cons Append a row to a matrix
col-cons Append a column to a matrix

m+ Matrix addition
m* Matrix multiplication
sm* Scalar-matrix multiplication
sv* Scalar-vector multiplication
out-* Outer product of vectors
get-L Get a matrix’s lower triangular part
get-U Get a matrix’s upper triangular part

Program 2 ACL2 LU “induction step” correctness

(defthm lu-correctness-induction-step

(b* ((alph (car (col-car A)))

(LU (lu A))

(L (get-L LU))

(U (get-U LU))

(a21 (col-car (row-cdr A)))

(a12 (row-car (col-cdr A)))

(A22 (col-cdr (row-cdr A)))

(a21 (sv* (/ alph) a21))

(A22 (m+ A22 (sm* -1 (out-* a21 a12)))))

(implies (and (matrixp A)

(not (m-emptyp (row-cdr A)))

(equal (col-count A)

(row-count A))

(not (zerop alph))

(equal (m* (get-L (lu A22))

(get-U (lu A22)))

A22))

(equal (m* L U) A))) ...)
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Program 3 ACL2 recognizer for matrices with nonsingular leading principal submatrices

(define nonsingular-leading-principal-submatrices-p ((A matrixp))

:measure (and (row-count A) (col-count A))

(b* (((unless (matrixp A)) nil)

((if (m-emptyp A)) t)

(alph (car (col-car A)))

((if (zerop alph)) nil)

((if (or (m-emptyp (row-cdr A))

(m-emptyp (col-cdr A))))

t)

;; Compute S = A22 - out-*(a21/alph,a12)

(a21 (col-car (row-cdr A)))

(a12 (row-car (col-cdr A)))

(A22 (col-cdr (row-cdr A)))

(a21/a (sv* (/ alph) a21))

(S (m+ A22 (sm* -1 (out-* a21/a a12)))))

(nonsingular-leading-principal-submatrices-p S)) ...)

Program 4 ACL2 LU correctness

(defthm lu-correctness

(b* ((LU (lu A))

(L (get-L LU))

(U (get-U LU)))

(implies (and (equal (col-count A) (row-count A))

(nonsingular-leading-principal-submatrices-p A))

(equal (m* L U) A))))

There are many applications to our formalization. One such application is that we can now calculate
the determinant of an LU decomposable matrix A since det(A) = det(L)det(U) = det(U) is simply the
product of the diagonal of U . Another consequence of Algorithm 1 is that the computed U is the row
echelon form of A. In particular, this means that (defun ge (A) (get-U (lu A))) is the ACL2
formalization of Gaussian elimination, which is one step away from an ACL2 formalization of Gauss-
Jordan elimination. Gauss-Jordan can be used to find matrix inverses or even solve systems of linear
equations such as Ax = b.

In practice, it tends to be better to use LU decomposition over forming an inverse. A linear system
Ax = b can be solved by forming L and U , and then solving Ly = b and Ux = y via forwards and
backwards substitution, respectively. This is faster than using Gauss-Jordan to form an inverse [8]. We
have formalized backwards and forwards substitution in ACL2, the discussion for which we defer to the
future; with LU decomposition, they form an ACL2 method for solving systems of linear equations.

Previously, we formalized the Cauchy-Schwarz inequality and other vector-related ideas from linear
algebra and convex optimization [6, 5, 4, 7]. Here we show that our formalization of LU decomposition
in ACL2 leads to a rich selection of research directions. We look forward to formalizing more methods
for solving systems of linear equations. In addition, there are other decompositions (QR, rank-reducing,
spectral, etc.), optimization methods (least-squares, gradient descent, etc.), and matrix analysis ideas
(norms, tensors, etc.) to explore. These directions all serve as important methods in pure and applied
mathematics, science, and engineering, and we expect to formalize verified and efficient computational
linear algebra methods in the future.
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We present an ACL2 formalization of CHERI Concentrate, a practical compression format for capa-

bilities. Capabilities are unforgeable tokens of authority that grant and describe access to a region of

memory; CHERI Concentrate enables the efficient storage and encoding / decoding of capabilities

in real-life reliable hardware. As part of our formalization, we verify the correctness of the encod-

ing and decoding functions, which specify the bounds in memory a program is permitted to access.

These encode / decode functions are complicated and their correctness is not obvious to a human

reader. This along with the use of capabilities in purportedly secure hardware is why formal verifica-

tion is important. To our knowledge, this is the first executable formalization of CHERI Concentrate

in ACL2.

We present a formalization of CHERI-style capabilities in ACL2. CHERI (Capability Hardware En-

hanced RISC Instructions) is a set of architectural features that extends conventional hardware Instruction-

Set Architectures (ISAs) with capabilities that enable fine-grained memory protection and highly scalable

software compartmentalization [7]. Capabilities are hardware descriptions for permissions that can be

used to access data, code, and objects in a controlled and protected manner. Existing ISAs extended with

CHERI-style capabilities include 64-bit MIPS, 32-bit RISC-V, 64-bit RISC-V, and 64-bit Armv8-A [6].

More recently, Arm has shipped a CHERI-enabled Morello prototype processor, SoC, and board [1, 2].

The work we present here is part of an ongoing effort to model CHERI capabilities in ACL2 for y86 and,

eventually, x86 ISAs.

In CHERI systems, any accesses to memory are managed by capabilities. In particular, a capability

will store in memory the upper and lower bounds of a region that a program is permitted to access. The

capabilities that interest us are 128-bit data structures that can be stored in memory or registers. How-

ever, in a 64-bit system, this means that the bounds, which are two 64-bit addresses, are encoded in a

128-bit capability; this is in addition to other information that a capability must describe (e.g. permis-

sions). Storing all pertinent information uncompressed can require 256 bits, which enacts a heavy toll on

memory and quickly saturates a system’s cache and data-paths [6].

CHERI Concentrate is a format that compresses capabilities to 128 bits on 64-bit architectures and

reduces L2 cache misses by 50% to 70% compared to 256-bit capabilities [8]. This format compresses

the bounds to 27 bits compared to 128 bits uncompressed. However, such a reduction in space requires

a complicated encoding algorithm – sufficiently complicated that it is not clear from their definitions

whether the encode / decode functions perform the desired tasks. In fact, initial iterations of the encoding

algorithm were erroneous and required the use of HOL4, a higher-order logic proof assistant, to guide

the development of the compression algorithm. The complexity of CHERI Concentrate warrants the use

of formal methods, but HOL4 has limited support for execution.

In addition to formalizing CHERI capabilities, we verify the correctness of the CHERI Concentrate

encoding and decoding algorithms in ACL2. By performing our formalization in ACL2, we can take

*This work was supported in part by SRI International and the Defense Advanced Research Projects Agency of the United

States Department of Defense.
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advantage of ACL2’s capacity for reasoning and execution efficiency. Moreover, given the size and com-

plexity of the CHERI ISA in general, future CHERI models in ACL2 would rely on our formalization of

CHERI Concentrate every time a capability is called. Indeed, we are currently building an ACL2 model

of the y86-64 ISA with CHERI-style capabilities with the intent of verifying machine code programs

involving capabilities. Since our y86-64 model symbolically simulates the execution of machine code,

our formalization of CHERI Concentrate needs to be executable in order to be useful. Using the ACL2

y86-64 model extended with capabilities in CHERI Concentrate format, we can verify machine code

programs involving capabilities, though this is beyond the scope of this paper and we intend on shar-

ing these results at a later date. To our knowledge, this is the first executable formalization of CHERI

Concentrate in ACL2.

Space limitations allow only a brief description here of 128-bit CHERI capabilities and the CHERI

Concentrate format. For details, an interested reader may refer to the CHERI ISA [6]. One method of

motivating the introduction of CHERI capabilities is to consider them as fat pointers, i.e. a pointer ex-

tended with additional metadata such as bounds and permissions that may restrict the pointer’s behaviour.

In principle, a pointer contains an address that can be dereferenced in order to access a region of memory

indicated by the address. However, in the interest of memory protection, the metadata associated with

a fat pointer may store permissions to restrict how memory may be accessed and bounds to restrict the

region of memory that may be accessed. CHERI design principles further restrict how capabilities may

be constructed and updated, requiring additional metadata not typically found in traditional fat pointers.

We make a distinction between architectural capabilities and capabilities in memory. Architectural

capabilities contain software-accessible fields that are not reflected explicitly by, but can still be inferred

from, a given capability’s in-memory representation. In our model, architectural capabilities contain the

following fields: 1-bit validity tag, 16-bit permissions (perms), 18-bit object type (otype), 64-bit offset,

64-bit base, and 64-bit length. The base is the lower bound of the memory region dereferenceable by a

capability. Adding length to base gives the upper bound (a.k.a. top) of the memory region dereferenceable

by a capability. Adding offset to base gives the address when the capability is used as a pointer.

System constraints necessitate compressing the information provided by an architectural capability

into the format described by CHERI Concentrate, which is then stored in memory. As part of our formal-

ization, we develop and verify ACL2 functions that allow a user to easily convert between architectural

and memory-resident capabilities. The proofs of these conversion functions amount to verifying that

converting from architectural capabilities to memory-resident capabilities and then back to architectural

capabilities recovers the information that was originally in the architectural capabilities, and vice-versa.

A visual representation of memory-resident capabilities in CHERI Concentrate format can be seen in

Figure 1. In the diagram, a is a 64-bit address, p represents 16 bits for the permissions, otype represents

18 bits for the object type, and 27 bits are used to encode bounds relative to the address. The compression

uses a floating-point representation to encode the bounds. Regarding notation for the bounds: B and T

are 14-bit values that form the base and top of a capability’s bounds relative to its address (the top two

bits of T are omited during encoding but deduced from B during decoding); IE is an internal exponent bit

that, when set, indicates the lower three bits of B and T (BE and TE , respectively) represents an exponent

at the expense of three bits of precision; E is a 6-bit exponent that determines the position at which B

and T are inserted into a.

The bulk of our verification efforts is devoted to proving the encoding and decoding functions cor-

rect. As part of the compression process, CHERI Concentrate specifies the algorithms by which the

bounds are encoded into B and T , and how B and T can be decoded. To illustrate the complexity

of these algorithms, consider Listing 1, which is the ACL2 implementation of the decoding algorithm

decode-compression. We omit the similarly complicated function encode-compression for brevity.
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Figure 1: CHERI Concentrate format
063

p’16 otype’18 IE T [11 : 3] TE’3 B[13 : 3] BE’3

a’64

Listing 1: Decoding function in ACL2

(define decode-compression ((c compressionp) (addr (nbp addr *xlen*))) ...

(b* ((IE (nb-ash (+ *mw* *tw*) 1 c))

((mv E TS BL Lcarry Lmsb)

(if (= IE 0)

(vars-small-seg c)

(vars-large-seg c)))

(BLH (+ (nb-ash *tw* (- *mw* *tw*) BL) Lcarry Lmsb))

(TLH (nb-ash 0 (- *mw* *tw*) BLH))

(TL (logior (ash TLH *tw*) TS))

((mv CT CB) (corrections addr TL BL E))

(AT (ash addr (- (+ *mw* E))))

(top (nb-ash 0 (1+ *xlen*) (ash (logior (ash (+ AT CT) *mw*) TL) E)))

(base (nb-ash 0 *xlen* (ash (logior (ash (+ AT CB) *mw*) BL) E)))

(top (if (and (< E 51)

(< 1 (- (nb-ash 63 2 top) (nb-ash 63 1 base))))

(nb-ash 0 *xlen* top)

top)))

(bounds top base)))

The function encode-compression compresses a base b0 and length ℓ0, that together form a top

t0 = b0 + ℓ0, into a format reflected by the portion of Figure 1 that pertains to IE , T , and B. The function

decode-compression reconstructs bounds relative to an address from the compression to obtain a base

b1 and top t1 that may have been subjected to some rounding. Again, the interested reader can find

motivating details in the CHERI ISA and the original CHERI Concentrate paper [6, 8]. The properties

of these functions that we have verified are:

1. b0 ≥ b1 for any b0, t0, and address;

2. b0 −b1 ≤ 2E+3 for any b0, t0, and address;

3. t0 ≤ t1 for any b0, t0, and address;

4. t1 − t0 ≤ 2E+3 for any b0, t0, and address;

5. b0 = b1 when ℓ0 < 212 or when the lower E +3 bits of b0 and t0 are zero;

6. t0 = t1 when ℓ0 < 212 or when the lower E +3 bits of b0 and t0 are zero.

The last two properties state the conditions under which decoding a compression will recover the exact

bounds that were originally encoded, which is important because compression may result in loss of

precision. These last two properties contain stronger conclusions than the other properties and were not

proven in the original CHERI Concentrate paper.

Our approach to proving these properties makes heavy use of the symbolic simulation framework GL

with case-splitting [5, 3]. While discharging these proofs by introducing traditional ACL2 rewrite rules

would of course be feasible, we find that it takes ACL2 over 90 minutes to verify the returns specifier of a

capability constructor without user-provided hints. This suggests that verification of the encode / decode
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Listing 2: Theorem of encode / decode property 1 in ACL2

(def-gl-param-thm decode-encode-b-bound-len>2^12

:hyp (and (valid-addr-p addr base len)

(valid-b-l-p base len)

(<= (expt 2 *tw*) len))

:concl (<= (bounds->base (decode-compression (encode-compression len base) addr))

base)

:param-bindings

‘((((low 12) (high 16)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 16) (high 20)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 20) (high 24)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 24) (high 28)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 28) (high 32)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 32) (high 36)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 36) (high 40)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 40) (high 44)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 44) (high 48)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 48) (high 52)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 52) (high 56)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 56) (high 60)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 60) (high 64)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

(((low 64) (high 65)) ,(gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65)))))

:param-hyp (and (<= (expt 2 low) len) (< len (expt 2 high)))

:cov-bindings (gl::auto-bindings (:mix (:nat base 65) (:nat len 65) (:nat addr 65))))

properties would be better suited to more automatic methods. Moreover, since these are essentially

bittwiddling proofs, bitblasting would be an amenable approach.

GL supports model checking with both BDDs as ACL2 symbolic objects and external SAT solvers.

We use BDDs as the back-end engine for GL. While case splits were necessary for some of the larger

proofs, we found that GL BDDs were sufficient for our verification needs. As such, we did not utilize

any external reasoning engine nor FGL, the successor to GL [4]. Moreover, GL’s BDD proof procedure

is verified in ACL2, alleviating any extra soundness concerns that may arise from calling external tools.

The ACL2 proofs of the encode / decode properties 5-6 are straightforward applications of GL’s

default symbolic simulation event def-gl-thm. In contrast, properties 1-4 all required parameterized

case splitting. Listing 2 is the ACL2 theorem of the encode / decode property 1. As indicated by the

:param-bindings and :param-hyp, we split the theorem into 4-bit “intervals”, effectively performing

individual symbolic simulations for when the length ℓ0 satisfies 212 ≤ ℓ0 < 216 and 216 ≤ ℓ0 < 220 and so

on. Case splits for properties 2-4 are the same. We found that case splitting into smaller bit “intervals”

would discharge the proofs faster at the expense of verbose user-provided hints. Case splitting being an

effective approach suggests that the complexity of encoding and decoding does not scale with the length

of the memory regions. Indeed, this corroborates with the design principles of CHERI Concentrate: “en-

coding efficiency, minimize delay of pointer arithmetic, and eliminate additional load-to-use delay” [8].

On the other hand, properties 5-6 required no case splitting largely because the encode / decode logic is

greatly simplified when ℓ0 < 212, and alignment requirements reduce the number of variable bits.

Arm is deploying CHERI-enabled devices to industry security specialists at companies such as

Google and Microsoft; they describe CHERI hardware capabilities as “a fundamentally more secure

building block for software” [2]. It is critical that functions controlling memory accesses in these secure

systems are correct; we have demonstrated that ACL2 is a excellent tool for modelling CHERI capa-

bilities and verifying CHERI functions. While other formal methods have been part of the toolbox in

developing CHERI-extended ARM, RISC, and MIPS ISAs, the application of CHERI to the Intel x86-64

ISA remains a sketch and has not yet been implemented. This presents an opportunity, which we intend

to pursue, to perform ACL2 formal modelling and verification in the CHERI-x86-64 space.
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A Bound-Finding Tool for Arithmetic Terms
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We describe a tool for establishing and proving upper and lower bounds for ACL2 arithmetic terms.
The core algorithm used in this tool computes bounds of arithmetic terms using abstract interpreta-
tion. While this core algorithm is not new, we combine it with phased simplification using ACL2’s
rewriter, case splitting, and use of existing rules and user hints to provide bounds for subterms. Users
may first expand and simplify a term as needed, split into cases if necessary, then find bounds for
the simplified term using hypotheses, linear rules, type reasoning, and the core abstract interpretation
alorithm. Finally, the same steps are retraced in order to prove the theorem that these bounds hold of
the original term.

1 Introduction

Verification of arithmetic algorithms sometimes involves proving upper and lower bounds for interme-
diate values, and in many cases it isn’t clear what those bounds need to be. Generally we’d prefer to
prove the narrowest bounds possible in order to have the best chance of succeeding in the rest of the
proof. For example, an iterative approximation algorithm for square root might converge as long as each
partial remainder is smaller than some threshold, but the verifier (and, indeed, the designer) may not
know exactly what that threshold is. With some study, it may be possible to determine the bound that is
needed to allow the rest of the proof to go through. But it is often easier and more pragmatic to prove the
best bound you can with some limited level of effort and move on to see whether this bound is sufficient
for the rest of the proof.

To support this pragmatic approach, we provide a tool def-bounds that quickly determines and
proves upper and lower bounds for an ACL2 arithmetic term. The tool allows rewriting the input term
and optionally splitting into cases, then running a core algorithm that attempts to find bounds for the
resulting term by a form of abstract interpretation very similar to that of Moore’s Tau bounders and
associated Ainni tool [4]. The core bounding algorithm is verified so that it can be used within an ACL2
metafunction. Initially, the def-bounds tool first emulates the given sequence of rewriting and case
splitting steps that the prover will ultimately perform, then applies the bounding algorithm to find the
bounds on the resulting rewritten term. It then proves these bounds by emitting a defthm form with a
series of hints replicating the same rewriting and case splitting steps, followed by the application of this
metafunction to complete the proof.

It might be logical to ask why we don’t use ACL2’s built-in nonlinear arithmetic procedure [1] to
find bounds. This idea is appealing because this nonlinear arithmetic procedure is quite powerful, but
unfortunately it has no built-in ability to find a bound that it can prove. We could search for such a bound
by trial and error, but this is complicated by the fact that this nonlinear procedure can be quite slow when
several multiplications are involved. We have encountered problems that nonlinear arithmetic fails to
solve after 20 minutes on a modern CPU, even when our less-complete bounding algorithm can prove
them. On the other hand, def-bounds simply produces the best bounds that it can prove with a linear

http://dx.doi.org/10.4204/EPTCS.393.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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pass over the input term; when needed, greater accuracy can sometimes be attained by case-splitting to
consider sub-ranges of values for certain subterms.

2 Example

A simple example of the operation of def-bounds follows. We define a function foo and try to derive
bounds for it given bounds for its input x:

(include -book "centaur/misc/def -bounds" :dir :system)

(defund foo (x)

(- (* x x) (* 3 x)))

(def -bounds foo -bounds

(foo x)

:hyp (and (rationalp x)

(<= 2 x)

(<= x 4))

:simp -hints ((:in-theory (enable foo))))

The above event first runs the bound-finding routine and derives bounds [−8,10] for (foo x), then
emits a defthm event to prove them, producing a theorem called foo-bounds. These bounds aren’t very
precise (the actual range is [−2,4]), because the two subterms (* x x) and (- (* 3 x)) are considered
independently and their respective bounds are [4,16] and [−12,−6]. Somewhat better bounds can be
obtained by instead bounding the factorization (* x (- x 3)), as follows:

(defthmd my-factor

(equal (+ (- (* 3 x)) (* x x))

(* x (- x 3))))

;; this rule would reverse the application of my -factor

(local (in-theory (disable distributivity)))

(def -bounds foo -better -bounds

(foo x)

:hyp (and (rationalp x)

(<= 2 x)

(<= x 4))

:simp -hints ((:in-theory (enable foo))

(:in -theory (enable my -factor))))

This now instead has two simplifcation phases, first allowing foo to open and subsequently to apply
my-factor. Here the bounds for the two factors are [2,4] and [−1,1], so the computed bounds for the
term are [−4,4]. A further option for narrowing the computed range is discussed in Section 4.

3 Core Algorithm

The core algorithm used by def-bounds is very similar to Ainni [4] in that it recurs through the arith-
metic operators of a term, gets the bounds for the subterms, if possible, and calls a specialized routine
for each arithmetic operator to determine the bounds of the result given the bounds of the operands. A
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minor but useful refinement is that we add special treatment for square forms: we provide an automatic
lower bound of 0 for terms matching (* x x), and additionally treat terms matching (* x x y) as (*
(* x x) y) so that we get this benefit for the squared portion. On the other hand, we omit, for now,
Ainni’s support for bitwise operators and mod; we also treat all bounds as weak bounds rather than dis-
tinguishing between less than and less than or equal. Another difference is in the methods that we use
to determine bounds in the base case where the term is not an arithmetic operator. Ainni is aimed at the
particular problem of simplifying reads of writes in a byte-addressed memory, so it only supports calls of
a function R (read bytes from a memory address) as its base case, both by looking for type-alist entries
(assumptions) that establish known bounds for such terms and by using basic facts about the R function
(i.e., a read of n bytes is between 0 and 28n−1). Our core algorithm uses linear rules, typeset reasoning,
and user suggestions (checked by backchaining) to find candidate bounds for all subterms. We briefly
describe each of these sources of bounds.

First, we consider user-provided suggestions. The user interface for this allows suggestions of the
following forms:

(< a 3) ;; upper -bound the term A by 3

(>= (foo b) 5) ;; lower -bound the term (FOO B) by 5

(:free (c) (<= (bar c) 10)) ;; upper -bound any call of BAR by 10

These are processed into a triple consisting of an LHS pattern (which may have free and/or fixed vari-
ables), an RHS term, and a direction, which together have the meaning “for subterms matching LHS, try
to prove them (less/greater) than RHS.” In this case “matching” means that a term unifies with LHS. The
RHS may then contain some or all of the variables of LHS, which are then replaced with their matches in
the term. This can be used as a bound as long as the result of this substitution is a ground term evaluating
to a rational number and we can verify its correctness. We use the mfc-relieve-hyp utility to check the
validity of the suggested bound; this tries to prove this inequality by backchaining in ACL2’s rewriter, as
though it appeared in the hypothesis of a rewrite rule. The result of mfc-relieve-hyp can be trusted in
the context of the the algorithm’s proof of correctness due to ACL2’s meta-extract feature [3][2].

Second, we call ACL2’s typeset reasoning function mfc-ts to obtain a typeset for the term. This
typeset is an integer in which each bit position signifies a certain type of object; an unset (0) bit in a
given position signifies that the term cannot be of the corresponding type. Among these basic types
corresponding to bits in the typeset are negative integer, 0, 1, integer greater than 1, negative ratio, and
positive ratio. If the only possible types for the term are among these, then we can sometimes determine
bounds on that basis; if e.g., the only bits set in our typeset are for 0 and negative-ratio, then this gives
us an upper bound of 0. Again, the meta-extract feature allows us to assume that the typeset returned by
mfc-ts is correct so that this determination can be trusted.

Third, we consider enabled linear arithmetic theorems where either side of the inequality matches
our term. For each such theorem, we check that the other side of the inequality is a ground term that
reduces to a rational number after applying the unifying substitution, that this number is a better bound
than the current best one found, and that the hypotheses of the theorem can be relieved by backchaining,
i.e. mfc-relieve-hyp. Since meta-extract allows us to assume the correctness of existing linear lemmas
and of mfc-relieve-hyp, this is sufficient to allow this bound to be trusted once found.

Fourth, if the term is an application of any of the supported arithmetic operators, then we try to get
bounds in the Ainni style, by recursively bounding the arguments and applying that operator’s bounding
routine to those inputs. The least upper bound and greatest lower bound produced by all four methods is
then returned.
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4 Preprocessing

While the core bound-finding algorithm described above is powerful, by itself it has a couple of deficien-
cies that the def-bounds tool addresses with extra features.

First, the bounding algorithm isn’t very convenient to use by itself. A very basic issue is that while it
will prove bounds of an arithmetic term, often we want to state a theorem about a function that expands
to an arithmetic term instead of the term itself. Another issue is that a given arithmetic term might not be
in the best form for finding bounds. As a simple example, suppose we want bounds for ac+bc and while
we have bounds for a, b, and c, we have better bounds for d = a+ b than our bounding algorithm can
determine from the bounds for a and b separately. Then it is better to rewrite this expression to dc before
applying the bound-finding algorithm. The def-bounds tool supports this sort of need by allowing the
user to provide a series of ACL2 hint objects, each giving instructions for a phased simplification step.
For example, a def-bounds form might include the following argument, describing two simplification
phases in sequence in which first my-function is expanded and then ac+bc is rewritten to dc:

:simp -hints

((: expand ((my -function x y)))

(:in -theory (enable rewrite -ac-plus -bc-to-dc)))

A second deficiency is due to the bounding algorithm’s separate consideration of correlated subterms.
The example in Section 2 shows how this may make the computed bounds imprecise; in that case the
subterms (* x x) and (- (* 3 x)) were considered separately with their ranges simply summed,
producing bounds [−8,10] where the actual range is [−2,4]. We saw that expressing the same function
in a different form—in this case factored form rather than distributed—produced much better results,
though still not perfectly precise. Another way to address this problem is to make the bounds more
accurate by separately considering various ranges for the subexpressions. For example, if we split the
range of x into two segments [2,3] and [3,4], we get much better results on the original (distributed, not
factored) formulation. For x ∈ [2,3], the algorithm concludes that the bounds for the two subexpressions
x2 and 3x are [4,9] and [6,9], giving [−5,3] for the full expression; and for x ∈ [3,4], the bounds for the
two subexpressions are [9,16] and [9,12], giving [−3,7]. Taking the union of those two ranges, this gives
bounds [−5,7]—still somewhat imprecise but greatly improved over the result without the case split. On
the factored form, we get [−3,0] as the range when x is in [2,3] and [0,4] when x is in [3,4], so the bounds
computed for the full domain are [−3,4]; again somewhat more precise than the bounds computed for
the factored form without a casesplit.

Given the speed of the core algorithm, it can be practical to split into many such cases if doing so
increases the accuracy of the result. For example, the above problem may be split into 128 subranges
with the def-bounds event still completing in a few seconds. For the non-factored form this results
in computed bounds [−131/64,259/64], which is only 65/64 the size of the actual range, and for the
factored form the computed bounds are [−129/64,4], even slightly better. This can be done simply by
adding the following argument to the def-bounds form:

:cases ((:ranges -from -to -by x 2 4 1/64))

5 Conclusion

The def-bounds tool is in active use at Intel, especially in a successful verification of an RTL imple-
mentation of floating point square root. It is available under an MIT license from the public ACL2 books
repository and its user-level documentation is available at the ACL2 documentation webpage [5].
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This is the second installment of an exposition of an ACL2 formalization of finite group theory.

The first, which was presented at the 2022 ACL2 workshop, covered groups and subgroups, cosets,

normal subgroups, and quotient groups, culminating in a proof of Cauchy’s Theorem: If the order

of a group G is divisible by a prime p, then G has an element of order p. This sequel addresses

homomorphisms, direct products, and the Fundamental Theorem of Finite Abelian Groups: Every

finite abelian group is isomorphic to the direct product of a list of cyclic p-groups, the orders of

which are unique up to permutation. This theorem is a suitable application of ACL2 because of its

extensive reliance on recursion and induction as well as the constructive nature of the factorization.

The proof of uniqueness is especially challenging, requiring the formalization of vague intuition that

is commonly taken as self-evident.

1 Introduction

In comparison to higher-order logic theorem provers, ACL2 offers a high degree of proof automation

at the expense of logical expressiveness. With regard to the formalization of pure mathematics, basic

concepts are often difficult to formulate in a first-order logic, but when this obstacle is overcome, proofs

are relatively straightforward. This prospect has motivated our pursuit of an ACL2 formalization of

abstract algebra, beginning with finite group theory, an area in which substantial progress has already

been achieved with other provers, most notably the Coq proof assistant [1]. Our investigation of this

subject, which deals with properties of operations defined on sets, must address two limitations of the

ACL2 logic: (1) quantification over functions is not provided, and (2) ACL2 data are ordered lists rather

than sets. A common solution to these problems is the use of constrained functions. In particular, a

natural approach to the formalization of group theory begins with an encapsulate form that introduces

a set of constrained functions including a predicate representing group membership, a binary group

operation, and a unary inverse operator. An alternative scheme based on defn-sk was devised by Yuan

Yu in his 1990 Nqthm formalization [4], which included a proof of Lagrange’s Theorem: The order of a

group is divisible by that of any subgroup.

Our original submission on this subject to the 2022 ACL2 Workshop [3] was motivated by the ob-

servation that any significant progress beyond Lagrange’s Theorem would require the facility of proof

by induction on the order of a group, which is apparently unavailable through either of the methods

mentioned above. That is, a more productive ACL2 formalization of group theory would begin with

an explicit predicate that recognizes groups of arbitrary well-defined orders. (This approach necessarily

limits the investigation to finite groups.) Thus, the predicate groupp defines a group of order n to be an

n× n matrix (a list of n rows of length n) representing the group’s operation table, which is stipulated

to satisfy the usual group axioms. The first row of the matrix is the list of group elements, the order of

which is insignificant except that the first element must be the identity:

(defmacro elts (g) ‘(car ,g))

(defmacro in (x g) ‘(member-equal ,x (elts ,g)))

(defund e (g) (caar g))

http://dx.doi.org/10.4204/EPTCS.393.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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The index of an element x of g, (ind x g), is its position in the element list:

(defun index (x l)

(if (consp l)

(if (equal x (car l))

0

(1+ (index x (cdr l))))

0))

(defmacro ind (x g) ‘(index ,x (elts ,g)))

Thus, the group operation is defined by

(defund op (x y g)

(nth (ind y g)

(nth (ind x g) g)))

The lack of ACL2 support for unordered sets is mitigated by exploiting the notion of an ordered list

of elements of a group. Thus, for example, a left coset of a subgroup is defined to be ordered with

respect to the larger group, thereby ensuring that intersecting cosets are equal. Note that a subgroup need

not be ordered with respect to its parent. For example, a cyclic subgroup has a natural ordering that is

generally different from that of the parent group. In most cases, however, we arrange for the ordering to

be inherited.

In order to circumvent the cumbersome explicit construction of the defining table for every group of

interest, we introduce a defgroupmacro that generates a parametrized group definition and proofs of the

axioms (through functional instantiation) once the user has supplied the element list and terms specifying

the binary operation and the inverse operator. This is used, for example, in the definition of the quotient

group of a normal subgroup as well as the symmetric groups. A similar defsubgroup macro facilitates

the definition of parametrized subgroups, e.g., the centralizer of a group element, the center of a group,

cyclic subgroups, and intersections of subgroups. As a proof of concept, the culmination of the 2022

submission is an inductive proof of a theorem of Cauchy: If the order of a group G is divisible by a prime

p, then G has an element of order p. The theory up to this point is embodied in the first four books of

the ACL2 directory books/projects/groups: lists, groups, quotients, and cauchy.

The 2022 paper is a prerequisite for a reading of this sequel, which presents a continuation of the

theory comprising three additional books of the groups directory. The first of these, maps, addresses

another class of functions that must be encoded in the logic: group homomorphisms (Section 2), which

we represent as association lists. The second, products, covers direct products (Section 3). The results

of these two books are applied in the third, abelian, in a proof of the Fundamental Theorem of Finite

Abelian Groups: Every finite abelian group is isomorphic to the direct product of a list of cyclic p-groups,

the orders of which are unique up to permutation. The proof also applies various number-theoretic results

from the book projects/numbers/euclid. The proof is in three parts: (1) the factorization of an

abelian p-group as a product of cyclic groups (Section 4, (2) the factorization of an arbitrary abelian

group as a product of p-groups (Section 5), and (3) the uniqueness of the factorization (Section 6). This

theorem is a suitable application of ACL2 because of its extensive reliance on recursion and induction

as well as the constructive nature of the factorization. The proof of uniqueness is especially challenging,

requiring the formalization of vague intuition that is usually taken as self-evident [2].

2 Homomorphisms

A homomorphism is a function f from a group g to a group h that preserves the group operation, i.e.,

satisfies the identity (op x y g) = (op (f x) (f y) h), and thus relates the algebraic properties
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of g and h. Of particular interest is the case of a bijective homomorphism, or an isomorphism, which

establishes the algebraic equivalence of two groups.
In order to introduce group homomorphisms into our theory, we define a map to be an alist with

pairwise distinct cars:

(defun cons-listp (m)

(if (consp m) (and (consp (car m)) (cons-listp (cdr m))) (null m)))

(defund domain (m) (strip-cars m))

(defund mapp (m) (and (cons-listp m) (dlistp (domain m))))

The function mapply applies a map to an element of its domain:

(defund mapply (map x) (cdr (assoc-equal x map)))

The macro defmap provides a convenient method of defining maps. The macro call

(defmap name args domain val)

defines a family of maps parametrized by args with given domain, which is assumed to be a dlist. The
parameter val is the value that the map assigns to an element x of its domain. For example, the following
form automates the construction of a composition of two maps:

(defmap compose-maps (map2 map1)

(domain map1)

(mapply map2 (mapply map1 x)))

Evaluation of this form generates two definitions and proves three lemmas:

(DEFUN COMPOSE-MAPS-AUX (L MAP2 MAP1)

(IF (CONSP L)

(LET ((X (CAR L)))

(CONS (CONS X (MAPPLY MAP2 (MAPPLY MAP1 X)))

(COMPOSE-MAPS-AUX (CDR L) MAP2 MAP1)))

NIL))

(DEFUN COMPOSE-MAPS (MAP2 MAP1)

(COMPOSE-MAPS-AUX (DOMAIN MAP1) MAP2 MAP1))

(DEFTHM DOMAIN-COMPOSE-MAPS

(IMPLIES (DLISTP (DOMAIN MAP1))

(EQUAL (DOMAIN (COMPOSE-MAPS MAP2 MAP1))

(DOMAIN MAP1))))

(DEFTHM MAPP-COMPOSE-MAPS

(IMPLIES (DLISTP (DOMAIN MAP1))

(MAPP (COMPOSE-MAPS MAP2 MAP1))))

(DEFTHM COMPOSE-MAPS-VAL

(IMPLIES (MEMBER-EQUAL X (DOMAIN MAP1))

(EQUAL (MAPPLY (COMPOSE-MAPS MAP2 MAP1) X)

(MAPPLY MAP2 (MAPPLY MAP1 X)))))

A homomorphism from a group g to a group h is a map that satisfies the following predicate:

(defund homomorphismp (map g h)

(and (groupp g)

(groupp h)

(mapp map)

(sublistp (elts g) (domain map))

(equal (mapply map (e g)) (e h))

(not (codomain-cex map g h))

(not (homomorphism-cex map g h))))
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The functions codomain-cex and homomorphism-cex search for counterexamples of these two prop-
erties:

(implies (in x g)

(in (mapply map x) h))

(implies (and (in x g) (in y g))

(equal (mapply map (op x y g))

(op (mapply map x) (mapply map y) h)))

Once these two implications have been proved to hold for a proposed homomorphism, the corresponding
conjuncts of the definition are readily established. In this manner, it is easily shown, for example, that a
composition of homomorphisms is a homomorphism:

(defthm homomorphismp-compose-maps

(implies (and (homomorphismp map1 g h) (homomorphismp map2 h k))

(homomorphismp (compose-maps map2 map1) g k)))

The image of a homomorphism map from g to h is a subgroup of h. Its element list is defined using
the function insert, which ensures that it is ordered with respect to h:

(defun ielts-aux (map l h)

(if (consp l)

(insert (mapply map (car l))

(ielts-aux map (cdr l) h)

h)

()))

(defund ielts (map g h)

(ielts-aux map (elts g) h))

(defthm ordp-ielts

(implies (homomorphismp map g h)

(ordp (ielts map g h) h)))

The group (image g h) is automatically defined by defsubgroup once the usual prerequisite lemmas
have been proved:

(defthm dlistp-ielts

(implies (homomorphismp map g h)

(dlistp (ielts map g h))))

(defthm sublistp-ielts

(implies (homomorphismp map g h)

(sublistp (ielts map g h) (elts h))))

(defthm consp-ielts

(implies (groupp g)

(consp (ielts map g h))))

(defthm ielts-closed

(implies (and (homomorphismp map g h)

(member-equal x (ielts map g h))

(member-equal y (ielts map g h)))

(member-equal (op x y h) (ielts map g h))))

(defthm ielts-inverse

(implies (and (homomorphismp map g h)

(member-equal x (ielts map g h)))

(member-equal (inv x h) (ielts map g h))))

The arguments of defsubgroup are the subgroup parameters, the parent group, the constraint that must
be satisfied by the parameters, and the element list:
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(defsubgroup image (map g) h

(homomorphismp map g h)

(ielts map g h))

The kernel of map is a subgroup of g consisting of those elements that are mapped to the identity
element of h:

(defun kelts-aux (map l h)

(if (consp l)

(if (equal (mapply map (car l)) (e h))

(cons (car l) (kelts-aux map (cdr l) h))

(kelts-aux map (cdr l) h))

()))

(defund kelts (map g h)

(kelts-aux map (elts g) h))

Once again, we invoke defsubgroup after establishing its prerequisite lemmas:

(defsubgroup kernel (map h) g

(homomorphismp map g h)

(kelts map g h))

The usual classes of homomorphisms are defined in terms of the image and the kernel:

(defund epimorphismp (map g h)

(and (homomorphismp map g h)

(equal (image map g h) h)))

(defund endomorphismp (map g h)

(and (homomorphismp map g h)

(equal (kernel map h g) (trivial-subgroup g))))

(defund isomorphismp (map g h)

(and (epimorphismp map g h) (endomorphismp map g h)))

The inverse of an isomorphism is defined by defmap:

(defun preimage-aux (x map l)

(if (consp l)

(if (equal x (mapply map (car l)))

(car l)

(preimage-aux x map (cdr l)))

()))

(defund preimage (x map g)

(preimage-aux x map (elts g)))

(defmap inv-isomorphism (map g h) (elts h) (preimage x map g))

(defthmd isomorphismp-inv

(implies (isomorphismp map g h)

(isomorphismp (inv-isomorphism map g h) h g)))

We shall also require the following important property of isomorphisms:

(defthm isomorphismp-compose-maps

(implies (and (isomorphismp map1 g h) (isomorphismp map2 h k))

(isomorphismp (compose-maps map2 map1) g k)))

3 Direct Products

Direct products provide a means of constructing complex groups from simpler ones. Given a non-null
proper list of groups l, we shall define the group (direct-product l). Its element list is the Cartesian
product (group-tuples l), defined as follows:
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(defun conses (x l)

(if (consp l)

(cons (cons x (car l)) (conses x (cdr l)))

()))

(defun group-tuples-aux (l m)

(if (consp l)

(append (conses (car l) m)

(group-tuples-aux (cdr l) m))

()))

(defun group-tuples (l)

(if (consp l)

(group-tuples-aux (elts (car l)) (group-tuples (cdr l)))

(list ())))

It is easily shown that the length of (group-tuples l) is the product of the orders of the members of
l. If x is a member of this list, then x is a list of the same length as l, and each member of x is a group
element of the corresponding member of l. The car of (group-tuples l), which will be the identity
element of the direct product, is the list defined as follows:

(defun e-list (l)

(if (consp l)

(cons (e (car l)) (e-list (cdr l)))

()))

The group operation and inverse operator are defined recursively:

(defun dp-op (x y l)

(if (consp l)

(cons (op (car x) (car y) (car l))

(dp-op (cdr x) (cdr y) (cdr l)))

()))

(defun dp-inv (x l)

(if (consp l)

(cons (inv (car x) (car l))

(dp-inv (cdr x) (cdr l)))

()))

Once the requisite group properties are proven, we invoke defgroup to construct the direct product:

(defgroup direct-product (l)

(and (group-list-p l) (consp l)) ;parameter constraint

(group-tuples l) ;element list

(dp-op x y l) ;group operation

(dp-inv x gl)) ;inverse operator

The ordering of the elements of the direct product is given by the following, which is useful in proving
that a given subgroup is ordered:

(defthmd ind-dp-compare

(implies (and (group-list-p l)

(consp l)

(in x (direct-product l))

(in y (direct-product l)))

(iff (< (ind x (direct-product l))

(ind y (direct-product l)))

(or (< (ind (car x) (car l))

(ind (car y) (car l)))
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(and (consp (cdr l))

(equal (car x) (car y))

(< (ind (cdr x) (direct-product (cdr l)))

(ind (cdr y) (direct-product (cdr l)))))))))

A construction related to the direct product is the list of products of elements of two subgroups h and
k of a group g. Note that the definition ensures that this list is ordered with respect to g:

(defun products-aux (l g)

(if (consp l)

(insert (op (caar l) (cadar l) g) (products-aux (cdr l) g) g)

()))

(defund products (h k g)

(products-aux (group-tuples (list h k)) g))

While (products h k g) does not in general form a subgroup of g, it does when either h or k is
normal:

(defsubgroup product-group (h k) g

(and (subgroupp h g)

(subgroupp k g)

(or (normalp h g) (normalp k g)))

(products h k g))

When h and k are both normal in g, so is (product-group (h k g).
We have the following formula for the length of (products h k g):

(defthmd len-products

(implies (and (subgroupp h g)

(subgroupp k g))

(equal (len (products h k g))

(/ (* (order h) (order k))

(order (group-intersection h k g))))))

The derivation of this formula is based on the following function, which converts a list l of members of
(lcosets (group-intersection h k g) h) to a list of members of (lcosets k g) by replacing each
member c of l with (lcoset (car c) k g):

(defun lift-cosets-aux (l k g)

(if (consp l)

(cons (lcoset (caar l) k g)

(lift-cosets-aux (cdr l) k g))

()))

We apply lift-cosets-aux to the full list (lcosets (group-intersection h k g) g):

(defund lift-cosets (h k g)

(lift-cosets-aux (lcosets (group-intersection h k g) h) k g))

The result is a list of distinct elements of (lcosets k g), and therefore, appending them yields a dlist:

(defthm dlistp-append-list-lift-cosets

(implies (and (subgroupp h g) (subgroupp k g))

(dlistp (append-list (lift-cosets h k g)))))

The length of (lift-cosets h k g) is that of (lcosets (group-intersection h k g) h), which

is the quotient

(/ (order h) (order (intersect-groups h k g)))
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Since the length of each member of the list is (order k), we have the following expression for the
length of the appended list:

(defthm len-append-list-lift-cosets

(implies (and (subgroupp h g) (subgroupp k g))

(equal (len (append-list (lift-cosets h k g)))

(/ (* (order h) (order k))

(order (group-intersection h k g))))))

It is easy to show that each member of (lift-cosets h k g) is a sublist of (products h k g).

On the other hand, if x is an element of (products h k g), then x = (op a b g), where a is

in h and b is in k. Some member of (lcosets (group-intersection h k g) h) contains a, as does the

corresponding member of (lift-cosets h k g), which therefore contains x. Thus, (products h

k g) is a sublist of (append-list (lift-cosets h k g)). Since both lists are dlists and each

is a sublist of the other, they have the same length, and the formula len-products follows from

len-append-list-lift-cosets.
The product of a list of subgroups is defined recursively:

(defun product-group-list (l g)

(if (consp l)

(product-group (car l) (product-group-list (cdr l) g) g)

(trivial-subgroup g)))

By induction, if each group in l is normal in g, then so is (product-group-list l g). If l satisfies
the following predicate, then that subgroup is isomorphic to (direct-product l):

(defun internal-direct-product-p (l g)

(if (consp l)

(and (internal-direct-product-p (cdr l) g)

(normalp (car l) g)

(equal (group-intersection (car l) (product-group-list (cdr l) g) g)

(trivial-subgroup g)))

(null l)))

Moreover, if that subgroup has the same order as g, then since it inherits the ordering of g, the two groups
are equal. The isomorphism is conveniently constructed by defmap:

(defun product-list-val (x g)

(if (consp x)

(if (consp (cdr x))

(op (car x) (product-list-val (cdr x) g) g)

(car x))

()))

(defmap product-list-map (l g)

(group-tuples l)

(product-list-val x g))

(defthmd isomorphismp-dp-idp

(implies (and (groupp g)

(consp l)

(internal-direct-product-p l g)

(= (product-orders l) (order g)))

(isomorphismp (product-list-map l g)

(direct-product l)

g)))

Note also that the product of two non-intersecting internal direct products is an internal direct product:
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(defthmd internal-direct-product-append

(implies (and (internal-direct-product-p l g)

(internal-direct-product-p m g)

(equal (group-intersection (product-group-list l g)

(product-group-list m g)

g)

(trivial-subgroup g)))

(internal-direct-product-p (append l m) g)))

4 Factorization of p-Groups

A group is abelian if its operation is commutative. The notion of an abelian group may be viewed as an
abstraction of the familiar numerical groups: the additive groups of integers, modular integers, rationals,
and reals, and the multiplicative groups of the non-zero rationals and reals. Finite abelian groups admit a
particularly simple classification as direct products of cyclic groups. We begin with the case of an abelian
p-group, the order of which is a power of a prime p:

(defund p-groupp (g p)

(and (primep p) (groupp g) (powerp (order g) p)))

In this section, we shall prove that every abelian p-group is an internal direct product of cyclic subgroups.
This will follow by induction once we show that if such a group is not cyclic, then it is an internal direct
product of two non-trivial subgroups. The proof of this result is also inductive, based on the notion of
“lifting” a subgroup of a quotient group. If n is a normal subgroup of g and h is a subgroup of (quotient
g n), then (lift h n g) is the subgroup of g formed by appending the cosets that belong to h. In the
book groups/quotients, we prove the following two lemmas:

(defthmd lift-subgroup

(implies (and (normalp n g) (subgroupp h (quotient g n)))

(subgroupp n (lift h n g))))

(defthmd lift-order

(implies (and (normalp n g) (subgroupp h (quotient g n)))

(equal (order (lift h n g)) (* (order h) (order n)))))

Assume (p-groupp g p) and (abelianp g). Our objective is to construct subgroups g1 and g2 of g
that satisfy the following predicate:

(defund desired-properties (g g1 g2)

(and (subgroupp g1 g)

(cyclicp g1)

(subgroupp g2 g)

(equal (* (order g1) (order g2)) (order g))

(equal (group-intersection g1 g2 g) (trivial-subgroup g))))

The construction begins with the selection of an element a of maximal ord in g, as computed by the
function max-ord:

(defun max-ord-aux (g n)

(if (zp n)

1

(if (elt-of-ord n g)

n

(max-ord-aux g (1- n)))))

(defund max-ord (g)

(max-ord-aux g (order g)))
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For convenience, we collect these hypotheses in another predicate:

(defund phyp (a p g)

(and (p-groupp g p)

(abelianp g)

(not (cyclicp g))

(in a g)

(equal (ord a g) (max-ord g))))

The first of the two subgroups is the cyclic group generated by a:

(defund g1 (a g) (cyclic a g))

(We shall abbreviate the term (g1 a g) as g1; related terms defined below will be similarly abbreviated.)
By cauchy, some coset in (quotient g g1) has order p. We define x$ to be a member of that coset:

(defund x$ (a p g) (car (elt-of-ord p (quotient g (g1 a g)))))

Thus, x$ is not in g1 but (power x$ p g) is in g1. This implies (power x$ p g) is a member of
(powers a g), and hence (power x$ p g) = (power a i$ g), where i$ is defined by

(defund i$ (a p g) (index (power (x$ a p g) p g) (powers a g)))

It follows that i$ is divisible by p, for otherwise (power a i$ g) has the same order as a, implying
that x$ has order greater than (max-ord g). Consider the cyclic subgroup c$ of g defined as follows:

(defund j$ (a p g) (/ (i$ a p g) p))

(defund y$ (a p g)

(op (power (inv a g) (j$ a p g) g)

(x$ a p g)

g))

(defun c$ (a p g) (cyclic (y$ a p g) g))

Note that y$ is not in g1, but

(power y$ p g) = (op (power (power (inv a g) j$ g) p g) (power x$ p g) g)

= (op (power (inv a g) (* j$ p) g) (power x$ p g) g)

= (op (power (inv a g) i$ g) (power x$ p g) g)

= (op (inv (power a i$ g) g) (power x$ p g) g)

= (op (inv (power x$ p g) g) (power x$ p g) g)

= (e g)

Thus, (order c$) = (ord y$ g) = p and g1 and c$ intersect trivially. Let g* and a* be defined as
follows:

(defun g* (a p g)

(quotient g (c$ a p g)))

(defun a* (a p g)

(lcoset a (c$ a p g) g))

Then (ord a* g*) = (max-ord g), for otherwise a power of a less than (max-ord g) would be in
c$ and therefore equal to (e g). Thus, a* has maximal ord in g$. If g* is cyclic, then its order is
(max-ord g), which implies

(order g) = (* (order g*) p} = (* (order g1) (order c$))

and we may define g2 = c$. Otherwise we proceed by induction on (order g, substituting g* and a* for
g and a. Let g1* = (cyclic a* g*). By inductive hypothesis, g* is the internal direct product of g1*
and some g2*. We define g2 to be (lift g2* c$ g). This yields the following recursive definition:
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(defund g2 (a p g)

(declare (xargs :measure (order g)))

(if (phyp a p g)

(if (cyclicp (g* a p g))

(c$ a p g)

(lift (g2 (a* a p g) p (g* a p g))

(c$ a p g)

g))

()))

We need only show that (desired-properties g g1 g2) follows from (desired-properties g*
g1* g2*). We may assume that g1 is not cyclic. We have (order g1) = (max-ord g) = (order
g1*), and by lift-order, (order g2) = (* p (order g2*). Thus,

(* (order g1) (order g2)) = (* p (order g1*) (order g2*))

= (* p (order g*))

= (order g).

Finally, suppose r is in both g1 and g2. Then (lcoset r c$ g) is in both g1* and g2*, which implies
r is in c$. But then r is in both g1 and c$, which implies r = (e g). This completes the induction, and
we have

(defthmd factor-p-group

(implies (phyp a p g)

(desired-properties g (g1 a g) (g2 a p g))))

This result provides the basis of the factorization of g. The goal is to show that g is the internal direct
product of a list of subgroups characterized as follows:

(defund cyclic-p-group-p (g)

(and (cyclicp g)

(> (order g) 1)

(p-groupp g (least-prime-divisor (order g)))))

(defun cyclic-p-group-list-p (l)

(if (consp l)

(and (cyclic-p-group-p (car l)) (cyclic-p-group-list-p (cdr l)))

(null l)))

The list is constructed recursively:

(defun cyclic-p-subgroup-list (p g)

(declare (xargs :measure (order g)))

(if (and (p-groupp g p) (abelianp g) (> (order g) 1))

(if (cyclicp g)

(list g)

(let ((a (elt-of-ord (max-ord g) g)))

(cons (g1 a g) (cyclic-p-subgroup-list p (g2 a p g)))))

()))

The desired result follows from factor-p-group by induction on (order g):

(defthmd p-group-factorization

(implies (and (p-groupp g p) (abelianp g) (> (order g) 1))

(let ((l (cyclic-p-subgroup-list p g)))

(and (consp l)

(cyclic-p-group-list-p l)

(internal-direct-product-p l g)

(equal (order g) (product-orders l))))))
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5 Factorization of Abelian Groups

We shall prove constructively that every finite abelian group is isomorphic to a direct product of cyclic
p-groups. The proof is again inductive, based on p-group-factorization and the following lemma:
If (order g) is the product of relatively prime integers m and n, then g is the internal direct product of
two subgroups of orders m and n. To derive this result, we define the ordered list of all elements of g with
order dividing m:

(defun elts-of-ord-dividing-aux (m l g)

(if (consp l)

(if (divides (ord (car l) g) m)

(cons (car l) (elts-of-ord-dividing-aux m (cdr l) g))

(elts-of-ord-dividing-aux m (cdr l) g))

()))

(defund elts-of-ord-dividing (m g)

(elts-of-ord-dividing-aux m (elts g) g))

If g is abelian, then this list forms a subgroup of g:

(defsubgroup subgroup-ord-dividing (m) g

(and (abelianp g) (posp m))

(elts-of-ord-dividing m g))

Let h = (subgroup-ord-dividing m g) and k = (subgroup-ord-dividing n g). If x is in
both h and k, then (ord x) divides both m and n, and by divides-gcd of the book euclid, (ord
x) divides (gcd m n) = 1, which implies x = (e g). Thus, h and k intersect trivially:

(defthmd rel-prime-factors-intersection

(implies (and (groupp g) (abelianp g)

(posp m) (posp n) (= (gcd m n) 1))

(let ((h (subgroup-ord-dividing m g)) (k (subgroup-ord-dividing n g)))

(equal (group-intersection h k g) (trivial-subgroup g)))))

By gcd-linear-combination (book euclid), since (gcd m n) = 1, there exist r and s such that
(+ (* r n) (* s m)) = 1. Let x be in g. Then

x = (power x (+ (* r n) (* s m)) g) = (op (power x (* r n) g) (power x (* s m) g) g).

Since

(power (power x (* r n) g) m g) = (power (power x (* m n) g) r g) = (e g),

(power x (* r n) g) is in m, and similarly, (power x (* s m) g) is in k. Thus, by len-products,

(* m n) = (order g) = (len (products h k g)) = (* (order h) (order k)).

If p is a prime dividing (order h), then by cauchy, h has an element of order p, and therefore p divides
m, which implies p does not divide n. By lagrange and divides-product-divides-factor (of the
book euclid), (order h) divides m, and therefore (<= (order h) m). Similarly, (<= (order k)
n). Since (* m n) = (* (order h) (order k)), both equalities must hold:

(defthmd rel-prime-factors-orders

(implies (and (groupp g) (abelianp g)

(posp m) (posp n) (= (gcd m n) 1)

(= (order g) (* m n)))

(let ((h (subgroup-ord-dividing m g)) (k (subgroup-ord-dividing n g)))

(and (equal (order h) m) (equal (order k) n)))))

Let p be the least prime divisor of (order g). Let m be the maximum power of p that divides
(order g) and let n = (/ (order g) m). Then m and n are relatively prime. We define a list of
subgroups of g recursively, using cyclic-p-subgroup-list:
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(defun cyclic-subgroup-list (g)

(declare (xargs :measure (order g) ))

(if (and (groupp g) (abelianp g))

(if (= (order g) 1)

()

(let* ((p (least-prime-divisor (order g)))

(m (max-power-dividing p (order g)))

(n (/ (order g) m))

(h (subgroup-ord-dividing m g))

(k (subgroup-ord-dividing n g)))

(append (cyclic-p-subgroup-list p h)

(cyclic-subgroup-list k))))

()))

The following is proved by induction, combining rel-prime-factors-intersectionand rel-prime-
factors-orderswith internal-direct-product-append (Section 3) and p-group-factorization
(Section 4):

(defthmd idp-cyclic-subgroup-list

(implies (and (groupp g) (abelianp g) (> (order g) 1))

(let ((l (cyclic-subgroup-list g)))

(and (cyclic-p-group-list-p l)

(internal-direct-product-p l g)

(equal (product-orders l) (order g))))))

Finally, we invoke isomorphismp-dp-idp (Section 3):

(defthmd abelian-factorization

(implies (and (groupp g) (abelianp g) (> (order g) 1))

(let ((l (cyclic-subgroup-list g)))

(and (cyclic-p-group-list-p l)

(isomorphismp (product-list-map l g) (direct-product l) g)))))

6 Uniqueness of the Factorization

We define the list of orders of a list of groups:

(defun orders (l)

(if (consp l)

(cons (order (car l)) (orders (cdr l)))

()))

Our objective is to show that if the direct products of two lists of cyclic p-groups l and m are isomorphic,
then (orders l) and (orders m) satisfy the following predicate, which is defined in the book lists:

(defun permutationp (l m)

(if (consp l)

(and (member-equal (car l) m)

(permutationp (cdr l) (remove1-equal (car l) m)))

(endp m)))

We shall make use of an equuivalent formulation of permutationp, based on a function that counts the
number of occurrences of an object in a list:

(defun hits (x l)

(if (consp l)

(if (equal x (car l))
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(1+ (hits x (cdr l)))

(hits x (cdr l)))

0))

It is evident that (permutationp l m) holds iff (hits x l) = (hits x m) for all x. The formal-
ization of this claim requires a function that searches for a counterexample:

(defun hits-diff-aux (test l m)

(if (consp test)

(if (equal (hits (car test) l) (hits (car test) m))

(hits-diff-aux (cdr test) l m)

(list (car test)))

()))

(defund hits-diff (l m) (hits-diff-aux (append l m) l m))

(defthmd hits-diff-perm (iff (permutationp l m) (not (hits-diff l m))))

The uniqueness proof is also based on the notion of a power of an abelian group. We define the list
of nth powers of the elements of g:

(defun power-list-aux (l n g)

(if (consp l)

(insert (power (car l) n g)

(power-list-aux (cdr l) n g)

g)

()))

(defun power-list (n g)

(power-list-aux (elts g) n g))

If g is abelian, then this list forms a subgroup of g:

(defsubgroup group-power (n) g

(and (posp n) (groupp g) (abelianp g))

(power-list n g))

If two abelian groups are isomorphic, then so are their nth powers:

(defthmd isomorphismp-power

(implies (and (isomorphismp map g h) (abelianp g) (posp n))

(isomorphismp map (group-power n g) (group-power n h))))

The nth power of a direct product of abelian groups is the direct product of the nth powers. The proof is
more challenging than expected, as it requires showing not only that each element list is a sublist of the
other, but also that both lists are ordered with respect to (direct-product l), according to the lemma
ind-dp-compare (Section 3):

(defun group-power-list (n l)

(if (consp l)

(cons (group-power n (car l))

(group-power-list n (cdr l)))

()))

(defthmd group-power-dp

(implies (and (posp n) (consp l) (abelian-list-p l))

(equal (group-power n (direct-product l))

(direct-product (group-power-list n l)))))

The nth power of a cyclic group is cyclic. For prime p, the order of (group-power p g) depends on
whether p divides the order of g:
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(defun reduce-order (n p)

(if (divides p n) (/ n p) n))

(defthmd prime-power-cyclic

(implies (and (cyclicp g) (primep p))

(and (cyclicp (group-power p g))

(equal (order (group-power p g))

(reduce-order (order g) p)))))

The list of orders of (group-power-list p l):

(defun reduce-orders (orders p)

(if (consp orders)

(cons (reduce-order (car orders) p) (reduce-orders (cdr orders) p))

()))

(defthm order-group-power-list

(implies (and (primep p) (cyclic-p-group-list-p l))

(equal (orders (group-power-list p l))

(reduce-orders (orders l) p))))

It is a simple matter to identify a prime that divides at least one of the orders:

(defund first-prime (l) (least-prime-divisor (order (car l))))

Let p = (first-prime l). We would like to use an induction scheme that replaces l and m with
(group-powers p l) and (group-powers p m), but in order to ensure that these lists inherit the
properties of l and m, we must delete any occurrences of trivial groups:

(defun delete-trivial (l)

(if (consp l)

(if (= (order (car l)) 1)

(delete-trivial (cdr l))

(cons (car l) (delete-trivial (cdr l))))

()))

(defund reduce-cyclic (l p) (delete-trivial (group-power-list p l)))

Let l’ = (reduce-cyclic l p) and m’ = (reduce-cyclic m p). The properties of l and m are
inherited by l’ and m’:

(defthmd reduce-cyclic-p-group-list

(implies (and (primep p) (cyclic-p-group-list-p l))

(cyclic-p-group-list-p (reduce-cyclic l p))))

We would like to show that if (orders l’) is a permutation of (orders m’), then the same is true
of l and m. By hits-diff-perm, it suffices to show that for all x, (hits x (orders l)) = (hits
x (orders m)). It may be proved as a consequence of order-group-power-list that this holds for
all x other than p. But note that (orders l) and (orders m) have the same product:

(product-orders l) = (order (direct-product l))

= (order (direct-product l))

= (product-orders m).

It follows that the equation holds for x = p as well. Thus, we have

(defthmd permutationp-orders

(implies (and (consp l)

(consp m)

(cyclic-p-group-list-p l)

(cyclic-p-group-list-p m)

(primep p)

(isomorphismp map (direct-product l) (direct-product m))

(permutationp (orders (reduce-cyclic l p))

(orders (reduce-cyclic m p))))

(permutationp (orders l) (orders m))))
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The base case of the induction is (or (null l’) (null m’)). If l’ = nil, then every element
of l must be a group of order p, which then every non-trivial element of (direct-product l) has order
p. But then the same must be true of (direct-product m) and consequently m’ = nil. Therefore, if
either l’ or m’ is null, then

(orders (reduce-cyclic l p)) = (orders (reduce-cyclic l p)) = nil.

In particular, (permutationp (orders l’) (orders m’)) and we have the following consequence
of permutationp-orders:

(defthmd null-reduce-cyclic-case

(implies (and (consp l)

(consp m)

(cyclic-p-group-list-p l)

(cyclic-p-group-list-p m)

(primep p)

(or (null (reduce-cyclic l p))

(null (reduce-cyclic m p)))

(isomorphismp map (direct-product l) (direct-product m)))

(permutationp (orders l) (orders m))))

In the remaining inductive case, we need only show that if (direct-product l) and (direct-
product m) are isomorphic, then so are (direct-product l’) and (direct-product m’). We
begin by constructing an isomorphism between (direct-product (group-power-list p l)) and
(direct-product l’):

(defun delete-trivial-elt (x l)

(if (consp x)

(if (= (order (car l)) 1)

(delete-trivial-elt (cdr x) (cdr l))

(cons (car x) (delete-trivial-elt (cdr x) (cdr l))))

()))

(defmap delete-trivial-iso (l)

(group-tuples l)

(delete-trivial-elt x l))

(defthmd isomorphismp-delete-trivial

(implies (and (group-list-p l) (consp (delete-trivial l)))

(isomorphismp (delete-trivial-iso l)

(direct-product l)

(direct-product (delete-trivial l)))))

Now suppose map is an isomorphism from (direct-product l) to (direct-product m). By iso-
morphismp-power,

(isomorphismp map (group-power p (direct-product l))

(group-power p (direct-product m))),

and by group-power-dp,

(isomorphismp map (direct-product (group-power-list p l))

(direct-product (group-power-list p m))).

Thus, the desired isomorphism is constructed as a composition of three isomorphisms:

(defund reduce-cyclic-iso (map l m p)

(compose-maps

(delete-trivial-iso (group-power-list p m))

(compose-maps

map

(inv-isomorphism (delete-trivial-iso (group-power-list p l))

(direct-product (group-power-list p l))

(direct-product (reduce-cyclic l p))))))
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We apply isomorphismp-delete-trivial,isomorphismp-inv, and isomorphismp-compose-maps
to conclude that reduce-cyclic-iso is an isomorphism:

(defthmd isomorphismp-reduce-cyclic

(implies (and (consp l)

(consp m)

(primep p)

(cyclic-p-group-list-p l)

(cyclic-p-group-list-p m)

(consp (reduce-cyclic l p))

(consp (reduce-cyclic m p))

(isomorphismp map (direct-product l) (direct-product m)))

(isomorphismp (reduce-cyclic-iso map l m p)

(direct-product (reduce-cyclic l p))

(direct-product (reduce-cyclic m p)))))

Our theorem follows from null-reduce-cyclic-case,permutationp-orders, and isomorphismp-
reduce-cyclic by induction:

(defthmd abelian-factorization-unique

(implies (and (consp l)

(consp m)

(cyclic-p-group-list-p l)

(cyclic-p-group-list-p m)

(isomorphismp map (direct-product l) (direct-product m)))

(permutationp (orders l) (orders m))))
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This is the third and final installment of an exposition of an ACL2 formalization of finite group theory.

Part I covers groups and subgroups, cosets, normal subgroups, and quotient groups. Part II extends

the theory in the developmnent of group homomorphisms and direct products, which are applied in a

proof of the Fundamental Theorem of Finite Abelian Groups. The central topics of the present paper

are the symmetric groups and the Sylow theorems, which pertain to subgroups of prime power order.

Since these theorems are based on the conjugation of subgroups, an example of a group action on a

set, their presentation is preceded by a comprehensive treatment of group actions. Our final result is

mainly an application of the Sylow theorems: after showing that the alternating group of order 60 is

simple (i.e., has no proper normal subgroup), we prove that no group of non-prime order less than

60 is simple. The combined content of the groups directory is a close approximation to that of an

advanced undergraduate course taught by the author in 1976.

1 Introduction

This is the third and final installment of an exposition of an ACL2 formalization of finite group theory.

Part I [1], which was presented at ACL2 2022, covers groups and subgroups, cosets, normal subgroups,

and quotient groups. Part II [2], a companion paper in this workshop, extends the theory in the devel-

opmnent of group homomorphisms and direct products, which are applied in a proof of the Fundamen-

tal Theorem of Finite Abelian Groups. The present paper is an account of four books of the directory

projects/groups—symmetric,actions, sylow, and simple—that have been appended to the seven

books described in Parts I and II. Part I is a prerequisite for a reading of this paper. Parts II and III are

largely independent, aside from several explicit references to Part II contained herein.

The central topics covered here are the symmetric groups (sym n) (Section 2), consisting of the

permutations of the list (0 1 2 ... n-1), and the Sylow theorems (Section 4), which pertain to

subgroups of prime power order. Since these theorems are based on the conjugation of subgroups, an

example of a group action on a set, their presentation is preceded by a comprehensive treatment of group

actions (Section 3). Our final result (Section 5) is mainly an application of the Sylow theorems: after

showing that the alternating group (alt 5), of order 60, is simple (i.e., has no proper normal subgroup),

we prove that no group of non-prime order less than 60 is simple.

2 Symmetric Groups

A symmetric group is the group of permutations of a given set under the operation of functional compo-

sition. The study of these groups has important applications in diverse areas of mathematics and physics,

such as combinatorics, Galois theory, and quantum mechanics. They also provide a wide range of exam-

ples in group theory. Since the elements of the underlying set are irrelevant to the group structure, it is

common to focus on the permutations of an initial segment of the positive integers, {1,2, . . . ,n}. In our

ACL2 formalization, it is more natural to consider the list (ninit n) = (0 1 ... n-1) of the first n

natural numbers.

http://dx.doi.org/10.4204/EPTCS.393.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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2.1 Definition of (sym n)

In [2, Sec. 6], we define a permutation of an arbitrary list:

(defun permutationp (l m)

(if (consp l)

(and (member-equal (car l) m)

(permutationp (cdr l) (remove1-equal (car l) m)))

(endp m)))

In the special case of a list of distinct members, we have an equivalent formulation:

(defund permp (l m)

(and (dlistp l) (dlistp m) (sublistp l m) (sublistp m l)))

(defthmd permp-permutationp

(implies (and (dlistp l) (dlistp m))

(iff (permutationp l m) (permp l m))))

The function perms recursively constructs a list of all permutations of a dlist. For a positive integer n,
the element list of the symmetric group (sym n) is (slist n), the list of permutations of (ninit n):

(defund slist (n) (perms (ninit n)))

A permutation x in (slist n) may be viewed as a bijection of (ninit n), which maps an integer k to
(nth k x). The group operation is functional composition:

(defun comp-perm-aux (x y l)

(if (consp l)

(cons (nth (nth (car l) y) x)

(comp-perm-aux x y (cdr l)))

()))

(defund comp-perm (x y n)

(comp-perm-aux x y (ninit n)))

The behavior of a product of permutations x and y is characterized by the following:

(defthm nth-comp-perm

(implies (and (posp n) (natp k) (< k n))

(equal (nth k (comp-perm x y n)) (nth (nth k y) x))))

More generally, we define the product of a list of permutations:

(defun comp-perm-list (l n)

(if (consp l)

(comp-perm (car l) (comp-perm-list (cdr l) n) n)

(ninit n)))

The inverse operator is defined using the function index [2, Sec. 1], which gives the location of a
member of a list:

(defun inv-perm-aux (x l)

(if (consp l)

(cons (index (car l) x) (inv-perm-aux x (cdr l)))

()))

(defund inv-perm (x n)

(inv-perm-aux x (ninit n)))

It is easily shown that (slist n) is a dlist and that (car (slist n)) = (ninit n) is a left identity.
After establishing closure, associativity, and the inverse property, we invoke the defgroup macro to
construct the group:
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(defgroup sym (n)

(posp n) ;parameter constraint

(slist n) ;element list

(comp-perm x y n) ;group operation

(inv-perm x n)) ’inverse operator

The length of (slist n) is easily computed:

(defthmd order-sym (implies (posp n) (equal (order (sym n)) (fact n))))

2.2 Transpositions

A transposition is a permutation in (sym n) that interchanges two indices and leaves all others fixed.
The function transpose constructs the transposition of given indices i and j:

(defun transpose-aux (i j l)

(if (consp l)

(if (equal (car l) i)

(cons j (transpose-aux i j (cdr l)))

(if (equal (car l) j)

(cons i (transpose-aux i j (cdr l)))

(cons (car l) (transpose-aux i j (cdr l)))))

()))

(defund transpose (i j n) (transpose-aux i j (ninit n)))

We define a predicate that characterizes suitable arguments of transpose:

(defun trans-args-p (i j n)

(and (posp n) (natp i) (natp j) (< i n) (< j n) (not (= i j))))

A transposition is a group element of ord 2:

(defthmd transpose-involution

(implies (trans-args-p i j n)

(equal (comp-perm (transpose i j n) (transpose i j n) n)

(ninit n))))

We need a predicate that recognizes a permutation as a transposition when the interchanged indices are
unknown. First we define a function that identifies the least index that is not fixed by a given non-trivial
permutation p:

(defun least-moved-aux (p k)

(if (and (consp p) (equal (car p) k))

(least-moved-aux (cdr p) (1+ k))

k))

(defund least-moved (p) (least-moved-aux p 0))

The following predicate recognizes a transposition p in (sym n):

(defund transp (p n)

(let ((m (least-moved p)))

(and (trans-args-p m (nth m p) n)

(equal p (transpose m (nth m p) n)))))

(defthmd transp-transpose

(implies (trans-args-p i j n)

(transp (transpose i j n) n)))

A list of transpositions:
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(defun trans-list-p (l n)

(if (consp l)

(and (transp (car l) n) (trans-list-p (cdr l) n))

t))

We shall show that every element p of (sym n) is the product of a list (trans-list p n) of transpo-
sitions. Let m = (least-moved p), q = (transpose m (nth m p) n), and p$ = (comp-perm q
p n). Note that (least-moved q) = m. Therefore, if k < m, then by nth-comp-perm,

(nth k p$) = (nth (nth k p) q) = (nth k q) = k,

while

(nth m p$) = (nth (nth m p) q) = m.

Thus, (least-moved p$) > m. This provides a measure for the following recursive definition:

(defun trans-list (p n)

(declare (xargs :measure (nfix (- n (least-moved p)))))

(let* ((m (least-moved p))

(q (transpose m (nth m p) n))

(p$ (comp-perm trans p n)))

(if (and (posp n)

(in p (sym n))

(< m n))

(cons trans (trans-list comp n))

())))

The desired result is easily proved using the induction scheme provided by the above definition:

(defthmd perm-prod-trans

(implies (and (posp n) (in p (sym n)))

(and (trans-list-p (trans-list p n) n)

(equal (comp-perm-list (trans-list p n) n)

p))))

2.3 Parity

An element p of (sym n) may be represented in various ways as lists of transpositions, but we shall

show that p determines whether the length of such a list is even or odd.
An inversion of p is a pair of indices (i . j) such that 0 ≤ i < j < n and (nth i p) > (nth j

p). The parity of p is defined to be that of the number of its inversions. The formal definition is based
on the list (pairs n) of pairs (i . j) such that 0 ≤ i < j < n. We extract from this list the list of
inversions of p:

(defun invs-aux (p pairs)

(if (consp pairs)

(if (> (nth (caar pairs) p) (nth (cdar pairs) p))

(cons (car pairs) (invs-aux p (cdr pairs)))

(invs-aux p (cdr pairs)))

()))

(defund invs (p n) (invs-aux p (pairs n)))

We now define the parity of p:

(defund parity (p n) (mod (len (invs p n)) 2))

Accordingly, p is either even or odd:
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(defund even-perm-p (p n) (equal (parity p n) 0))

(defund odd-perm-p (p n) (equal (parity p n) 1))

If p inverts i and j, then its inverse (inv-perm p n) inverts (nth j p) and (nth i p). It follows
that p and (inv-perm p n) have the same number of inversions and therefore the same parity:

(defthmd parity-inv

(implies (and (posp n) (in p (sym n)))

(equal (parity (inv-perm p n) n)

(parity p n))))

The proof of the following formula for the parity of a product of permutations is more difficult and
is omitted here (see the exposition in the comments in the proof script groups/symmetric.lisp):

(defthmd parity-comp-perm

(implies (and (posp n) (in p (sym n)) (in r (sym n)))

(equal (parity (comp-perm r p n) n)

(mod (+ (parity p n) (parity r n)) 2))))

It follows from parity-inv and parity-comp-perm that parity is preserved by conjugation:

(defthmd parity-conjugate

(implies (and (posp n)

(in p (sym n))

(in a (sym n)))

(equal (parity (conj p a (sym n)) n)

(parity p n))))

Note that a transposition of adjacent indices, (transpose i (1+ i) n), has exactly one inversion and
is therefore odd, and every transposition is a conjugate of such a transposition:

(defthmd transpose-conjugate

(implies (and (trans-args-p i j n) (< (1+ i) j))

(equal (transpose i j n)

(comp-perm (transpose (1+ i) j n)

(comp-perm (transpose i (1+ i) n)

(transpose (1+ i) j n)

n)

n))))

We may conclude that every transposition is odd:

(defthmd transp-odd (implies (transp p n) (odd-perm-p p n)))

It follows that the parity of a product of a list of transpositions is that of the length of the list:

(defthmd parity-trans-list

(implies (and (posp n) (trans-list-p l n))

(equal (parity (comp-perm-list l n) n) (mod (len l) 2))))

In particular, this holds for the canonical factorization:

(defthmd parity-len-trans-list

(implies (and (posp n) (in p (sym n)))

(equal (parity p n) (mod (len (trans-list p n)) 2))))
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2.4 Alternating Groups

The alternating group (alt n) is the subgroup of the symmetric group comprising the even permuta-
tions:

(defun even-perms-aux (l n)

(if (consp l)

(if (even-perm-p (car l) n)

(cons (car l) (even-perms-aux (cdr l) n))

(even-perms-aux (cdr l) n))

()))

(defund even-perms (n) (even-perms-aux (slist n) n))

(defsubgroup alt (n) (sym n)

(posp n)

(even-perms n))

It follows from parity-conjugate that (alt n) is a normal subgroup of (sym n):

(defthmd alt-normal

(implies (posp n) (normalp (alt n) (sym n))))

Assume n > 1 and let s = (transpose 0 1 n), Then s is an odd permutation, and for any odd p,
(comp-perm s p n) is even and therefore p belongs to (lcoset s (alt n) (sym n)). Thus, (alt
n) has only two left cosets:

(defthmd subgroup-index-alt

(implies (and (natp n) (> n 1))

(equal (subgroup-index (alt n) (sym n)) 2)))

(defthmd order-alt

(implies (and (natp n) (> n 1))

(equal (order (alt n)) (/ (fact n) 2))))

3 Group Actions

3.1 Definition and the defaction Macro

Informally, an action of a group g on a dlist d is a mapping a that assigns to each element x of g and
each member s of d a member (act x s a g) of d, satisfying two properties:

(act (e g) s a g) = s

(act x (act y s a g) a g) = (act (op x y g) s a g).

This may be viewed as a generalization of the operation of a group, which is an action of the group on
its own element list. In fact, we use the same scheme for representing a group action as in the definition
of a group: we define an action to be a matrix a of members of d, the first row of which is d, the domain
of a:

(defmacro dom (a) ‘(car ,a))

The ith row of a defines the action of the ith element of g on the members of d:

(defund act (x s a g) (nth (ind s a) (nth (ind x g) a)))

where, according to the definition of ind [2, Sec. 1], (ind s a) = (index s (dom a)). Note that
the first property above is automatic:

(act (e g) s a g) = (nth (ind s a) (nth 0 a)) = (nth (index s (dom a)) (dom a)) = a.

The defining predicate for an action calls the predicates aclosedp and aassocp, which exhaustively
check the closure and associativity properties:
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(defund actionp (a g)

(and (groupp g)

(dlistp (dom a))

(consp (dom a))

(matrixp a (order g) (len (dom a)))

(aclosedp a g)

(aassocp a g)))

It is easily verified that every group is indeed also an action:

(defthm actionp-groupp (implies (groupp g) (actionp g g)))

We have defined a macro for defining parametrized group actions, similar to defgroup:

(defaction name args grp cond elts act),

where

• grp is the acting group;

• cond is a constraint that must be satisfied by the arguments args;

• elts is the domain;

• act is a term that specifies the action of a group element x on a member s of elts.

Conjugation is an important example. The form

(defaction conjugacy () g t (elts g) (conj s x g))

constructs the action conjugacy and proves three lemmas:

(DEFTHM ACTIONP-CONJUGACY

(IMPLIES (GROUPP G) (ACTIONP (CONJUGACY G) G)))

(DEFTHM CONJUGACY-DOM

(IMPLIES (GROUPP G)

(EQUAL (DOM (CONJUGACY G)) (ELTS G))))

(DEFTHM CONJUGACY-ACT-REWRITE

(IMPLIES (AND (GROUPP G) (IN X G) (IN S (CONJUGACY G)))

(EQUAL (ACT X S (CONJUGACY G) G) (CONJ S X G))))

An action of a group g induces an action by any subgroup of g:

(defaction subaction (a g) h

(and (actionp a g) (subgroupp h g))

(dom a)

(act x s a g))

As another example, if h is a subgroup of g, then we have an action of g on the left cosets of h, charac-
terized by

(act x s (act-lcosets h g) g) = (lcoset (op x (car s) g) h g),

which is again constructed by defaction:

(defaction act-lcosets (h) g

(subgroupp h g)

(lcosets h g)

(lcoset (op x (car s) g) h g))
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3.2 Orbits and Stabilizers

If s is in the domain of an action a, the orbit of s is the ordered list of all r in (dom a) such that r =
(act x s a g) for some x in g:

(defun orbit-aux (s a g l)

(if (consp l)

(let ((val (act (car l) s a g))

(res (orbit-aux s a g (cdr l))))

(if (member-equal val res)

res

(insert val res a)))

()))

(defund orbit (s a g) (orbit-aux s a g (elts g)))

We also define the list of all orbits of an action:

(defun orbits-aux (a g l)

(if (consp l)

(let ((res (orbits-aux a g (cdr l))))

(if (member-list (car l) res)

res

(cons (orbit (car l) a g) res)))

()))

(defund orbits (a g) (orbits-aux a g (dom a)))

It is easily shown that every element of the domain belongs to its own orbit and that intersecting orbits
are equal (i.e., distinct orbits are disjoint). It follows that appending the list of orbits yields a permutation
of the domain:

(defthmd append-list-orbits

(implies (actionp a g) (permp (append-list (orbits a g)) (dom a))))

Note that in the case of the conjugacy action, the orbit of a group element x is the conjugacy class

(conjs x g) and the class equation [1, Sec. 8] is a special case of append-list-orbits.
The stabilizer of an element s of the domain of a is the ordered subgroup of g comprising all x such

that (act x s a g) = s:

(defun stab-elts-aux (s a g l)

(if (consp l)

(if (equal (act (car l) s a g) s)

(cons (car l) (stab-elts-aux s a g (cdr l)))

(stab-elts-aux s a g (cdr l)))

()))

(defund stab-elts (s a g) (stab-elts-aux s a g (elts g)))

(defsubgroup stabilizer (s a) g

(and (actionp a g) (member-equal s (dom a))) ;constraints

(stab-elts s a g)) ;domain

If r is in the orbit of s, then for some x in g, (act x s a g) = r. The function actor is defined
to produce such a value x. This gives rise to the following functions, which may be shown to be inverse
bijections between (lcosets (stabilizer s a g) g) and (orbit s a g):

(defund lcosets2orbit (c s a g) (act (car c) s a g))

(defund orbit2lcosets (r s a g) (lcoset (actor r s a g) (stabilizer s a g) g))

Therefore, the lengths of these two lists are equal, and the following is a consequence of lagrange:
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(defthmd stabilizer-orbit

(implies (and (actionp a g) (in s a))

(equal (* (order (stabilizer s a g)) (len (orbit s a g)))

(order g))))

Note that the centralizer of a group element x is its stabilizer under the conjugacy action, and the lemma

len-conjs-cosets [1, Sec. 8] is a case of stabilizer-orbit.

3.3 Conjugation of Subgroups

The conjugate of a subgroup h of g by an element a of g is a subgroup comprising all conjugates of
elements of h by a. We define this subgroup to have an ordered element list with respect to g, so that
element lists of distinct conjugate subgroups cannot be permutations of one another:

(defun conj-sub-list-aux (l a g)

(if (consp l)

(insert (conj (car l) a g)

(conj-sub-list-aux (cdr l) a g)

g)

()))

(defund conj-sub-list (h a g) (conj-sub-list-aux (elts h) a g))

(defsubgroup conj-sub (h a) g

(and (subgroupp h g) (in a g))

(conj-sub-list h a g))

It is clear that a conjugate of h has the same order as h, and therefore if one conjugate is a subgroup
of another, then they are equal. Since h itself need not be ordered with respect to g, h may not be a
conjugate of itself, but the conjugate of h by (e g) (or by any element of h, for that matter) has the same
elements as h:

(defthmd permp-conj-sub-e

(implies (subgroupp h g)

(permp (elts (conj-sub h (e g) g)) (elts h))))

Subgroup conjugation is an important example of a group action, the domain of which is a list of all
conjugates of a given subgroup h of g:

(defun conjs-sub-aux (h g l)

(if (consp l)

(let ((c (conj-sub h (car l) g))

(res (conjs-sub-aux h g (cdr l))))

(if (member-equal c res)

res

(cons c res)))

()))

(defund conjs-sub (h g) (conjs-sub-aux h g (elts g)))

(defaction conj-sub-act (h) g (subgroupp h g) (conjs-sub h g) (conj-sub s x g))

We define the normalizer of a subgroup h of g to be the stabilizer of (conj-sub h (e g) g):

(defund normalizer (h g)

(stabilizer (conj-sub h (e g) g)

(conj-sub-act h g)

g))

A subgroup is a normal subgroup of its normalizer:
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(defthmd normalizer-normp

(implies (subgroupp h g) (normalp h (normalizer h g))))

By stabilizer-orbit, the number of conjugates of h is the index of its normalizer, and therefore, h is
normal in g iff (mormalizer h g) = g:

(defthmd index-normalizer

(implies (subgroupp h g)

(equal (len (conjs-sub h g))

(subgroup-index (normalizer h g) g))))

The normalizer of a conjugte of h is a conjugate of the normalizer of h:

(defthmd normalizer-conj-sub

(implies (and (subgroupp m g)

(member-equal c (conjs-sub m g)))

(equal (normalizer c g)

(conj-sub (normalizer m g) (conjer-sub c m g) g))))

3.4 Induced Homomorphism into the Symmetric Group

An action a of a group g associates each element of g with a permutation of (dom a). By identifying
an element of (dom a) with its index in the list, we have an element of the symmetric group (sym n),
where n = (len (dom a)). If x is in g and p is the element of (sym n) corresponding to x, then for 0
≤ k < n, the image of k under p, (nth k p), is computed by the following:

(defund act-perm-val (x k a g)

(index (act x (nth k (dom a)) a g)

(dom a)))

Thus, the element of (sym n) corresponding to x may be computed recursively:

(defun act-perm-aux (x k a g)

(if (zp k)

()

(append (act-perm-aux x (1- k) a g)

(list (act-perm-val x (1- k) a g)))))

(defund act-perm (x a g) (act-perm-aux x (order a) a g))

(defthmd act-perm-is-perm

(implies (and (actionp a g) (in x g))

(in (act-perm x a g) (sym (len (dom a))))))

(defthm act-perm-val-is-val

(implies (and (actionp a g) (in x g) (member-equal k (ninit (order a))))

(equal (nth k (act-perm x a g))

(act-perm-val x k a g))))

It is clear that the identity of g corresponds to the identity of (sym n), and that the group operation is
preserved by this correspondence. Thus, we have a homomorphism from g into the symmetric group:

(defmap act-sym (a g)

(elts g)

(act-perm x a g))

(defthmd homomorphismp-act-sym

(implies (actionp a g) (homomorphismp (act-sym a g) g (sym (order a)))))
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The kernel of (act-sym a g) consists of the elements of g that act trivially on every element of (dom

a).
We have observed that every group g is an action of itself on its element list, with (act g x s g)

= (op x s g). The identity of g is the only element that acts trivially on every element (or, indeed, on
any element). Therefore, every group g is isomorphic to a subgroup of (sym (order g)):

(defthm endomorphismp-act-sym-g

(implies (groupp g) (endomorphismp (act-sym g g) g (sym (order g)))))

As another example, recall the action act-lcosets of a group g on the left cosets of a subgroup h,
(Subsection 3.1). Clearly, the kernel of the homomorphism induced by this action is a subgroup of h:

(defthmd subgroup-kernel-act-cosets

(implies (subgroupp h g)

(subgroupp (kernel (act-sym (act-lcosets h g) g)

(sym (subgroup-index h g))

g)

h)))

This result has the following important consequence: If p is the least prime dividing the order of g and h
is a subgroup of index p, then h is normal in g:

(defthmd index-least-divisor-normal

(implies (and (subgroupp h g)

(> (order g) 1)

(equal (subgroup-index h g)

(least-prime-divisor (order g))))

(normalp h g)))

The proof of this theorem also requires the observation that every homomorphism induces an endomor-
phism on the quotient of its kernel:

(defmap quotient-map (map g h)

(lcosets (kernel map h g) g)

(mapply map (car x)))

(defthmd endomorphismp-quotient-map

(implies (homomorphismp map g h)

(endomorphismp (quotient-map map g h) (quotient g (kernel map h g)) h)))

Tho prove index-least-divisor-normal, let

k = (kernel (act-sym (act-cosets h g) g) (sym (subgroup-index h g)) g).

We need only show that k and h have the same elements. (Since h need not be ordered with respect

to g, the two subgroups may not be equal, but this will be sufficient to conclude that h is normal.)

By endomorphismp-quotient-map, (quotient g k) is isomorphic to a subgroup of (sym p), and

therefore (subgroup-index k g) divides (fact p), which implies (subgroup-index k h) divides

(fact (1- p)). If (subgroup-index k h) > 1, then (subgroup-index k g) has a prime divisor

q. Since q divides (fact (1- p)), q < p. But since q divides (order g), q ≥ p by assumption, a

contradiction. Thus, (subgroup-index k h) = 1, which implies (permp (elts k) (elts h)).

4 Sylow Theorems

The ⁀Sylow theorems are a set of related results that provide information pertaining to the number of

subgroups of prime power order of a finite group and the relations among them. These theorems form an

important part of group theory, playing a critical role in the classification of finite groups.



44 A Formalization of Finite Group Theory: Part III

Among these results is the statement that the order of a maximal p-subgroup of a finite group g is

the maximal power of p that divides the order of g. As a first step, we shall prove that if h is a p-

subgroup of g and p divides (subgroup-index p (normalizer h g)), then h is a proper subgroup

of a larger p-subgroup of g, which may be constructed by first applying cauchy to construct a subgroup

of (quotient (normalizer h g) h) of order p and then lifting it to g:

(defund extend-p-subgroup (h g p)

(lift (cyclic (elt-of-ord p (quotient (normalizer h g) h))

(quotient (normalizer h g) h))

h

(normalizer h g)))

(defthmd order-extend-p-subgroup

(implies (and (subgroupp h g)

(posp n)

(elt-of-ord n (quotient (normalizer h g) h)))

(let ((k (extend-p-subgroup h g n)))

(and (subgroupp h k)

(subgroupp k g)

(equal (order k) (* n (order h)))))))

We recursively define a p-subgroup m = (sylow-subgroup g p) of g such that p does not divide the
index of m in its normalizer:

(defun sylow-subgroup-aux (h g p)

(declare (xargs :measure (nfix (- (order g) (order h)))))

(if (and (subgroupp h g) (primep p)

(divides p (subgroup-index h (normalizer h g))))

(sylow-subgroup-aux (extend-p-subgroup h g p) g p)

h))

(defund sylow-subgroup (g p) (sylow-subgroup-aux (trivial-subgroup g) g p))

(defthm index-sylow-subgroup

(implies (and (groupp g) (primep p))

(let ((m (sylow-subgroup g p)))

(and (subgroupp m g)

(p-groupp m p)

(not (divides p (subgroup-index m (normalizer m g))))))))

We aim to show that p does not divide the index of m in g, i.e., (order m) is the maximal power of p

that divides (order g). To this end, consider the action of g on the list of conjugates of m. This action

has one orbit, the order of which is the index of the normalizer of m. We shall show that this index is

congruent to 1 modulo p, and therefore not divisible by p.

Consider the restriction of this action to some p-subgroup h of g. Let c be a conjugate of m. By

normalizer-conj-sub, the normalizer of c is a conjugate of the normalizer of m, and therefore the

index of c in (normalizer c g) is not divisible by p.

Suppose x is an element of both h and (normalizer c g), but not an element of c. Since the order

of x in g is a power of p, the order of the coset of x in (quotient (normalizer c g) c) is also a

power of p, and p must divide (subgroup-index c (normalizer c g)), a contradiction. Thus, x is

in h, then x is in (normalizer c g) iff x is in c.
By stabilizer-orbit, the length of the orbit of c under conjugation by h is 1 if h stabilizes c, and

otherwise is divisible by p. But h stabilizes c iff h is a subgroup of (normalizer c g), and according
to the above observation, this holds iff h is a subgroup of c:
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(defthmd orbit-subaction-div-p

(implies (and (subgroupp m g)

(primep p)

(p-groupp m p)

(not (divides p (subgroup-index m (normalizer m g))))

(subgroupp h g)

(p-groupp h p)

(in c (conj-sub-act m g)))

(if (subgroupp h c)

(equal (len (orbit c (subaction (conj-sub-act m g) g h) h)) 1)

(divides p (len (orbit c (subaction (conj-sub-act m g) g h) h))))))

We first apply the above result to the case h = m. Since m is a subgroup of exactly 1 conjugate of m,
there is exactly 1 orbit of length 1 and all others have length divisible by p:

(defthmd orbit-subaction-m-len-1

(implies (and (subgroupp m g)

(primep p)

(p-groupp m p)

(not (divides p (subgroup-index m (normalizer m g))))

(in c (conj-sub-act m g)))

(if (equal c (conj-sub m (e g) g))

(equal (len (orbit c (subaction (conj-sub-act m g) g m) m)) 1)

(divides p (len (orbit c (subaction (conj-sub-act m g) g m) m))))))

Appending all orbits yields the first Sylow theorem:

(defthmd sylow-1

(implies (and (groupp g) (primep p))

(let ((m (sylow-subgroup g p)))

(equal (mod (len (conjs-sub m g)) p)

1))))

Since (len (conjs-sub m g)) = (subgroup-index (normalizer m g) g), this length divides
(subgroup-index m g):

(defthmd sylow-2

(implies (and (groupp g) (primep p))

(let ((m (sylow-subgroup g p)))

(divides (len (conjs-sub m g))

(subgroup-index m g)))))

Since (len (conjs-sub m g)) = (subgroup-index (normalizer m g) g) is not divisible by p,
neither is (subgroup-index m g):

(defthmd sylow-3

(implies (and (groupp g) (primep p))

(not (divides p (subgroup-index (sylow-subgroup g p) g)))))

The final Sylow theorem states that every p-subgroup of g is a subgroup of some conjugate of m.

This is another consequence of orbit-subaction-div-p: If h were a counterexample to this claim,

then according to orbit-subaction-div-p, the length of every orbit of h would be divisible by p,

contradicting mod-len-conjs-sub.

The statement of the theorem requires the following finction, which searches a list l of subgroups of
g for one that contains h as a subgroup:
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(defun find-supergroup (h l)

(if (consp l)

(if (subgroupp h (car l))

(car l)

(find-supergroup h (cdr l)))

()))

(defthmd sylow-4

(implies (and (groupp g) (primep p) (subgroupp h g) (p-groupp h p))

(let* ((m (sylow-subgroup g p))

(k (find-supergroup h (conjs-sub m g))))

(and (member-equal k (conjs-sub m g))

(subgroupp h k)))))

5 Simple Groups

A group is simple if has has no proper normal subgroup.

(defund proper-normalp (h g)

(and (normalp h g) (> (order h) 1) (< (order h) (order g))))

Simple groups play an important role in the classification of finite groups. Since every group of prime
order is simple, we focus on groups of composite order. One class of interest is that of the alternating
groups. Note that (alt 4) is not simple, as may be verified by direct computation:

(defthmd alt-4-not-simple

(proper-normalp (subgroup ’((0 1 2 3) (1 0 3 2) (2 3 0 1) (3 2 1 0)) (sym 4))

(alt 4)))

However, (alt n) is simple for all n ≥ 5. We shall prove this only for the case n = 5: (alt 5) is

a simple group of order 60. In contrast to the more general theorem, our proof of this result is largely

computational. We shall also prove, as an illustration of the Sylow theorems, that there are no simple

groups of composite order less than 60.

5.1 Simplicity of (alt 5)

Let h be a normal subgroup of g. The function conjs-list [1, Sec. 8] constructs a list of the non-central
conjugacy classes of g. We define (select-conjs (conjs-list h) h) to extract the conjugacy
classes that are included in h:

(defun select-conjs (l h)

(if (consp l)

(if (in (caar l) h)

(cons (car l) (select-conjs (cdr l) h))

(select-conjs (cdr l) h))

()))

if we append the elements of that list together with the elements of h that belong to the center of g, we
have a permutation of (elts h). In the case of interest the center happens to be trivial. This gives us an
expression for the order of h:

(defthmd len-select-conjs

(implies (and (normalp h g) (equal (cent-elts g) (list (e g))))

(equal (order h)

(1+ (len (append-list (select-conjs (conjs-list g) h)))))))
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Thus, (order h) = (1+ (len (append-list l))) for some sublist l of (conjs-list g). We

need only compute this value for all such sublists of (conjs-list (alt 5)) and observe that none of

these values is a proper divisor of 60.
However, the function conjs-list is computationally impractical for a group of order 60. We

define a more efficient and provably equivalent function, conjs-list-fast, based on a tail-recursive
version of conjs. The lengths of the conjugacy classes of (alt 5) can be easily computed using this
function:

(defun lens (l)

(if (consp l)

(cons (len (car l)) (lens (cdr l)))

()))

(defthmd lens-conjs-list-alt-5

(equal (lens (conjs-list-fast (alt 5))) ’(20 12 12 15)))

Clearly, no list of distinct members of this list has a sum that is a proper divisor of 60. Once we establish
this simple fact (which requires some work), our theorem follows from lagrange:

(defthmd alt-5-simple (not (proper-normalp h (alt 5))))

5.2 Groups of Lesser Order

For every group g of composite n < 60, we shall construct a proper normal subgroup of g. We begin
with the case of a prime power: n = (expt p k), where k > 1. By center-p-group (book cauchy),
(order (center g)) > 1. If (order (center g)) < (order g), then (center (g)) is a proper
normal subgroup. In the remaining case, (center g) = g, and hence g is abelian. Thus we need only
show that g has a proper subgroup. But this follows from cauchy, which guarantees an element of order
p. This leads to the following definition and lemma:

(defund normal-subgroup-prime-power (p k g)

(declare (ignore k))

(if (< (order (center g)) (order g))

(center g)

(cyclic (elt-of-ord p g) g)))

(defthm proper-normalp-prime-power

(implies (and (groupp g)

(equal (order g) (expt p k))

(primep p)

(natp k)

(> k 1))

(proper-normalp (normal-subgroup-prime-power p k g) g)))

The rest of the proof is based mainly on the Sylow theorems. We consider various cases according

to the prime factorization of n. As a notational convenience, we shall denote (sylow-subgroup g p)

by hp and (len (conjs-sub hp g)) by np.
Suppose n = (* p q), where p and q are primes and p < q. By the Sylow theorems, nq divides p

and (mod nq p) = 1. It follows that np = 1, which implies (sylow-subgroup g q) is normal in g.

(defund normal-subgroup-pq (p q g)

(declare (ignore p))

(sylow-subgroup g q))

(defthm proper-normalp-pq

(implies (and (groupp g) (equal (order g) (* p q))

(primep p) (primep q) (< p q))

(proper-normalp (normal-subgroup-pq p q g) g)))
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Next, we consider the case n = (* p p q), where p and q are primes. We must show that either np
= 1 or nq = 1. Suppose not. Since np divides q and (mod np p) = 1, q > p. Since nq divides (* p
p) and (mod nq q) = 1, nq = (* p p) and q divides (1- (* p p)). Thus, q divides either (1- p)
or (1+ p). Since q > p, q = (1+ p), which implies p = 2, p = 3, and n = 12. Since n3 = 4 and each
3-Sylow subgroup has 2 non-trivial elements, g has 8 elements of order 3. Since n2 >1, g has more than
4 elements of order dividing 4, a contradiction.

(defund normal-subgroup-ppq (p q g)

(if (normalp (sylow-subgroup g p) g)

(sylow-subgroup g p)

(sylow-subgroup g q)))

(defthm proper-normalp-ppq

(implies (and (groupp g)

(equal (order g) (* p p q))

(primep p)

(primep q)

(not (equal p q)))

(proper-normalp (normal-subgroup-ppq p q g) g)))

There are eight remaining cases, which are treated individually: 24, 30, 36, 40, 42, 48, 54, and 56.

Consider the case n = 24. Assume n2 >1 and let h21 and h22 be distinct members of (conj-subs h2

g). Then (order h21) = order h22) = 8. Let k = (group-intersection h21 h22 g). Then

(order k) ≤ 4 and by len-products [2, Sec. 3],

(len (products h21 h22 g)) = (/ (* (order h1) (order h2)) (order k)) ≤ 24,

which implies (order k) = 4 and (len (products h21 h22 g)) = 16. By index-least-divisor-normal
(Subsection 3.4), k is normal in both h21 and h22. It follows that (normalizer k g) contains (products
h21 h22 g). Consequently, (order (normalizer k g)) ≥ 16, which implies (normalizer k g)
= g and k is normal in g. Thus, we have the following:

(defund normal-subgroup-24 (g)

(let* ((h2 (sylow-subgroup g 2))

(h21 (car (conjs-sub h2 g)))

(h22 (cadr (conjs-sub h2 g)))

(k (group-intersection h21 h22 g)))

(if (normalp h2 g)

h2

k)))

(defthm proper-normalp-24

(implies (and (groupp g) (equal (order g) 24))

(proper-normalp (normal-subgroup-24 g) g)))

We omit the other seven cases, which use the same techniques as illustrated as above. We combine these
results in a function that splits into cases corresponding to the composite integers less than 60:

(defund normal-subgroup (g)

(case (order g)

(4 (normal-subgroup-prime-power 2 2 g))

(6 (normal-subgroup-pq 2 3 g))

(8 (normal-subgroup-prime-power 2 3 g))

(9 (normal-subgroup-prime-power 3 2 g))

(10 (normal-subgroup-pq 2 5 g))

(12 (normal-subgroup-ppq 2 3 g))

...

(56 (normal-subgroup-56 g))
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(57 (normal-subgroup-pq 3 19 g))

(58 (normal-subgroup-pq 2 29 g))))

(defthm no-simple-group-of-composite-order<60

(implies (and (natp n) (> n 1) (< n 60) (not (primep n))

(groupp g) (equal (order g) n))

(proper-normalp (normal-subgroup g) g)))

6 Conclusion

Our survey of this rich topic is far from complete. We anticipate enhancements of the theory, such as

the representation of a permutation as a product of disjoint cycles, which is required, for example, for a

general proof of the simplicity of (alt n). However, the intended scope of the project has essentially

been realized. The combined content of the groups directory is a close approximation to that of an

advanced undergraduate course that the author taught at The Cooper Union in the Spring of 1976.

The concluding section of Part I discusses the long-term objective of a formalization of algebraic

number theory. The next steps in this direction are elementary linear algebra and Galois theory, the first

of which is underway. We note one important difference between our approaches to groups, on one

hand, and fields and vector spaces on the other. As we have observed, our interest in finite groups and

the importance of proof by induction on the order of a group led us away from the characterization of

a group by means of encapsulated constrained functions in favor of an explicit defining predicate. On

the other hand, since we are interested in both infinite and finite fields (and the role of induction is less

critical even in the latter case), we are instead pursuing the encapsulation approach in the formalization

of fields as well as finite dimensional vector spaces.. A progress report may be expected at the next

ACL2 workshop.
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When verifying computer systems we sometimes want to study their asymptotic behaviors, i.e., how
they behave in the long run. In such cases, we need real analysis, the area of mathematics that deals
with limits and the foundations of calculus. In a prior work, we used real analysis in ACL2s to study
the asymptotic behavior of the RTO computation, commonly used in congestion control algorithms
across the Internet. One key component in our RTO computation analysis was proving in ACL2s that
for all α ∈ [0,1), the limit as n→∞ of αn is zero. Whereas the most obvious proof strategy involves
the logarithm, whose codomain includes irrationals, by default ACL2 only supports rationals, which
forced us to take a non-standard approach. In this paper, we explore different approaches to proving
the above result in ACL2(r) and ACL2s, from the perspective of a relatively new user to each. We also
contextualize the theorem by showing how it allowed us to prove important asymptotic properties
of the RTO computation. Finally, we discuss tradeoffs between the various proof strategies and
directions for future research.

1 Introduction

In contrast to purely mathematically oriented theorem provers, ACL2 is designed specifically with the
verification of computer systems in mind. This focus manifests in a variety of places across the ACL2
software landscape, such as the automated proofs of termination based on context-calling graphs pro-
vided by ACL2s [2, 1, 7], the integration of QuickLisp, or the development of advanced string-solving
capabilities [6]. It also manifests in what ACL2 lacks: e.g., ACL2 does not support irrationals such as
e,π, or

√
2, meaning it cannot be used to reason about the reals in full generality. Although this lim-

itation is often immaterial, it shows up when we want to study the asymptotic behaviors of computer
systems, meaning how they behave in the long run. In such cases we require real analysis, the area of
mathematics that deals with limits and the foundations of calculus. However, in general real analysis
proofs are riddled with real numbers; e.g., the logarithm is often used in these proofs, and it is often the
case that the logarithm of a rational number will be irrational. If all we want is to prove a real analysis
result, we can use ACL2(r) [3], the variant of ACL2 that supports real numbers. Unfortunately, ACL2(r)
proofs cannot be imported into a normal ACL2 environment because the two systems have conflicting
underlying theories, e.g., in ACL2 it is a theorem that ∀x :: x2 6= 2, while in ACL2(r),

√
2 is a number.

So, what if we have formalized and studied a computer system in ACL2, and now we want to look at its
asymptotic behaviors, without needing to port our model to ACL2(r)?

*Authors are listed alphabetically by last name.

http://dx.doi.org/10.4204/EPTCS.393.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


von Hippel et. al. 51

In this work we focus on one such scenario, drawn from our recent work [4] studying Karn’s algo-
rithm [5] and the related Retransmission TimeOut (RTO) computation [9]. This work can be viewed as a
companion paper to our work in [4], with a special focus on the proof strategy for the RTO observations.
Next, we briefly summarize our work in [4] as it provides context for this study.

1.1 Motivating Example

In order to understand the RTO computation and its motivation, we first need to understand the context
in which it is used. In the real world this context is an Internet connection between two computers, such
as might occur between a sender and receiver using TCP. In the most general sense, the context consists
of two endpoints communicating over a channel. The endpoints send and receive datagrams partitioned
into packets (that the sender transmits to the receiver) and acknowledgments, or ACKs (that the receiver
transmits to the sender), and each datagram is uniquely identifiable by its natural id and type (packet or
ACK). The channel is responsible for delivering messages transmitted from one endpoint to the other.
However, it might not do so reliably. It cannot create new messages, but may reorder, drop, delay, or
duplicate transmitted ones.1

We assume the sender does not transmit a packet p > 1 unless it previously transmitted all packets in
[1, p−1], although it may transmit p = 1 at any time. We additionally assume that ACKs are cumulative
in the sense that, the receiver does not transmit an ACK a > 1 unless it was previously delivered packets
1,2, . . . ,a− 1 but not a. In the event that the receiver cannot cumulatively acknowledge anything, for
instance, if it was delivered the packet 2 but never 1, then it may transmit the trivial acknowledgment of
1 (which does not acknowledge any packets). We also assume the receiver transmits an ACK whenever
it is delivered a packet. When the sender receives an acknowledgment a, it considers a to be new iff a
exceeds all the ACKs it received previously. In other words, a is new iff it acknowledges at least one
previously un-acknowledged packet.

In the real world, the channel may have limited bandwidth, and will start to lose datagrams when
its queues become full2. This bandwidth is unknowable to either endpoint, so the sender is forced to
use ACKs to assess the instantaneous state of the channel and react accordingly. It does so in two
ways. First, the sender measures the round-trip time (RTT) using its local clock between when it first
transmits a packet p and when it first receives any acknowledgment a > p, as an indication of the pace
at which the channel is delivering datagrams. It can use this information to moderate its transmission
rate. Second, if no new ACKs arrive for some amount of time, the sender can assume the channel
has been overwhelmed and is dropping data. In this case, it can slow its pace of transmission, and
begin retransmitting unacknowledged data accordingly. The time the sender will wait before timing out,
slowing its pace, and retransmitting, is called the RTO and defined in RFC6298 [9].

The conjunction of these two mechanisms creates a problem: suppose the sender retransmits an
unacknowledged packet p, then receives some new ACK a > p. How does it know which transmission
of p triggered the ACK? The estimated RTT will differ depending on the answer. We illustrate this
situation in Figure 13. One solution, known as Karn’s algorithm, is to only sample RTTs for packets that
were transmitted precisely once, since ACKs for these packets are unambiguous [5].

We formally modeled Karn’s algorithm in Ivy [8] with the network model outlined above. We proved
various inductive invariants about the algorithm, including that it samples a real RTT, that this RTT is in
some sense pessimistic, and that when the receiver-to-sender channel path is FIFO, this RTT is for the

1This model is less strict than the typical IP one where duplication is disallowed.
2Such lossy communication is commonly modeled using a so-called “token bucket filter”.
3Icons are from https://openmoji.org/

https://openmoji.org/
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Figure 1: Message sequence chart illustrating an ambiguous ACK, with the sender’s local clock shown
on the left. Sender’s packets are illustrated as packets, while receiver’s ACKs are shown as envelopes.
The first time the sender transmits 2 the packet is lost in-transit. Later, upon receiving a cumulative ACK
of 2, the sender determines the receiver had not yet received the 2 packet and thus the packet might be
lost in transit. It thus retransmits 2. Ultimately the receiver receives the retransmission and responds
with a cumulative ACK of 4. When the sender receives this ACK it cannot determine which 2 packet
delivery triggered the ACK transmission and thus, it does not know whether to measure an RTT of 7-3=4
or 7-6=1. Hence, the ACK is ambiguous, so any sampled RTT would be as well.

packet whose id is equal to the previously highest-received acknowledgment. Then, we formally modeled
the RTO computation in ACL2s. We chose ACL2s over Ivy because the computation is defined over real
numbers, which we chose to model as rationals, and Ivy only supports integers.4 And in particular, we
chose ACL2s over ACL2 because we made frequent use of its features. For example, we use the built-in
counterexample generation to show that a variable referred to as the “RTT variance” is not actually a
statistical variance; and in one of our proofs, we use an automated proof of function termination to prove
the existence of a particular value (namely, the value returned by the function in question).

The RTO computation is recursively defined over the RTT samples S1,S2, . . . output by Karn’s algo-
rithm and parameterized by three positive constants (α < 1, β < 1, and G) as follows.

rtoi = srtti +max(G,4 · rttvari)

rttvari =

{
Si/2 if i = 1
(1−β )rttvari−1 +β |srtti−1−Si| if i > 1

srtti =

{
Si if i = 1
(1−α)srtti−1 +αSi if i > 1

(1)

Note, we use “RTO” when discussing the calculation generally, and “rto” when discussing its actual
implementation (given in the equation above).

We looked at what we called the steady-state where for some rational center c and radius r, the
samples Si,Si+1, . . . ,Si+n all fall within the bounds [c− r,c+ r], and we proved the following.

4In practice, the implementations we are aware of use integers, however, when Karn and Partridge wrote the algorithm down
on paper, they did so using reals.
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I. The srtti+n is bounded by the interval [L,H] defined as follows.

L = (1−α)n+1
srtti−1 +(1− (1−α)n+1)(c− r)

H = (1−α)n+1
srtti−1 +(1− (1−α)n+1)(c+ r)

(2)

II. For all 0≤ m < n, rttvari+n is upper-bounded by the following expression.

(1−β )n+1−m
rttvari+m−1 +(1− (1−β )n+1−m)∆m , where

∆m = (1−α)m+1
srtti−1 +2r− (1−α)m+1(c+ r)

(3)

Then we reanalyzed the results in the asymptotic case. In other words, we asked what these bounds
converge to as the number n of consecutively bounded samples, as well as the cutoff m < n for the
bound ∆m defined above, grow toward infinity. By limit, we are referring to the standard definition5 from
real analysis, which we give below using the 1D Euclidean metric d(x,y) = |x− y|.

Definition 1 (Limit to ∞). Let (ai)
∞
i=0 ∈ Rω and ` ∈ R. Then limi→∞ ai = ` iff the following holds:

∀ε > 0 :: ∃δ > 0 :: ∀n > δ :: |an− `|< ε

We first proved the following theorem, which is the focus of this paper.

Theorem 1. ∀α ∈ [0,1) :: limn→∞ αn = 0

Theorem 1 can be manually proven as follows.

Proof. Let ε > 0 and 0 ≤ α < 1 arbitrarily. If α = 0 the result is immediate; suppose α > 0. Suppose
ε < 1, noting that if the theorem holds for ε < 1 then it holds for ε ≥ 1. Let δ = ln(ε)/ ln(α). Note that
ln(ε) and ln(α) are negative. Let n be some natural number and observe that n ln(α) = ln(αn). Thus:

n > δ ⇐⇒ n > ln(ε)/ ln(α) by definition of δ

⇐⇒ n ln(α)< ln(ε) multiplying each side by ln(a)

⇐⇒ en ln(α) < eln(ε) raising each side above e

⇐⇒ eln(αn) < ε because eln(x) = x for all x, and n ln(α) = ln(αn)

⇐⇒ α
n < ε because eln(x) = x for all x

We then used this theorem to show that limn→∞ L = c− r, limn→∞ H = c+ r, and the limit as n and
m < n both grow toward infinity of the upper bound in Eqn. 3 is precisely 2r.

5Limit proofs that assume an ε > 0 and then prove the existence of a corresponding δ > 0 satisfying this definition are
commonly reffered to as ε/δ -proofs.
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Outline. The rest of this paper is organized as follows. We study Theorem 1 in Sections 2 and 3.
Specifically, in Section 2 we formalize the English-language proof given above in ACL2(r). But recall,
we cannot use an ACL2(r) proof to study the RTO system we defined in ACl2s, without totally remodel-
ing it, as the two proof systems are incompatible. Thus in order to have our asymptotic proofs in the same
model as our other preexisting proofs about the RTO system, we need a rational proof. We give two such
proofs in Section 3. The first uses the ceiling function to define a δ directly. The second begins by prov-
ing that limn→∞ 1/2n = 0, then uses the binomial theorem to construct a δ such that n> δ =⇒ αδ < 1/2.
For the second proof strategy, we show two different ways to prove limn→∞ 1/2n = 0, one of which is
more automatic than the other. With those proofs out of the way, we show how to derive the limits for
the bounds on srtt and rttvar in Section 4, which concludes our analytic study of the RTO. We discuss
trade-offs between the various proofs and lessons learned in Section 5 and conclude in Section 6.

2 Real Proof

In this Section we overview the most obvious proof strategy for Theorem 1 – the one we gave in the
introduction – and its formalization in ACL2(r), the variant of ACL2 that supports real numbers. Because
the rationals form a dense subset of the reals, this proof implies the desired result over the rationals as
well. However, since ACl2 and ACL2(r) are theoretically incompatible, we cannot just import the proof
into our preexisting ACL2s model to cohabitate with our other theorems about the RTO calculation.

The theorem we aim to prove uses an existential quantifier, so we define it via defun-sk. Note that
our theorem statement will be the same in Section 3, except that since we will be using ACL2s in those
proofs, we will also have type declarations and guards there. Notice how we can drop the absolute value
signs from Definition 1 because α is assumed to be positive, implying that αn is also positive.

(defun -sk lim -0 (a e n)

(exists (d)

(=> (^ (realp e) (< 0 e) (< d n)) (< (raise a n) e))))

(defthm lim -a^n->0

(=> (^ (realp a) (< 0 a) (< a 1) (realp e) (< 0 e) (natp n))

(lim -0 a e n)) :instructions ...) ;; proof will go here

The most important step in an ε/δ proof is defining the δ . We do so by defining a witness function
da : ε → δ , so that the proof obligation reduces to showing ∀ε > 0 :: ∀n > da(ε) :: αn < ε .

(defun d (eps a) (/ (acl2 -ln eps) (acl2 -ln a)))

The remainder of the proof consists of two important steps. First, we define a number of arithmetic
lemmas which ACL2s proves automatically. Second, because ACL2(r) lacks a generic real logarithm or
exponent (having only the natural variants), we prove a translational lemma (R1) saying that en ln(α) =αn.
Then we rephrase the proof from §1 in terms of e, at which point it goes through easily.

2.1 Arithmetic Lemmas

We began by proving some basic arithmetic lemmas, which we needed for the more complicated proofs.
We proved that if ey < 1 then y < 0, and that if y ∈ (0,1), then ln(y) < 0. Then we proved two facts
about fractions of logarithms. First, if α ∈ (0,1) then (ln(ε)/ ln(α)) ln(α) = ln(ε). Second, if ε and α

both fall within (0,1) and n > ln(ε)/ ln(α), then n ln(α)< ln(ε), and thus, since the natural exponent is
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monotonic (i.e., x < y =⇒ ex < ey), it follows that en ln(α) < eln(ε) = ε . Finally, combining these results
gave us that if α and n ∈ R+ then ln(αn) = ln(en ln(α)) = n ln(α).

2.2 Translational Lemma

Our arithmetic lemmas allow us to prove the following translational result.

Lemma R1. For all positive reals α and n, en ln(α) = αn.

2.3 Proof of Theorem 1

Next we prove the desired result without loss of generality, and without explicitly using quantifiers. Our
proof uses Lemma R1 as a hint.

Lemma R2. Let α and ε be reals in (0,1) and let n > dα(ε) be a natural. Then αn < ε .

Notice how this immediately gives us our desired result, because if ε < 1 then we can just use
Lemma R2 directly, and if ε ≥ 1, we can use it with a new “epsilon” < ε . And this is precisely the
strategy we take in the instructions to our proof of Theorem 1, which go as follows:

i. Promote all variables then case-split on ε < 1.

ii. Case 1: ε < 1. Use Lemma R2. Then instantiate lim-0-suff with δ = dα(ε) and prove.

iii. Case 2: ε > 1. Use Lemma R2 with a new “epsilon” value of ε ′ = 1/2 and claim that all its
preconditions are satisfied. Further claim that if dα(1/2) < n then αn < 1/2 < ε . Then instantiate
lim-0-suff with δ = dα(1/2), promote, and prove.

On the one hand, our proof is straightforward in the sense that it mostly follows the English-language
proof we outlined in the introduction. On the other hand, we can easily see some places where more
machinery and theorems in the nonstandard arithmetic library would drastically simplify things. The
biggest ommision is that the nonstandard arithmetic library only supports natural exponent and logarithm,
which forced us to use the translational lemma. Most interestingly, this is not the shortest proof in this
paper! There is actually a more concise6, rational proof which we outline in the next Section.

3 Rational Proofs

In this Section, we reprove Theorem 1 in ACL2s, using only rationals. We present two proofs. The
first is the one we used in our motivating work [4], where we explicitly construct the δ using the ceiling
function. To do so, we have to prove various properties of that function. The second proof is our most
concise, and proceeds in two steps. First we show that limn→∞ 1/2n = 0. Then using the binomial
theorem, we show how, for any 0 < α < 1, we can construct an n such that αn < 1/2. The result follows.
For convenience, we refer to the first proof (given in §3.1) as the ceiling proof and the second (§3.2) as
the binomial proof. We recap in §3.3.

3.1 Ceiling Proof

In prose, the ceiling proof of Theorem 1 proceeds as follows.

6(as measured by lines of code and number of imported books)



56 Real Analysis Using ACL2

Proof. Let 0 ≤ α < 1 and ε > 0, arbitrarily. Let k = da/(1− a)e and observe that a ≤ k/(k+ 1). Let
f (n) = kαk/n. As an intermediary lemma, we claim that for all n≥ k, αn ≤ f (n).

Base Case: n = k thus f (n) = αk ≥ αn and we are done.

Inductive Step: By inductive hypothesis, we have

an ≤ kα
k/n (4)

and k ≤ n. This gives us k/(k+1)≤ n/(n+1) and thus:

α ≤ n/(n+1) (5)

Multiplying Eqn. 4 through by α , we get αn+1 ≤ kαk+1/n. Combining this with Eqn. 5:

α
n+1 ≤ (kα

k/n)
n

n+1
= kα

k/(n+1) (6)

and we are done.

Hence induction: ∀n≥ k, αn ≤ f (n). Now, let δ = dkαk/εe. It follows that ∀n≥ δ , f (n)≤ ε , and thus
by the above result, αn ≤ ε . We get αn < ε by repeating this process for ε/2, and we are done.

Although the proof is relatively straightforward on paper, as we will see, it is much more challenging
in ACL2s. The primary issue is that ACL2/ACL2s does not by default know very much about the ceiling
function, so we will be forced to prove many obvious lemmas before making the essential argument.
Since we are in ACL2s now, we first restate Theorem 1 with types.

(defun -sk lim -0 (a e n)

(declare (xargs :guard (and (posratp a) (< a 1) (posratp e) (natp n))

:verify -guards t))

(exists (d) (and (natp d) (implies (< d n) (< (expt a n) e)))))

(property lim -a^n->0 (a e :pos -rational n :nat)

:hyps (< a 1)

(lim -0 a e n) :instructions ...) ;; proof will go here

The rest of the subsection is organized in follows. We prove arithmetic lemmas in §3.1.1. We use these
lemmas to prove the “intermediary lemma” in §3.1.2, which we use to prove prove Thm. 1 in §3.1.3.

3.1.1 Arithmetic Lemmas

In order to fill out the instructions, we first need some lemmas, primarily about the ceiling function.

Lemma C1. For all x,y ∈Q+, if dxe< dye then (i) x≤ dxe and (ii) dxe< y.

For the next Lemma we write a manual proof, adapted from [10], and utilizing Lemma C1, which
we give immediately below.

Lemma C2. Let m,n ∈ N+ and x ∈Q+. Then dx/mne= ddx/me/ne.

Proof. Observe:
dx/me−1 < x/m≤ dx/me (7)
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Dividing Eqn. 7 by n, we get (dx/me − 1)/n < x/mn ≤ dx/me/n. We also observe that dx/mne ≤
ddx/me/ne. Thus by Lemma C1:

x/mn≤ dx/mne< dx/me/n (8)

Suppose (for a contradiction) that dx/mne < ddx/me/ne. Multiplying Eqn. 8 by n, we get x/m ≤
ndx/mne < dx/me, which is sufficient information for ACL2s to automatically find the contradiction:

dx/me ≤ ndx/mne< dx/me (9)

sufficing to show that dx/mne 6< ddx/me/ne. But then dx/mne= ddx/me/ne and we are done.

Next we observe that for all x,y,z∈Q+, if y≤ z then y/x≤ z/x and moreover, yx≤ zx. The following
property of the ceiling function automatically follows. Next we make an important observation about the
ceiling function.

Lemma C3. Let α ∈Q such that 0 < α < 1. Let k = dα/(1−α)e. Then α ≤ k/(1+ k).

Proof. First note that α/(1−α) ≤ k. Observe that for all x,y,z ∈ Q+, if y ≤ z, then yx ≤ zx. It follows
that α = (α/(1−α))(1−α)≤ k(1−α). Next observe that α ≤ k(1−α) = k−kα . Adding kα to each
side, we get α + kα = α(1+ k) ≤ k. Again consider x,y,z ∈ Q+ such that y ≤ z, but this time, observe
that yx≤ zx. Thus, α(1+ k)/(1+ k) = α ≤ k/(1+ k), and we are done.

Next we prove two lemmas about fractions.

Lemma C4. For all k ∈ N+ and α ∈Q+, kαk/k = αk.

Lemma C5. For all k ≤ n ∈ N,k/(1+ k)≤ n/(1+n).

Finally, we make some obvious arithmetic observations, leading to the following result.

Lemma C6. For all x,y ∈Q+, we have x/dx/ye ≤ y.

Proof. Note x/y≤ dx/ye, thus 1/dx/ye ≤ 1/(x/y). Multiply both sides by x, and we are done.

3.1.2 Inductive Proof of Intermediary Lemma

With these arithmetic lemmas completed we can move on to the actual proof. For convenience, we
will define a parameterized function fα : N+→ Q+ such that fα(n) = kαk/n for k = dα/(1−α)e. As
an intermediary lemma, we claim that for all n ≥ k, an ≤ f (n). Assuming the lemma holds, we can
let δ = dkak/εe, and we immediately get that for all n ≥ δ , an ≤ fα(n) ≤ ε . Theorem 1 immediately
follows. This sub-subsection is spent proving the intermediary lemma.

Lemma C7 (Base Case). Let α ∈Q+ and let k = dα/(1−α)e. Then fα(k) = ak.

Proof. Follows directly from Lemma C4.

Before the inductive step, we need one more helper lemma, the proof of which follows from our prior
arithmetic observations.

Lemma C8. For all n,k ∈ N+ and α ∈Q+, if αn+1 ≤ αkαk/n, then αn+1 ≤ kak/(1+n).

Lemma C9 (Inductive Step). Let α ∈ Q+ and n ∈ N. Suppose that α < 1, k = dα/(1−α)e ≤ n, and
αn ≤ fα(n). Then α1+n ≤ fα(1+n).
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Proof. By Lemma C7, fα(k) = ak. By Lemma C5, α ≤ k/(1+ k)≤ n/(1+n). Then by our arithmetic
observations, αn+1 ≤ fα(k)α , and thus, αn+1 ≤ kak/(1+n) = fα(1+n).

Although at this point we’ve laid out our inductive argument, we still need to implement it in ACL2s.
To begin with, this means defining an inductive scheme.

(definec ikn (a :pos -rational n :nat) :nat

:ic (< a 1)

(if (> (ceiling (/ a (- 1 a)) 1) n) 0 (1+ (ikn a (- n 1)))))

We use this scheme in the proof of the next lemma.

Lemma C10 (Intermediary Lemma). Let α < 1 be in Q+ and n≥ dα/(1−α)e in N. Then αn ≤ fα(n).

Proof. Induct on ikn. Use Lemma C7 for the base case and Lemma C9 for the inductive step.

3.1.3 Proof of Theorem 1

Our proof strategy is as follows. First, we introduce a function δα : R+→N+ defined by ε 7→max{k,d},
where k = dα/(1−α)e as before, and d = dkαk/εe. Then we prove three lemmas about this function
(given immediately below) which together suffice to imply Theorem 1. We use k and d as defined above.

Lemma C11. Let α < 1 and ε be in Q+ and n ∈ N. Suppose δα(ε)≤ n. Then k ≤ n.

Proof. By definition of δα , we have max{k,d} ≤ n. Since k ≤max{k,d}, we are done.

Lemma C12. Let α < 1 and ε be in Q+ and n ∈ N. Suppose δα(ε)≤ n. Then αn ≤ fα(n).

Proof. Follows automatically from Lemmas C10 and C11 with the definitions of fα and δα .

Lemma C13. Let α < 1 and ε be in Q+ and n ∈ N. Suppose δα(ε)≤ n. Then fα(n)≤ ε .

Proof. By the definition of δα , we have max{k,d} ≤ n. Our prior arithmetic observations give us that
kαk/n≤ kαk/d. Since d = dkαk/εe, by Lemma C6, clearly kαk/d ≤ ε . The result follows.

Armed with these Lemmas, we can prove a “helper lemma” like we did previously. But in this case,
we use ≤ instead of < because of the way we structured our argument based on the intermediary result.

Lemma C14. For all α < 1 and ε in Q+ and n ∈ N+, if δα(ε)≤ n then αn ≤ ε .

Proof. Follows from Lemmas C12 and C13 after observing that all their preconditions are met.

Finally, we can provide the instructions to prove Theorem 1. Note how we divide ε by 2 in order
to transform ≤ into <, to fit Definition 1.7

((:use (: instance lim -0-suff (d (delta a (/ e 2)))))

(:use (: instance a^n->0 (a a) (e (/ e 2)) (n n)))

:pro :prove)

7N.b., this trick suffices to show that the alternative definition with ≤ is equivalent.
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3.2 Binomial Proof

In this subsection, we propose an alternative proof. The strategy can be split into two steps. First, we
prove that 0≤ α ≤ 1/2 =⇒ limn→∞ αn = 0. Second, we prove that for all α ∈ [0,1), there exists some
δ ∈ N such that n > δ =⇒ αn ≤ 1/2. We rely on the binomial theorem to find this δ , hence the name
of the proof. These results suffice to prove Theorem 1.

We found two ways to approach the first step. The first way was to attack the problem directly,
with an ε/δ proof. The second was to leverage the termination analysis in ACL2s to find a δ semi-
automatically. We cover the first approach in §3.2.1 and the second in §3.2.2. Then in §3.2.3 we show
how, given either approach, we can prove Thm. 1 by completing the “second step” described above.

3.2.1 Manual Proof of 0≤ α ≤ 1/2 =⇒ limn→∞ αn = 0.

We begin by importing the proof-by-arithmetic book.

(include -book "make -event/proof -by -arith" :dir :system)

We then prove the a sequence of simple arithmetic facts, using some combination of the linear,
match-free, and all rule classes. First, like we did in the prior section, we show that the exponent is
monotonic. Second, we show that for all n ∈ N, n < 2n, and thus, if n is positive, then 1/2n < 1/n. Then
we introduce an arithmetic trick by which we can extract a number smaller than ε , namely, if ε = x/y is
a positive rational, then 1/y < ε . Combining these results yields the following two lemmas.

Lemma BM1. For all α ≤ 1/2 in Q+, and for all d ∈ N+, αd ≤ 1/2d .

Lemma BM2. For all α,ε = x/y ∈Q+, where x,y ∈ N+, if α ≤ 1/2, then αy ≤ ε .

At this point, the desired result follows directly from Lemma BM2.

3.2.2 Semi-Automatic Proof of 0≤ α ≤ 1/2 =⇒ limn→∞ αn = 0.

In the semi-automatic proof, we begin by defining two functions. The first function, µ : N×N→ N, is
defined by (b,q) 7→ b if q < 2b else µ(b+1,q), and can be viewed as a “helper function” to the second,
d : Q+ → N, which is defined by ε 7→ µ(0,denominator(ε)). When we define these two functions,
ACL2s automatically proves that they terminate, meaning that for all possible inputs of ε ∈Q+, µ(0,ε)
terminates. We use this with an inverse argument to show 1/2d(ε) ≤ ε , which we then manipulate to
get the desired result. Because the argument and manipulation require writing down additional lemmas,
we call this proof semi-automatic. Next, we prove three lemmas about these functions. The first two go
through automatically, whereas the third requires a manual proof.

Lemma BA1. For all b,q ∈ N, q < 2µ(b,q).

Lemma BA2. For all q ∈ N+, 1/2µ(0,q) < 1/q.

Lemma BA3. For all ε > 0, 1/2d(ε) < ε .

Proof. First observe that 1/denominator(ε)≤ ε . Then observe that 1/2denominator(ε)< 1/denominator(ε).
The rest follows automatically.

Next, we establish the monotonicity of the exponent, both strictly (<) and otherwise (≤). This allows
us to prove the following.

Lemma BA4. For all k ≤ n ∈ N+ and α < 1 in Q+, αn ≤ αk.



60 Real Analysis Using ACL2

Lemma BA5. For all ε > 0 in Q+ and n > d(ε) in N, 1/2n < ε .

Proof. Follows from the (non-strict) monotonicity of the exponent, Lemma BA3, and the observation
that for all n ∈ N, 1/2n = (1/2)n.

We prove the next lemma in its given form, and rewritten using numerator and denominator.

Lemma BA6. For all p,q ∈ N+, if p/q < 1 then p < q.

Lemma BA7. For all x≤ y and α in N+, α/y≤ α/x.

Finally, we get the desired result.

Lemma BA8. For all α ≤ 1/2 and ε in Q+, and for all n≥ d(ε) in N, αn < ε .

Proof. Follows from Lemmas BA5 and BA7.

Having shown two ways to derive the first step of our outlined proof strategy, we now move on to the
second step, where we invoke the binomial theorem.

3.2.3 Remainder of Binomial Proof

The remainder of the proof begins with the following lemma. The lemma is the same regardless of which
strategy we take for part 1 (i.e., manual, or semi-automatic), however, its proof differs slightly with each
choice. Thus for brevity, we only include the proof assuming we took the semi-automatic approach, since
it is the most recent in the text and thus the easiest to compare to here. The alternative version given the
manual approach is very nearly identical.

Lemma BB1. For all α = x/y ∈Q+, where x,y ∈ N+, α ≤ x/(1+ x).

Proof. Follows from Lemmas BA6 and BA7.

Next we import the binomial theorem into our proof.

(include -book "arithmetic/binomial" :dir :system)

Note that the binomial book was written in ACL2. Since we are in ACL2s, we have an additional
obligation to check types. So, we prove four convenient lemmas about the types involved in the binomial
expansion as defined in that book.

Lemma BB2. The codomain of the choose function is a subset of Z.

Lemma BB3. The integer-exponent of an integer is an integer.

Lemma BB4. The binomial expansion (defined in the binomial book) is a list of naturals.

Lemma BB5. For any list of naturals, its summation under the sumlist function is a natural.

Now we get to the crux of the argument. Essentially, we will show that if α < 1 is a rational with
numerator p and denominator q, then α = p/q≤ p/(p+1) and thus α p ≤ pp/(p+1)p. By the binomial
theorem, (p+ 1)p ≥ 2pp, thus α p ≤ 1/2, allowing us to reduce to the argument from step 1. Formally
speaking, we accomplish this through the following sequence of lemmas.

Lemma BB6. For all n ∈ N+, 2nn ≤ (1+n)n.

Proof. Follows from the binomial theorem because (1+n)n ≤ 1+ . . .+nnn−1 +nn.
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Now we prove a “helper lemma”, similar to what we did in prior proof strategies but this time for the
goal of “squeezing” αn below 1/2.

Lemma BB7. For all α < 1 in Q+, αnumerator(α) ≤ 1/2.

Proof. Let x/y = α . By Lemma BB6, 2yy ≤ (1+ y)y. By Lemma BA7, (yy)/(1+ y)y < (yy)/(2yy). But
since for all a,b,c∈Q+,ab/cb = (a/c)b and a/2a = 1/2, it immediately follows that (y/(1+y))y < 1/2.
By Lemma BB1, α ≤ α/(1+α). Combining this with the (non-strict) monotinicity of the exponent,
clearly αy ≤ (α/(1+α))y < 1/2. The rest follows from Lemma BA8 (or the equivalent result, in the
case of the manual proof).

3.3 Summary and Closing Thoughts

In this Section we provided two rational proof strategies for Theorem 1 – the “ceiling proof” and the
“binomial proof” – both of which we implemented using ACL2s. Since the rationals are dense in the
reals, these proof strategies equally apply to the real numbers. The ceiling proof, which is the one we
used in our prior work [4], involved first proving an intermediary lemma about the ceiling function.
Specifically, assuming 0 < α < 1 and setting k = dα/(1−α)e and δ = dkαk/εe, we proved that ∀n≥ δ ,
αn≤ fα(n). Since fα(n)≤ ε , the result directly followed. However, to prove this we first had to establish
many arithmetic lemmas about the ceiling function, so although straightforward on paper, the proof was
comparatively arduous in ACL2s.

For the “binomial proof”, we broke the problem into two steps, first showing that if 0 < α ≤ 1/2 then
limn→∞ αn = 0, and then for any α ∈ (1/2,1), constructing a δ such that n > δ =⇒ αn ≤ 1/2. For the
first step, we showed two different approaches, one manual and the other semi-automatic. What made
the second approach semi-automatic was that we used the termination analysis capabilities of ACL2s
to find the “δ” for our ε/δ proof automatically. However, we still had to prove that this δ satisfied
Definition 1. For the second step, we used the binomial theorem to show that for all positive integers
p, 2pp ≤ (p+1)p and therefore, if α = p/q≤ p/(p+1) then α p ≤ (p/(p+1))p ≤ 1/2. Overall, both
versions of the binomial proof were considerably simpler (in terms of lines of code) than the ceiling
proof in ACL2s, and the comparison is fair given that both strategies required importing preexisting
books (refer to Table 1).

Next, we return to the RTO, and show how any proof of Theorem 1 allows us to characterize the
asymptotic behaviors of the srtt and rttvar. We also discuss the implications of these results for the rto.

4 Analysis of RTO Calculation

Recall from Eqn 1 that the rto is defined over the rttvar, srtt, and RTT sample S; the rttvar is defined
over the S and the prior rttvar and srtt; and the srtt is defined over the S and prior srtt. Thus, going from
the inside out, we begin by characterizing the srtt; then we use that analysis to aid our characterization
of the rttvar; and finally we bring it all together to analyze the rto.

All of our work will be done under the “steady-state” assumption defined below. The purpose of this
assumption is to define what it means for the network to exhibit bounded amounts of oscillation. Note
however that this assumption does not limit the rate of oscillation in the sample values, for example, it
does not require that the samples be drawn from the image of some Lipschitz continuous function.

Definition 2 (c/r Steady State). Let c,r > 0 be rationals and suppose that Si,Si+1, . . . ,Si+n ∈ [c−r,c+r].
Then we refer to the samples S j for j = i, . . . , i+n as being in a c/r steady-state.
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For example, if Si,Si+1, . . . ,Si+n are drawn from the uniform distribution over [12.3,75]ms, then they
are in a 43.65/31.35 steady-state. Since every finite set achieves both a minimum and a maximum, all
finite sequences of samples are technically speaking steady-state sequences, however, the same cannot
be said for infinite sequences, such as the infinite sequence S j = 12.3+2 j for j ∈ N.

Without loss of generality, for the rest of this section we will assume samples Si,Si+1, . . . ,Si+n are
in a c/r steady-state. We say WLOG because, we will consider both n ∈ N and the limit as n→ ∞. We
begin by analyzing the srtt. Recall, srtti = Si if i = 1 else (1−α)srtti−1 +αSi. Since Si ∈ [c− r,c+ r]:

(1−α)srtti−1 +α(c− r)≤ srtti ≤ (1−α)srtti−1 +α(c+ r) (10)

Note that both bounds in Eqn. 10 have the shape (1−α)srtti−1 +αC for some constant C. Recursing on
this shape, we get the following.

Lemma 1. Let C ∈Q+ and suppose that for all natural 0≤ k≤ n, we have f (k) = (1−α)srtti−1 +αC.
Then the following holds for all 0≤ k ≤ n.

f (k) = (1−α)k+1
srtti−1 +

( k

∑
j=0

(1−α) j
α
)
C

= (1−α)k+1
srtti−1 +

(
(α−1)(1−α)k +1

)
C

(11)

Applying Lemma 1 to Eqn. 10 we get the following.

Theorem 2. Suppose Si,Si+1, . . . ,Si+n are in a c/r steady-state. Then L≤ srtti+n ≤ H where ...

L = (1−α)n+1
srtti−1 +

(
1− (1−α)n+1)(c− r), and

H = (1−α)n+1
srtti−1 +

(
1− (1−α)n+1)(c+ r)

(12)

In ACL2S, our proof strategy goes as follows. First we derive the closed form for ∑
k
j=0(1−α) jα

and use it to rewrite srtti+n under the assumption that Si = Si+1 = . . . = Si+n. Then we show that in
the c/r steady-state scenario, the lower bound L on the srtti+n is the value srtti+n would take if all the
samples equaled c− r, and likewise the upper bound H is the value srtti+n would take if all the samples
equaled c+ r. Finally, we simplify and get the desired result. Finally, we look at the asymptotic case.

Theorem 3. limn→∞ L = c− r and limn→∞ H = c+ r.

Proof. For simplicity consider: f (n) = (1−α)n+1srtti−1 +
(
(α − 1)(1−α)n + 1

)
C. Since 0 < α < 1,

we know 0 < 1−α < 1, so by Theorem 1, (1−a)n+1→ 0, and likewise for (1−α)n. This leaves only
the term C. Thus limn→∞ f (n) =C. Since L is just f (n) with C = c− r and H is just f (n) with C = c+ r,
the result immediately follows.

Next, we consider the rttvar calculation. Recall that rttvari = Si/2 if i = 1 else (1−β )rttvari−1 +
β |srtti−1−Si|, where β < 1 is constant in Q+. To simplify this equation, we will consider the case where
|srtti−1−Si| is upper-bounded by some constant ∆. (Then we will show how to derive such a ∆).

Lemma 2. Suppose Si,Si+1, . . . ,Si+n are in a c/r steady-state, and ∆ > 0 upper-bounds |srtt j−1−S j|
for each j = i, i+1, . . . , i+n. Then:

rttvari+n ≤ (1−β )n+1
rttvari−1 +(1− (1−β )n+1)∆ (13)
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Now we want to derive a bound on |srtt j−1−S j|. Note that this bound is at most:

max{|L− (c+ r)|, |H− (c− r)|} (14)

If the larger of the two options is |H− (c− r)| we derive the following.

∆ = |(1−α) j+1
srtti−1 +(1− (1−α) j+1)(c+ r)− (c− r)|

= |(1−α) j+1
srtti−1 +(c+ r)− (1−α) j+1(c+ r)− c+ r|

= |(1−α) j+1
srtti−1 +2r− (1−α) j+1(c+ r)|

(15)

By Theorem 1, clearly lim j→∞ ∆ = 2r. On the other hand, if the larger option is |L− (c+ r)|, we derive
∆ = |(1−α) j+1srtti−1− 2r+(1−α) j+1(c− r)| which asymptotes at |−2r| = 2r. So either way, as j
grows→ ∞, ∆ converges to 2r. Now suppose ∆ = 2r. Then the upper bound on srtti+n from Eqn 13 is
(1−β )n+1rttvari−1 +(1− (1−β )n+1)2r. Which gives us the following.

Theorem 4. Suppose Si,Si+1, . . . ,Si+n are in a c/r steady-state. Then there exists an upper bound on
rttvari+n which, as n→ ∞, converges to 2r.

Proof. Follows from Theorem 1 because limn→∞(1−β )n+1rttvari−1 = limn→∞(1−β )n+12r = 0.

Finally, we turn our attention to the rto calculation. Recall, rtoi = srtti +max(G,4 · rttvari) for some
constant G. On the one hand, if the rttvar is consistently very small (less than 1/4 of G) then clearly
the rto is bounded by [L+G,H +G]. In this case, if G > 2r, we are assured that timeouts will never
happen. But what if G is small relative to the radius of the steady-state interval? If G < 2r and the rttvar

can achieve a value ≤ G then a timeout can occur. And in fact, we can easily construct a scenario where
exactly this happens infinitely many times.

For the pathological scenario, suppose that every 100th sample equals 75, while all the rest equal
60. Clearly the samples are in a 67.5/7.5 steady-state. At the spikes (where Si+100n = 75), srtt ≈
61.88, rttvar≈ 3.75, and rto≈ 61. Since 61 < 75, a timeout occurs. There are infinitely many “spikes”
where timeouts occur. However, when we simulate a scenario where the samples are uniformly random
over [c− r,c+ r], little to no timeouts occur. Both scenarios are illustrated below in Fig. 2.8

The RTO calculation is specified in RFC6298 [9] which says the constant G should be set to the
“clock granularity” of the sender, in seconds. In the interest of avoiding excessive timeouts, a protocol
implementer might want to consider adding the additional criteria that G should exceed 1/2 the diameter
of the maximally large sample interval that they consider to be “stable”. Depending on the nature and
context of the protocol, this could be either a fixed or dynamic value. However, caution should be taken
on the other hand to ensure G is not too large, since timeouts should occur when there really is congestion
on the network, in order to avoid congestion collapse. Also, a dynamic value of G could exacerbate the
risk of choosing too large of a timeout value, and might even be vulnerable to targeted manipulation.

As we alluded when introducing Def 2, one interesting direction for future research is to investigate
minimal, sufficient analytic conditions to ensure timeouts do not occur. For example, it might be suf-
ficient to require the samples be drawn from the image of a Lipschitz continuous function, and then to
require some relationship between the Lipschitz bound, the choice of β , and the radius r. Although this
is purely speculative, it is certainly the case that the derivative of the samples must be taken into account
when analyzing the magnitude of the rttvar, providing multiple interesting directions for future research.

8Adapted from Fig. 3 of [4], first published in volume 14067, page 56, 2023, by Springer Nature.
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Figure 2: On the left are two 67.5/7.5 steady-state scenarios. On top the samples are drawn from the
uniform distribution over the bounds, and timeouts rarely, if ever, occur. In the bottom (pathological)
scenario, every 100th sample equals c+ r = 75 while the rest equal c− r = 60, and at each “spike”, a
timeout occurs. There are infinitely many spikes, and one is shown on the right (n = [350,450]).

5 Discussion

In this work we considered multiple approaches to proving ∀α ∈ [0,1) :: limn→∞ αn = 0. Our first was
in ACL2(r) and resembled the obvious pen-and-paper proof, but could not be imported into an ACL2
environment. Our second and third were in ACL2s and required proving some arithmetic lemmas. Of
these, the semi-automated version of the third is the most stylistically aligned with ACL2s because it
takes advantage of automated termination analysis. The ACL2(r) proof has the lowest character count
of all the proofs, and certifies the most quickly, but imports the most books and is not portable to ACL2.
Considering books and portability, the semi-automated binomial proof is probably the best (see Tab. 1).

While working on the third approach we encountered an inconvenience in ACL2s: in ACL2s,
definecs support function- and body-contract-hints, but property definitions do not. We found two
ways to address this. The first was to redefine the problematic property as a decision procedure in a

Proof LoC Chars Props/Thms Functions Books Cert Time (s)
Real 161 4,224 17 1 5 0.58
Ceiling 408 16,103 20 3 0 64.17
Binomial (M) 154 5,652 22 1 2 2.54
Binomial (SA) 122 5,402 22 2 1 3.84

Table 1: Proof comparison. (M) refers to “manual” while (SA) refers to “semi-automatic”. Lines of code
and character count are computed without comments or empty lines, however, the proofs are not styled
identically. Props/Thms counts instances of property and defthm, while Functions counts definecs,
definecds, and defuns. Certification time is measured on a 16GB M1 Macbook Air.
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definec with appropriate hints, and then write a new property saying that on all inputs, the procedure
returns true. The second was simply to set :check-contracts? nil. To ameliorate this issue, we plan
to add hints to property definitions in a future update to ACL2s.

While writing the ACL2s proofs, we took advantage of ACL2s features not available in ACL2 or
ACL2(r). Most notably, we used termination analysis in the semi-automated binomial proof. There are
also smaller ways that ACL2s was easier: type annotations improved the readability of our proofs, and
contract-checking gave us some lemmas for free, including type-checking in the xargs to our defun-sk.
In contrast, we had to manually prove contracts for dα in our ACL2(r) proof, and it is harder to read than
either ACL2s proof (with lengthier antecedents on defthms) because it lacks type annotations.

6 Conclusion

Recently, the Internet Engineering Task Force created a Usable Formal Methods Research Group, of
which we are members, to integrate formal methods into the RFC drafting process. In many protocols,
performance matters: we want to know how quickly the protocol achieves a desired outcome under
load. Usually performance is studied using simulations or measurements, which can give a sense of
how protocols behave “in the wild”. But what about how protocols behave in the worst case? What if
the worst case never happens in the measured environments or simulations? For this, we need a way
to prove performance bounds, namely, formal methods. Meanwhile, real analysis provides a convenient
framework with which to ask and answer questions about performance bounds in the long run. In our
prior work [4], we used formal methods with real analysis to prove useful bounds on the internal variables
of the RTO calculation. But we also ran into hurdles. We could not use the most obvious proof, which
requires real numbers, because ACL2s only supports rationals. When we came up with an alternative
approach (the “ceiling proof”) it required us to convince ACL2s of numerous arithmetic lemmas. Only
post-publication did we find a simpler solution, based on the binomial theorem.

As relatively novice users of ACL2s9, our work leads us to identify three areas where we feel the
ACL2 ecosystem could be improved to support work such as ours. First, ACL2 (and ACl2s in particular)
could benefit from a richer, more comprehensively documented, and more easily searchable library of
purely mathematical theorems, relating to the ceiling, floor, exponent, and logarithm, as well as metric
spaces and limits. Searching for proofs is difficult enough, and ACL2 does not come with any kind
of semantic proof search tool. And often, even when the desired theorems exist in the ACL2 books,
they are unmentioned in the documentation. For example, the documentation on “arithmetic” does not
mention the RTL books, and neither does the documentation on “math”. Moreover, the rewrite rules from
different libraries may conflict, so even if you find the desired theorems, importing them into a singular
environment may be non-trivial. It would also be useful to have more mathematics formalized in ACL2s,
so as to avoid additional proof obligations (for function contracts and termination) when using imported
books. Second, ACL2(r) could benefit from the addition of the generic exponent and logarithm. This
could be done using the translational Lemma given in §2. Third, and most importantly, though ACL2(r)
and ACL2 have incompatible theories, it is nevertheless true that certain kinds of theorems over the reals
should hold over the rationals, because the rationals are dense in the reals. It would useful to have a
kind of “bridge” between ACL2(r) and ACL2, by which the user could justify that a given theorem, if
true over the reals, must also hold over the rationals; prove the theorem in ACL2(r); and then import the
theorem, using its “justification”, into ACL2. Hopefully our experience provides insight for future work
in both protocol analysis and extending the ACL2 ecosystem.

9Excluding the second author.
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The experience of an ACL2 user generally includes many failed proof attempts. A key to successful

use of the ACL2 prover is the effective use of tools to debug those failures. We focus on changes made

after ACL2 Version 8.5: the improved break-rewrite utility and the new utility, with-brr-data.

1 Introduction

The key technique for debugging ACL2 proofs is known as the method. 1 Briefly put, it is to look

at checkpoints that the prover cannot further simplify, usually to get ideas for controlling rewriting by

introducing new rewrite rules or by enabling or disabling existing ones. However, there are many proof

debugging tools that can be helpful when using the method; brief summaries may be found in the list of

debugging topics (for proofs and otherwise) in the ACL2+books manual [3]. Among these are a number

of popular tools, including accumulated-persistence and the proof-builder.

However, this paper focuses on the following two tools: With-brr-data and the break-rewrite

utility. These are tools that directly track the ACL2 rewriter. The former was introduced after the release

of ACL2 Version 8.5 in July, 2022. The latter was introduced in the early 1990s (Version 1.3) but

was significantly improved after the Version 8.5 release. The sections below deal with each of these,

first at the user level and then with implementation-level discussions. The user-level discussions start

with the new tool, with-brr-data, followed by a section on break-rewrite (including its new “near

misses” capability) and then a section showing their use together. The implementation-level sections

start with background material on a key enabling device, wormholes, followed by a discussion of break-

rewrite implementation, after which we discuss the implementation of with-brr-data and how it takes

advantage of the break-rewrite implementation. Next we discuss how to change the functionality of

with-brr-data with attachments. We wrap up with a conclusion. We assume some familiarity with

rewriting in ACL2.

The examples in this paper are available in supporting materials for this paper; see community books

file workshops/2023/kaufmann-moore/README. Additional examples may be found in demos/brr-

-test-input.lsp, which generates output found in demos/brr-test-log.txt, and in system/-

tests/brr-data-input.lsp, which generates output found in system/tests/brr-data-log.txt.

Terminology. An application A of a rewrite rule R is the process of replacing a term, the target,

by suitably rewriting the right-hand side of R to obtain the result of A. This process includes not only

rewriting the right-hand side of R but also relieving the hypotheses of R. For this purpose, the equality

( f x1 . . .xk) = b representing a definition is viewed as a rewrite rule whose left- and right-hand sides

are those of the equality. A term t1 is said to contain t2 if t2 occurs as a subterm of t1. A rewrite rule

application introduces tm as a subterm if the result, but not the target, contains tm. For a given application

A of a rewrite rule R, a subsidiary application is a rewrite rule application that takes place after A begins

*Released under Distribution Statement “A” (Approved for Public Release, Distribution Unlimited).
1The online version of this paper provides underlined links like this to documentation [3] topics.
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but before A completes; that is, it takes place during the process of rewriting the right-hand side of R.

Thus when A is represented by a frame displayed by the utility cw-gstack or (similarly) the break-rewrite

path command, all rewrite rule applications represented below that frame are subsidiary to A. Finally, a

top-level operation of the simplifier is any operation performed by the simplifier that is not made while

attempting to relieve a hypothesis.

2 User-level introduction to with-brr-data

ACL2 users sometimes find a surprising term in a checkpoint. This section summarizes how the with-

-brr-data utility may be used to see how rewrite rules were applied to produce a given term during a

proof attempt. These rules might well include at least one rule that hasn’t occurred to the user, perhaps

because it was introduced by including someone else’s book. See also the with-brr-data documenta-

tion for more details and examples.

The behavior of associated queries is perhaps best explained with the examples below, but we start

here with a summary. If F is a form that invokes the prover, then (with-brr-data F) saves prover

data that can be queried later. A key query is of the form (cw-gstack-for-subterm tm) where tm is a

term; variants are described near the end of this section. That query searches for the first top-level rewrite

rule application, A — the product of the search — that introduced tm as a subterm. If A is found, then

a stack S is displayed as with cw-gstack or (similarly) the break-rewrite path command (hence using

terms in translated form). S represents top-level operations down to a frame F that represents A, and

S maximally extends past F such that every rule application represented below F (which is necessarily

subsidiary to A) is suitable: its result contains tm as a subterm. After the stack is printed, the result of its

final rewrite rule application is printed. If the stack extends beyond A then the result of A is also printed.

Next we give two examples that illustrate the description above. Let’s start with the simpler one.

(include-book "std/lists/rev" :dir :system)

(with-brr-data

(thm (implies (and (natp n)

(< n (len x)))

(equal (nth n (revappend x y))

(nth n (reverse x))))

:hints ; The second example shows what happens when we remove :hints.

(("Goal" :do-not ’(preprocess)))))

We see the following checkpoint at the top level.

(IMPLIES (AND (INTEGERP N)

(<= 0 N)

(< N (LEN X))

(NOT (STRINGP X)))

(EQUAL (NTH N (APPEND (REV X) Y))

(NTH N (REV X))))

At this point we might reasonably ask: How did rewriting produce (REV X)? Note that REV is not a

built-in function; it must have been defined in an included book. The following log, explained below,

shows how a query using cw-gstack-for-subterm can provide an answer.

ACL2 !>(cw-gstack-for-subterm (REV X))

1. Simplifying the clause

((IMPLIES (IF (NATP N) (< N (LEN X)) ’NIL)

(EQUAL (NTH N (REVAPPEND X Y))
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(NTH N (REVERSE X)))))

2. Rewriting (to simplify) the atom of the first literal,

(IMPLIES (IF (NATP N) (< N (LEN X)) ’NIL)

(EQUAL (NTH N (REVAPPEND X Y))

(NTH N (REVERSE X)))),

3. Rewriting (to simplify) the second argument,

(EQUAL (NTH N (REVAPPEND X Y))

(NTH N (REVERSE X))),

4. Rewriting (to simplify) the first argument,

(NTH N (REVAPPEND X Y)),

5. Rewriting (to simplify) the second argument,

(REVAPPEND X Y),

6. Attempting to apply (:REWRITE REVAPPEND-REMOVAL) to

(REVAPPEND X Y)

The resulting (translated) term is

(BINARY-APPEND (REV X) Y).

ACL2 !>

The use of with-brr-data above caused data to be collected that we can query as shown in the log

above. Frame 1 shows the initial clause (list of literals, implicitly disjoined), which in this case is a

list containing just the initial translated goal. As we look down the stack we see how the process of

simplification moved from there to frame 6, which is what the search was seeking: the first rewrite rule

application A that introduced (REV X) as a subterm; as noted above, we will call A the product of the

search. The stack stops there because no rewrite rules were applied to the right-hand side after applying

REVAPPEND-REMOVAL. The log concludes with the result of A.

The second example modifies the first by removing the :hints. That produces the following proof

output, for example by using :pso.

By the simple :definition NATP and the simple :rewrite rule REVAPPEND-REMOVAL

we reduce the conjecture to

Goal’

(IMPLIES (AND (INTEGERP N)

(<= 0 N)

(< N (LEN X)))

(EQUAL (NTH N (APPEND (REV X) Y))

(NTH N (REVERSE X)))).

This goal further simplified to produce the same checkpoint as the first example. But the word “simple”

in the log above indicates that simplification was performed with the lightweight “preprocess” simplifier.

Like break-rewrite, with-brr-data does not store data from the preprocess simplifier. In particular,

nothing was stored while generating the goal above. Without such data, it is impossible to track the

source of the subterm (REV X) occurring in Goal’, since it has already been put into that goal with

preprocessing and we are looking for rewrite rule applications that introduce (REV X) as a subterm.

However, simplification of Goal’ introduced a new occurrence of (REV X), as seen in the following

log; explanation follows.

ACL2 !>(cw-gstack-for-subterm (REV X))

1. Simplifying the clause

((NOT (INTEGERP N))

(< N ’0)

(NOT (< N (LEN X)))

(EQUAL (NTH N (BINARY-APPEND (REV X) Y))

(NTH N (REVERSE X))))
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2. Rewriting (to simplify) the atom of the fourth literal,

(EQUAL (NTH N (BINARY-APPEND (REV X) Y))

(NTH N (REVERSE X))),

3. Rewriting (to simplify) the second argument,

(NTH N (REVERSE X)),

4. Rewriting (to simplify) the second argument,

(REVERSE X),

5. Attempting to apply (:DEFINITION REVERSE) to

(REVERSE X)

6. Rewriting (to simplify) the body,

(IF (STRINGP X)

(COERCE (REVAPPEND (COERCE X ’LIST) ’NIL)

’STRING)

(REVAPPEND X ’NIL)),

under the substitution

X : X

7. Rewriting (to simplify) the third argument,

(REVAPPEND X ’NIL),

under the substitution

X : X

8. Attempting to apply (:REWRITE REVAPPEND-REMOVAL) to

(REVAPPEND X ’NIL)

9. Rewriting (to simplify) the rhs of the conclusion,

(BINARY-APPEND (REV X) Y),

under the substitution

Y : ’NIL

X : X

10. Attempting to apply (:REWRITE APPEND-ATOM-UNDER-LIST-EQUIV) to

(BINARY-APPEND (REV X) ’NIL)

The resulting (translated) term is

(REV X).

Note: The first lemma application above that provides a suitable result

is at frame 5, and that result is

(IF (STRINGP X)

(COERCE (REV (COERCE X ’LIST)) ’STRING)

(REV X)).

ACL2 !>

The clause in frame 1 corresponds to the goal above, Goal’; thus this stack is from the process of

simplifying that goal. Frames 2 and 3 show that we are dealing with the second argument of the call

of EQUAL, which unlike the first argument did not already have a subterm of (REV X). Frame 5 shows

the product of the search: the first rewrite rule application that introduced (REV X) as a subterm, whose

result is shown in the Note printed at the end about “a suitable result”. For the rest of the stack after

frame 5, (REV X) is a subterm of the result of each rewrite rule application. Just after the stack is printed

(and before the Note at the end, which is about frame 5), we see the result of the rule application of the

final frame, frame 10, which happens to be (REV X) itself.

The second example above illustrates why the stack is extended past the product of the search using

rule applications whose result contains the subterm of the query, in this case (REV X). If the display had

ended at frame 5, we would not have seen the rule most directly responsible for introducing (REV X) as

a subterm — REVAPPEND-REMOVAL, applied at frame 8 – even though (REV X) occurs in the result from

frame 5 (as noted at the end of the log above).

For more examples, see the community books file, system/tests/brr-data-input.lsp and cor-

responding log brr-data-log.txt in that directory.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____COMMUNITY-BOOKS
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The following related query capabilities are also supported.

• The query (cw-gstack-for-term tm) differs from (cw-gstack-for-subterm tm) only in

that it searches results for tm itself, rather than for terms containing tm as a subterm.

• The queries (cw-gstack-for-subterm* tm) and (cw-gstack-for-term* tm) are iterative

versions of their counterparts without the ‘*’ suffix, in that that they query for additional results.

Each successive search in the scope of these queries ignores all rule applications that are subsidiary

to the products of previous searches.

• All of these utilities can take an argument of the following form (as permitted for :expand hints):

(:free (v1 . . . vk) tm), where the vi are variables and tm is a term. In this case, the search is

for any instance of tm obtained by substituting for the vi. Note however that once the product of a

search is found, the corresponding instance of tm is used for finding a maximal stack extension.

We conclude this section with three remarks.

1. Rules are monitored within the scope of with-brr-data as though :brr t has been executed.

2. With-brr-data does not collect any data for the near-miss breaks discussed in the next section.

3. In ACL2(p), with-brr-data is disallowed when waterfall-parallelism is enabled, as that would

interfere with the sequential nature of data collection (which relies on the timing for collection of

subsidiary applications).

3 User-level introduction to break-rewrite

Break-rewrite was originally designed to help answer the question “why did the attempt to apply a certain

lemma fail?” It was modeled on Nqthm’s break-lemma [1, pp. 257–264].2 For example, suppose the

user has proved these two rules,

(defthm p-rule (implies (q x) (p (f x y))))

(defthm q-rule1 (implies (r x) (q x)))

and then tries (thm (implies (r v) (p (f u v)))). The proof fails. But the user expected the two

rules to be used to prove the theorem and so responds with

(brr t) ; turn on break-rewrite

(monitor ’p-rule t) ; unconditionally break when p-rule is matched

(monitor ’q-rule1 t) ; unconditionally break when q-rule1 is matched

(thm (implies (r v) (p (f u v)))) ; try thm again

This time there are interactive breaks. The keyword commands below are the user’s responses to the

breaks. We have indented the depth 2 break for clarity; ACL2 does not indent breaks, to save space on

the line.

(1 Breaking (:REWRITE P-RULE) on (P (F U V)):

1 ACL2 >:eval

(2 Breaking (:REWRITE Q-RULE1) on (Q U):

2 ACL2 >:eval

2x (:REWRITE Q-RULE1) failed because :HYP 1 rewrote to (R U).

2Nqthm’s break-lemma is also described in [2, pp. 305–311].
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2 ACL2 >:type-alist

Decoded type-alist:

-----

Terms with type (TS-COMPLEMENT *TS-NIL*):

(R V)

==========

Use (GET-BRR-LOCAL ’TYPE-ALIST STATE) to see actual type-alist.

2 ACL2 >:a!

Abort to ACL2 top-level.

We see that q-rule1 failed because its first hypothesis rewrote to (R U) but the :type-alist

shows (R V) as a given. We should be trying to prove (thm (implies (r u) (p (f u v)))).

Break-rewrite was helpful here because the user expected a certain rule to be tried and a target match-

ing the rule’s left-hand side was encountered by the rewriter, but something prevented the application.

Typical failure reasons are that a hypothesis could not be relieved, a suitable free variable instantiation

could not be found, or the rule would have performed a “heuristically unattractive” replacement.

But if the rewriter never sees a target that matches the rule, break-rewrite cannot help us — or at least

it could not help us until the recent addition of near-miss break criteria.

We will illustrate a near-miss break with a lemma about loop$ [4]. Near-miss break criteria are more

general than this example might suggest. We elaborate at the end of this section. But four facts team

up to make lemmas about loop$ particularly prone to near-miss mismatches. (a) Loop$s create quoted

lambda constants; (b) each lambda constant contains arbitrary ACL2 code, namely the loop$ body; (c)

the prover can rewrite lambda constants in slots of ilk :FN; but (d) matching requires identity on quoted

constants. These facts often mean that lemmas about loop$ fail to match because the lambda constants

in the lemmas are not in “rewrite-normal form” because we typically do not write code in rewrite-normal

form. (“Rewrite-normal form” is an informal notion. A term is in rewrite-normal form if it is not changed

by rewriting. Of course, this really depends on the context in which the term occurs.)

Here is an example. Suppose (nats n) has been defined to return a list of natural numbers and foo

is some function of one argument. Suppose the user wants to prove

(defthm thm-a

(loop$ for e in (nats (foo a)) always (atom e)))

and has realized a more general lemma is needed:

(defthm lemma-a

(loop$ for e in (nats n) always (atom e)))

This lemma is easily proved after including the standard "projects/apply/top" book. But when

the user tries to prove thm-a after the proving lemma-a the proof fails. Monitoring lemma-a does not

help: no break happens because no target term matching the lemma ever arises. What we need to do is

see the targets that are near-misses.

Because our lemma involves loop$ (and thus lambda constants) we install a near-miss monitor that

means “break when a match fails due only to mismatching lambda constants.”

(monitor ’lemma-a ’(:lambda t))

Trying thm-a again produces an interactive break to which the user types the :lhs command.
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(1 Breaking (:REWRITE LEMMA-A) on

(ALWAYS$ ’(LAMBDA (LOOP$-IVAR) (IF (CONSP LOOP$-IVAR) ’NIL ’T))

(NATS (FOO A))):

The pattern in this rule failed to match the target. However, this

is considered a NEAR MISS under the break criteria,

(:CONDITION ’T :LAMBDA T), specified when this rule was monitored.

The following criterion is satisfied.

* :LHS matches :TARGET except at one or more quoted LAMBDA constants.

1 ACL2 >:lhs

(ALWAYS$ ’(LAMBDA (LOOP$-IVAR) (ATOM LOOP$-IVAR))

(NATS N))

The :target is shown in the break header. We see that the body of the quoted lambda constant in

:target is (IF (CONSP LOOP$-IVAR) ’NIL ’T) but the body of the quoted lambda constant in :lhs

is (ATOM LOOP$-IVAR). The lambda constant in the theorem was rewritten; (ATOM LOOP$-IVAR) was

expanded.

Problems of this sort can often be addressed in several ways, e.g., by disabling the rewriting of

lambda objects (see rewrite-lambda-object), or disabling the functions in the body that the rewriter

expanded. But, as in this case, those approaches often raise other issues. It is generally best to restate

the lemma so that the body of the lambda is in rewrite-normal form. That is, restate LEMMA-A so that

the body of the loop$ is (if (consp e) nil t) instead of (atom e). The experienced ACL2 user

would not formulate a rewrite rule containing a non-recursive function like atom in its left-hand side but

that is exactly what we did in our original formulation of lemma-a.

Other near-miss criteria are :depth k where k is a natural number and :abstraction pat where

pat is a term. The former criterion triggers a break if the :lhs matches the target down to depth k.

The latter triggers a break if the specified pat matches the target. All three criteria, :lambda, :depth,

and :abstraction, are implemented the same way: the near-miss criterion gives rise to a near-miss

pattern that is typically more general than the left-hand side, e.g., :depth 2 applied to a left-hand side

of (f (g (h x) x)) generates the near-miss pattern (F (G GENSYM0 X)). We then try to instantiate

the near-miss pattern to produce the target and if it succeeds we say that a near miss occurred (since the

left-hand side failed to unify), and a corresponding message is printed. Note that each near-miss criterion

is handled this way, and a message is printed for each that has occurred. This process is carried out by the

function brr-near-missp. We hope to make brr-near-missp attachable so users can add additional

ways to trigger near-miss breaks, but we have not done so yet. See monitor and brr-near-missp for

details.

4 Using with-brr-data and break-rewrite together

Sometimes with-brr-data doesn’t quite do the job by itself but is useful in concert with break-rewrite,

as illustrated by the following example from the documentation for with-brr-data. This example does

not exercise the near-miss feature of break-rewrite.

(with-brr-data (thm (equal (append x y) (append y x))))

After the proof attempt fails, the first checkpoint under induction is as follows.

(IMPLIES (AND (CONSP X)
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(EQUAL (APPEND (CDR X) Y)

(APPEND Y (CDR X))))

(EQUAL (CONS (CAR X) (APPEND Y (CDR X)))

(APPEND Y X)))

Even an experienced user might be surprised, at least initially, to see the second occurrence of (APPEND

Y (CDR X)). The following log shows how an appropriate query can attempt to shed light on that.

ACL2 !>(cw-gstack-for-subterm (append y (cdr x)))

1. Simplifying the clause

((NOT (CONSP X))

(NOT (EQUAL (BINARY-APPEND (CDR X) Y)

(BINARY-APPEND Y (CDR X))))

(EQUAL (BINARY-APPEND X Y)

(BINARY-APPEND Y X)))

2. Rewriting (to simplify) the atom of the third literal,

(EQUAL (BINARY-APPEND X Y)

(BINARY-APPEND Y X)),

3. Rewriting (to simplify) the first argument,

(BINARY-APPEND X Y),

4. Attempting to apply (:DEFINITION BINARY-APPEND) to

(BINARY-APPEND X Y)

The resulting (translated) term is

(CONS (CAR X)

(BINARY-APPEND Y (CDR X))).

ACL2 !>

This shows us that the term (BINARY-APPEND Y (CDR X)), which is the translated term corresponding

to the user input of (APPEND Y (CDR X)), is produced from the definition of BINARY-APPEND. But

how? We can monitor that definition to answer that question. Here is a log, abbreviated as shown.

ACL2 !>:monitor! binary-append (equal (brr@ :target) ’(BINARY-APPEND X Y))

T

ACL2 !>(thm (equal (append x y) (append y x)))

[[.. Use :go to get past the start of induction. ..]]

*1 (the initial Goal, a key checkpoint) is pushed for proof by induction.

[[.. elided ..]]

(1 Breaking (:DEFINITION BINARY-APPEND) on (BINARY-APPEND X Y):

1 ACL2 >:eval

1! (:DEFINITION BINARY-APPEND) produced

(CONS (CAR X) (BINARY-APPEND Y (CDR X))).

1 ACL2 >:type-alist

Decoded type-alist:

-----

Terms with type *TS-T*:

(EQUAL (APPEND (CDR X) Y)

(APPEND Y (CDR X)))

-----

Terms with type *TS-CONS*:

X
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==========

Use (GET-BRR-LOCAL ’TYPE-ALIST STATE) to see actual type-alist.

1 ACL2 >

We see that an equality — in this case, the induction hypothesis — has been applied to switch the

arguments of the call of BINARY-APPEND that was created by applying its definition.

5 Brief introduction to wormholes

The implementations of with-brr-data and break-rewrite both depend on ACL2 wormholes. Here we

provide a bit of relevant background on wormholes.

Every ACL2 function is a true mathematical function: equal inputs produce equal outputs. There are

no side-effects. To interact with the user a function must take and return the ACL2 state so that inputs

can be read and outputs printed.

Wormhole is an ACL2 function that takes a wormhole name and some other arguments, not including

state, and always returns nil. So logically it is a trivial constant function. But when wormhole is called

a new read-eval-print loop is started on a copy of the ACL2 state which also contains the inputs to the

call of wormhole and an object, called the wormhole status associated with wormhole name as of the last

time the wormhole was exited. While in this loop, forms can print information to the comment window,

inspect and compute a new wormhole status, and (to a limited extent) modify the copy of the state

available in the wormhole. But the first form “read” and executed by this loop is not one typed by

the user but is provided in the call of wormhole. Thus the call of wormhole can inspect the available

information and configure the status as appropriate and then either exit the loop (without ever prompting

the user for anything) or stay in the loop and prompt the user for input. When the loop is exited for any

reason the final status is saved in a secret location to be reinstated the next time that wormhole is entered.

The rest of that copy of the state is discarded.

Thus, using a wormhole, you can accumulate into the status any data passed into the wormhole or

obtained from state, you can print data, and you can interact with the user, but you cannot pass data from

inside the wormhole out to the caller: the result is always nil and the ACL2 state remains unchanged.

Wormholes necessitate the “copying” of the ACL2 state and the saving of data outside of the ACL2

state. The copying is just an illusion. The state inside a wormhole is the “live state” but all allowed

changes are tracked, including changes to state global variables, and when the wormhole exits, those

changes are undone by Lisp’s unwind protection mechanism. (This actually messed up the behavior of

break-rewrite, e.g., by losing track of which lemmas are monitored, when the user invoked the theorem

prover recursively from within a wormhole; but that problem has been fixed.) As for saving data outside

the state, we use a raw Lisp association list to associate each wormhole name with its current status.

When the wormhole is entered, that status object is assigned to a state global variable in the ACL2 state

so that the status is visible to forms executing in the wormhole. When the wormhole is exited, that status

is written back to the raw Lisp association list. This general scheme has been in effect for 30 years, but in

working on break-rewrite recently we discovered some problems that necessitated clarifying the imple-

mentation of wormholes. The first step in that clarification is to introduce some terminology: the status

of a wormhole stored in raw Lisp is called the persistent wormhole status (“whs”), while the status occa-

sionally stored in the ACL2 state is called the ephemeral whs because it disappears and reappears. The

problem we discovered with the old implementation of wormholes can best be understood by thinking

of the persistent whs as a hard-to-access memory location and the ephemeral one as an easily accessed,
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nearby cache. The problem was that our cache was not always coherent: some functions (or user com-

mands) changed one without changing the other. See wormhole and wormhole-programming-tips

for details.

Wormholes can be expensive to enter and exit, e.g., cleanup forms must be consed up upon state

changes and evaluated upon exit, and forms executed within the wormhole must read, translated, and

interpreted. So we provide a more efficient mechanism called wormhole-eval, which essentially takes

a wormhole name and a lambda expression, binds the lambda formal to the persistent status of the

named wormhole, evaluates the term, and stores the result back into the persistent status.

6 Implementation aspects for break-rewrite

The ACL2 rewriter does not modify state, so break-rewrite is implemented by writing to a wormhole

named brr. The status of the brr wormhole is basically a state machine that records information about

the rewriter’s activities. The status is represented in an ACL2 defrec object.3

(defrec brr-status

(entry-code (brr-monitored-runes . brr-gstack)

. (brr-local-alist . brr-previous-status))

t)

See wormhole for an explanation of entry-code. The next four components are the list of moni-

tored runes and their break criteria, the rewriter’s call stack, an alist binding variables passed in from

the rewriter (and a few specific to the given break), and the previous brr-status. We think of a

brr-status object as a stack: brr-monitored-runes, brr-gstack, and brr-local-alist char-

acterize an active (still open) call of break-rewrite and brr-previous-status is the stack of calls

leading to this one.

We have sprinkled calls of three breakpoint handlers throughout the mutually recursive clique of 52

functions implementing the ACL2 rewriter. These functions do nothing until break-rewrite is turned on

with (brr t) or within the scope of with-brr-data. Logically the breakpoint handlers are no-ops that

return nil. But when (brr t) has been done, a handler may enter a brr wormhole to save or erase data

and to interact with the user.

• Near-miss-brkpt1 is called when the rewriter considers a rule but finds that the rule’s left-

hand side fails to match the current target. The brr wormhole is entered. The first thing that

happens inside the brr wormhole when invoked by this handler is to determine whether the rule

being considered by the rewriter is monitored and has near-miss criteria associated with it. These

questions can only be answered from inside the wormhole since the rewriter has no information

about monitored rules. If the answers are affirmative, the target is compared to the near-miss

pattern of each specified near-miss criterion. If any near-miss pattern matches the target, the

function pushes a new status on the stack of statuses, prints an “open break banner” explaining

each of the near-misses just detected, and prompts the user for input. When the user issues the

command to proceed from the break, the wormhole and near-miss-brkpt1 are exited. The

rewriter continues as it would had the handler never been called. It will, in fact, subsequently call

brkpt2 discussed below on the very same rewrite call stack. That will allow brkpt2 to detect that

it should print a “close break banner” and pop the brr-status stack.

3This is a change made recently; for the first 30 years of break-rewrite’s implementation the status was factored differently

and when moved by wormhole from its persistent location to its ephemeral location was scattered over four different state

globals. Now the status object is assigned to a single global.
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• Brkpt1 is called when the rewriter considers a rule and finds that the rule’s left-hand side matches

the current target. The brr wormhole is entered. If the rule is monitored and the break condition

is satisfied, the function pushes a new status on the stack, prints an open break banner explaining

the break, and prompts the user for input. When the user types an exit command the brr-status

is updated to record which exit command was used. The :eval command means proceed to try to

apply the rule and reenter this interactive break when the attempt is complete, :go means proceed,

print the results of the attempt but do not interact further with the user, and :ok means proceed and

do not even print the results. There are variants for controlling whether further breaks are allowed

while attempting to apply the current rule. In all cases, these commands cause the wormhole and

brkpt1 to exit. The rewriter proceeds as though brkpt1 had never been called, trying to relieve

the hypotheses, test heuristic conditions, etc. It will eventually call brkpt2 on the same call stack.

• Brkpt2 is called when the rewriter is finished considering a rule. The brr wormhole is entered,

with information passed in from the rewriter that includes the rewriter’s call stack and data about

what happened, e.g., whether the attempt succeeded or not, if not, why not, etc. If the rewriter’s

call stack is the same as the brr-gstack in the current brr-status, then we know this is the

balancing “closing” phase of that open break. In this case, brkpt2 either prompts the user for

more input (if the opening break was exited with :eval) or just prints the appropriate close break

banner, pops the brr-status, and exits the wormhole. In the case that brkpt2 prompts the user

for input then the closing banner, the stack pop, and exit happen when the user issues an exit

command.

Thus each near-miss-brkpt1 call that opened a break is balanced by a brkpt2 call that closes it,

and each brkpt1 call that opened a break is balanced by a brkpt2 call that closes it.4 But there can be

additional near-miss-brkpt1, brkpt1 and brkpt2 calls between a balanced pair that signals breaks,

all from rewrite rule applications that are subsidiary to the one handled by that balanced pair, as we now

illustrate.

Suppose we are in the state discussed in Section 3 where we had the first two rules noted below, but

add the third rule.

(defthm p-rule (implies (q x) (p (f x y))))

(defthm q-rule1 (implies (r x) (q x)))

(defthm q-rule2 (implies (s x) (q x)))

Monitor the first two rules as before, issue the thm command below, and type :GO to every break.

The left column below shows all calls of brkpt1 and brkpt2 as obtained by tracing those two functions

and just printing their names. We have further annotated those calls with the name, in brackets, of

the lemma being considered by the rewriter when the breakpoint handler is called. Thus, “> BRKPT1

{p-rule}” means we enter brkpt1 with p-rule being considered by the rewriter, and “< BRKPT1

{p-rule}” means we exit brkpt1 with p-rule being considered. The right column shows the output

of break-rewrite and the user’s responses. We have indented the break output and deleted some blank

lines.

ACL2 !>(thm (implies (r u) (p (f u v))))

1> BRKPT1 {p-rule}

(1 Breaking (:REWRITE P-RULE) on (P (F U V)):

1 ACL2 >:GO

<1 BRKPT1 {p-rule}

1> BRKPT1 {q-rule2}

4Care is taken to clean up the brr-status stack in the event of an error exit or interrupt.
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<1 BRKPT1 {q-rule2}

1> BRKPT2 {q-rule2}

<1 BRKPT2 {q-rule2}

1> BRKPT1 {q-rule1}

(2 Breaking (:REWRITE Q-RULE1) on (Q U):

2 ACL2 >:GO

<1 BRKPT1 {q-rule1}

1> BRKPT2 {q-rule1}

2 (:REWRITE Q-RULE1) produced ’T.

2)

<1 BRKPT2 {q-rule1}

1> BRKPT2 {p-rule}

1 (:REWRITE P-RULE) produced ’T.

1)

<1 BRKPT2 {p-rule}

Q.E.D.

It might be surprising that each trace is at level 1: no call of brkpt1 or brkpt2 is within any other

such call, even though the apparent calls of break-rewrite are nested. Break-rewrite is an illusion. No

such function is defined in ACL2 (which is why we never write it in typewriter font).

The break-rewrite depths printed in the banners and prompts correspond to the brr-previous-

-status chain (via the brr stack depth). The break by brkpt1 at depth 1, when the rewriter is consider-

ing p-rule, pushes a new status on the brr-status stack, prints a banner opening the break, reads the

user’s :go, and exits. The rewriter proceeds to try to relieve the hypothesis, (q u), of p-rule. First it

tries q-rule2. But when brkpt1 is called on the unmonitored q-rule2, brkpt1 just exits silently. The

rewriter fails to relieve the hypothesis of q-rule2 and calls brkpt2 on q-rule2, which exits silently

since the rewriter’s call stack is not the brr-gstack of the status. Next the rewriter tries q-rule1,

calling brkpt1 on q-rule1, which is monitored. Brkpt1 pushes another status on the brr-status

stack making the depth 2. The :go at depth 2 exits that brkpt1 and allows the rewriter to proceed to

successfully establish the hypotheses of q-rule1 and then call brkpt2. It detects that the rewriter’s call

stack is the brr-gstack of the status and that the balancing brkpt1 at depth 2 proceeded with :go, so

brkpt2 prints the results, does not prompt for user input, prints the closing banner for depth 2, pops the

brr-status stack, and exits. The same thing happens (at depth 1) when brkpt2 is eventually called on

p-rule.

7 Implementation aspects for with-brr-data

We have seen that with-brr-data supports saving of relevant data during a proof attempt, to be used

by tools for querying the data. In this section we focus primarily on saving data, concluding with a few

words about querying data.

Our approach to saving data is based on the observation that calls of brkpt1 and brkpt2 are in

exactly the places we want to consider: before and after each matched rule is considered. As noted

earlier, with-brr-data collects no data for near-miss breaks; thus, here we consider only brkpt2 calls

that balance brkpt1 calls rather than balancing near-miss-brkpt1 calls. (Technically, we restrict to

those brkpt2 calls for which the failure-reason argument is not the symbol, near-miss.) Note that

unlike break-rewrite, there is no need for brkpt2 to check the rewriter’s call stack to check for balancing

with a brkpt1 call, since there is data collection for every brkpt1 call.

Thus, with-brr-data piggybacks on brr in the sense that we modified those two breakpoint han-

dlers to collect data when appropriate, to be queried later. But recall the focus on the source of a term in
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a checkpoint. Therefore we consider only top-level rewrite rule applications, that is, we ignore rewrites

that take place during backchaining. The functions in the ACL2 rewriter take an ancestors argument

that is non-nil precisely during backchaining, so we restrict data collection to when ancestors is nil.

But how can we store global data when the rewriter does not modify the ACL2 state? As for break-

rewrite, we use a wormhole state. We initially did this by modifying the brr wormhole status, but that

resulted in very slow execution because, unlike typical uses of break-rewrite, with-brr-data saves

data at every brkpt1 and brkpt2 call for which ancestors is nil. We solved this problem by making

separate wormhole-eval calls to save data for with-brr-data into a different wormhole state, named

brr-data.

That said, we still prefer to avoid calling even wormhole-eval when no data is to be stored. Here is

the relevant code in brpkt1, with the wormhole-eval call abbreviated; the code in brpkt2 is the same

except that it uses brkpt2-brr-data-entry instead of brkpt1-brr-data-entry.

(and (eq gstackp :brr-data)

(brkpt1-brr-data-entry ancestors gstack rcnst state)

(wormhole-eval ’brr-data ...))

The first test is true in the scope of with-brr-data, as we’ll discuss later. The second test is true

when ancestors is nil (but the next section discusses how that can be changed). Only when those two

conditions are met do we call wormhole-eval to store appropriate data in the brr-data wormhole.

The wormhole-eval call invokes functions to update the brr-data wormhole state: update-brr-

-data-1 in brkpt1 and update-brr-data-2 in brkpt2. More precisely, the wormhole state consists

of a list of brr-data records, which we now describe, and these two functions update that list.

A brr-data record contains fields pre and post that are brr-data-1 and brr-data-2 records,

respectively; see below. Pre and post contain information from balanced brkpt1 and brkpt2 calls. A

brr-data record also has a completed field, which is a list of brr-data records representing subsidiary

rewrite rule applications (as further described below).

(defrec brr-data

(pre post . completed)

nil)

(defrec brr-data-1

(((lemma . target) . (unify-subst . type-alist))

.

((pot-list . ancestors) . (rcnst initial-ttree . gstack)))

nil)

(defrec brr-data-2

((failure-reason unify-subst . brr-result)

.

(rcnst final-ttree . gstack))

nil)

The completed field of a brr-data record B is a list of brr-data records created for balanced pairs of

brkpt1/brkpt2 calls that took place between pre and post fields, hence for the rewrite rule applications

subsidiary to the one represented by B. Consider for example a rewrite rule r1, (equal (f1 x) (f2

x)), and a rewrite rule r2, (equal (f2 x) (f3 x)). So the application of rule r1 to (f1 a) would

generate an application of r2 to (f2 x) with x bound to a, so that (f3 a) is the result of applying r2

and hence of applying r1 as well. This process would be recorded in a brr-data record whose pre

field would have a target of (f1 a) and whose post field would have a brr-result field of (f3

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORMHOLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WORMHOLE-EVAL
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a). Its completed field would have a single brr-data record representing the subsidiary application of

rule r2, hence with pre and post fields whose target and brr-result fields are (f2 a) and (f3 a),

respectively.

The brr-data-1 and brr-data-2 structures include considerable information that isn’t used by

the built-in query utilities. However, with-brr-data doesn’t cause much slowdown, and the extra data,

made readily available by the formal parameters of brkpt1 and brkpt2, may be useful for user-defined

attachments as discussed in the next section.

With-brr-data sets things up as follows to create brr-data records, as required for queries like

cw-gstack-for-subterm.

1. Evaluate (clear-brr-data-lst) to remove previously saved data.

2. Assign state global gstackp to have value :brr-data. Note that in the test (eq gstackp

:brr-data) above, the variable gstackp is the value of that state global.

3. Evaluate the argument of with-brr-data, to invoke the prover.

4. Set state global brr-data-lst based on the stored data, by calling (brr-data-lst state).

The last step is interesting in a couple of ways. First, note that with state global gstackp set to

:brr-data, the prover populates the brr-data data wormhole state with a list of brr-data records,

one for each rewrite rule application that is not subsidiary to any other (generally from rewriting a literal

of a clause). The list is constructed in reverse order: as the proof proceeds, new records are pushed onto

the front of that list. What’s more, each completed field of each brr-data record is similarly in reverse

order. So the last step above puts everything into the right order before storing the brr-data wormhole

data into the state global, brr-data-lst. It may seem odd logically to obtain data from the brr-data

wormhole outside that wormhole. The function get-persistent-whs provides the logical explanation

by obtaining such data by reading the acl2-oracle field of the ACL2 state, which changes the state —

though raw Lisp code for get-persistent-whs gets the result from the persistent wormhole status of

the brr-data wormhole.

We conclude this section by commenting briefly on the implementation of the query utilities. These

traverse the state global described above, brr-data-lst, searching for a brr-data record that repre-

sents a rewrite rule application introducing the specified subterm or term (or instance, in the :free case).

The source code definitions of cw-gstack-for-subterm, cw-gstack-for-term, as well as their iter-

ative (‘*’) versions, are all reasonably straightforward. Also see the documentation for with-brr-data

for discussion of its keyword arguments and a few more implementation-level details.

8 Changing the behavior of with-brr-data

The preceding section mentions functions update-brr-data-1 and update-brr-data-2, which are

invoked in brkpt1 and brkpt2, respectively, to update the list of brr-data records held in the brr-data

wormhole state. These two functions are actually stubs that have respective attachments update-brr-

-data-1-builtin and update-brr-data-2-builtin, which implement the steps enumerated in the

preceding section in a reasonably straightforward way.

In fact, with-brr-data was originally designed and implemented for collecting failed attempts

at backchaining, rather than for collecting appropriate top-level rewrites as is done now. That original

functionality is available by changing those attachments after including the community book, kestrel/-

utilities/brr-data-failures.lisp, and then issuing a single command. Below is that command

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CLAUSE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GET-PERSISTENT-WHS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____READ-ACL2-ORACLE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____STATE
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WITH-BRR-DATA
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFATTACH
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and its single-step macroexpansion. It shows how the argument provided to the command, in this case

failures, provides a suffix for the attached function names.

ACL2 !>:trans1 (set-brr-data-attachments failures) ; whitespace edited below

(WITH-OUTPUT :OFF :ALL

(PROGN (DEFATTACH (UPDATE-BRR-DATA-1 UPDATE-BRR-DATA-1-FAILURES)

:SYSTEM-OK T)

(DEFATTACH (UPDATE-BRR-DATA-2 UPDATE-BRR-DATA-2-FAILURES)

:SYSTEM-OK T)

(DEFATTACH (BRKPT1-BRR-DATA-ENTRY BRKPT1-BRR-DATA-ENTRY-FAILURES)

:SYSTEM-OK T)

(DEFATTACH (BRKPT2-BRR-DATA-ENTRY BRKPT2-BRR-DATA-ENTRY-FAILURES)

:SYSTEM-OK T)))

ACL2 !>

The community book kestrel/utilities/brr-data-all.lisp is similar except that it arranges

to collect data for all rewrites, not just for failed backchaining. Just as the suffix “failures” was

used above, the suffix “all” is used for this “-all” book. After including it, one would evaluate

(set-brr-data-attachments all) to get the desired behavior via attachments.

Other behaviors can be implemented similarly. To take advantage of any of these, however, one

might want to write suitable query utilities, perhaps modeled on the implementation of the existing

query utilities such as cw-gstack-for-subterm.

9 Conclusion

Both with-brr-data and break-rewrite can be very useful tools in proof debugging. We have shown

how to use them and we have given a glimpse of implementation issues and solutions.
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Newcomers to ACL2 are sometimes surprised that ACL2 rejects formulas that they believe should be
theorems, such as (reverse (reverse x)) = x. Experienced ACL2 users will recognize that the
theorem only holds for intended values of x, and given ACL2’s total logic, there are many counterex-
amples for which this formula is simply not true. Counterexample generation (cgen) is a technique
that helps by giving the user a number of counterexamples (and also witnesses) to the formula, e.g.,
letting the user know that the intended theorem is false when x is equal to 10. In this paper we
describe a tool called DrLA that goes further by suggesting additional hypotheses that will make the
theorem true. In this case, for example, DrLA may suggest that x needs to be either a true-list

or a string. The suggestions are discovered using the ideas of theory exploration and subsumption
from automated theorem proving.

1 Introduction

Over the past year, the Kestrel PEARLS team has been working to implement ideas to use machine
learning tools to improve the experience of users in the construction and repair of proofs. Most of these
ideas revolve around The Method [1]. In particular, we built an “advice” tool that can read an ACL2
checkpoint from a failed proof attempt, and suggest a number of routes the user may take to resolve the
issue. The advice is created from a variety of models trained using machine learning techniques, as well
as some heuristics that would be familiar to ACL2 users. The models are trained by taking data from
the ACL2 Community Books, deliberating breaking the theorems in those books, and submitting the
broken theorem to ACL2. The model is trained to recognize the checkpoint that ACL2 discovers when
trying to prove the broken theorem, and then suggest the fix that corresponds to the way the theorem
was originally broken. For example, one way to break a theorem is to remove an include-book, so the
proposed fix is to include that particular library book.

There are, of course, various ways to break theorems, thus various different solutions that the advice
tool may suggest. Besides removing library books, we may remove hints, or remove hypotheses from
the theorem itself. Two lessons we learned while doing this are that (1) sometimes the advice tool could
produce valuable advice using only hardcoded suggestions instead of full-blown machine learning (e.g.,

*This work was supported by a grant from the Defense Advanced Research Projects Agency (DARPA) Proof Engineering,
Adaptation, Repair, and Learning for Software (PEARLS) Artificial Intelligence Exploration (AIE) Opportunity
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“try enabling all definitions”), and (2) advising the user to add a hypothesis is inherently riskier than
suggesting including a book or adding a hint. The second point is simply unavoidable, since adding a
hypothesis changes the logical meaning of the intended theorem. For instance, suggesting the hypothesis
NIL will result in a successful proof attempt of a useless theorem. But a less blatant problem would be
suggesting the new hypothesis x <= 0 in a theorem that already has the hypothesis x >= 0; the new
theorem, which applies only to the case x = 0 may be easier to prove, but it is also much less useful.

In light of this, and further considering the first point above, it is natural to ask whether there are
simple strategies—i.e., not based on machine learning or artificial intelligence in general—that can be
used effectively to suggest missing hypotheses. This paper introduces DrLA, a tool that does precisely
this. Rather than use checkpoints from a failed proof attempt, DrLA infers missing hypotheses by using
the counterexample generation engine (cgen) originally developed in ACL2s [4]. Cgen provides the user
with both counterexamples and witnesses to the proposed theorem, and DrLA uses theory exploration
techniques [3] to suggest the missing hypotheses. A key concept in theory exploration is to consider only
terms that do not reduce to terms that have already been seen. In the context of generating hypotheses,
this deals effectively with the problem of suggesting hypotheses that trivialize the original theorem.

The rest of the paper is organized as follows. Sect. 2 describes the necessary background from theory
exploration to then introduce the key ideas behind hypothesis generation with DrLA. This is followed in
Sect. 3 with a discussion of the effectiveness of DrLA (and similar tools). Then Sect. 4 discusses some
details of the DrLA implementation. Finally, Sect. 5 provides some concluding remarks and suggests
avenues for the future evolution of DrLA and other tools to ease proof development with ACL2.

2 Background and the Key Idea

Theory exploration is a technique for discovering likely properties of programs or lemmas of a math-
ematical theory. For example, once the function append over lists is defined, theory exploration may
discover that append is, in fact, associative. This is done by combining two tools: a formula generator
and a property checker (also known as a counterexample generator).

The formula generator creates formulas, i.e., possible theorems, from a given set of function and
constant symbols. In the case of list functions, it may start with consp, nil, cons, car, cdr, append,
and equal. Using this vocabulary, the theory exploration tool may create some familiar theorems such
as

• (equal (car (cons x1 x2)) x1)

• (equal (append (append x1 x2) x3) (append x1 (append x2 x3)))

as well as reasonable-looking formulas that are not theorems, e.g.,

• (equal (car (cons x1 x2)) x2)

• (equal (append x1 x2) (append x2 x1))

and complete nonsense, such as

• (consp (equal (car nil) (append x1 x2)))

• (car (cons (cdr x1) (equal x2 nil)))

Theory exploration then considers each of these formulas in turn, and determines which of them are
likely to be true. This is where the property checker comes in, by methodically searching for counterex-
amples to each formula. E.g., the first conjecture is (equal (car (cons x1 x2)) x1), and it has the



84 Suggesting Missing Hypotheses

variables x1 and x2, so the property checker will consider thousands of random or strategically chosen
values for them, such as x1=3, x2=’(1 2) or x1=’(a . 16), x2=’bgs. In all cases, the formula ends
up being true, so theory exploration will suggest this formula as a likely lemma. Theorem proving can
then be used to confirm that it is an actual lemma, and some theory exploration systems do this.

In the case of spurious theorems, theory exploration can often find an assignment that demonstrates
the formula cannot be true. E.g., the binding x1=3, x2=’(1 2) from above suffices to show that the
formula (equal (car (cons x1 x2)) x2) cannot be true, so it would never be suggested as a likely
lemma. The same is true of the nonsensical formulas, though care must be taken with respect to runtime
errors, since these expressions may violate guards freely.

So the result of theory exploration is a list of theorems, or at least likely conjectures. The goal is to
produce enough formulas that the tool can find a sufficient number of useful theorems. Obviously there
is a delicate balance involving the formula generator. Ideally, it should generate as many formulas as
possible, so that useful lemmas can be discovered. But the process of generating random formulas grows
exponentially with their length, so limits are unavoidable, and efficient strategies are used to prune the
space of candidate formulas so that barren areas of the search space are not explored. In practice, this
means that the theorems discovered are usually small syntactically, e.g., limited in terms of depth.

For our purposes, we are interested in discovering not likely lemmas, but likely hypotheses that
may be missing from a theorem. The overall strategy remains the same: A term generator will produce
candidate hypotheses, and a property checker can determine if each possible hypothesis is likely to make
the theorem provable. But a key idea is that we can leverage the work of the property checker since the
hypotheses are always in the context of a surrounding formula, as opposed to theory exploration where
the generated formulas are all at the top level. E.g., consider the motivating example (equal (reverse

(reverse x)) x). It is a reasonable heuristic to expect that any missing hypothesis will feature only
the variable x, so we can generate values for x ahead of time and test all candidate hypotheses with the
same set of bindings.

In fact, we can do a bit better than that. Cgen, the counterexample generator developed as part of
ACL2s, is a sophisticated tool that will find both counterexamples and witnesses to an ACL2 formula.
For our motivating example, cgen will identify the following counterexamples

• ((X ’((T . 1) NIL . #\A)))
• ((X ’(-25 . 0)))

• ((X ’(53 . 252)))

and the following witnesses
• ((X ’((T T) (#\A 1))))

• ((X NIL))

• ((X ’(-1)))

Readers experienced with ACL2 will immediately recognize that all of the witnesses are true lists,
whereas none of the counterexamples are—which immediately suggests (true-listp x) as the miss-
ing hypothesis.

DrLA proceeds in a similar manner. The basic idea is to find an expression that is false for all of the
counterexamples and true for all witnesses1. This evokes the machine learning idea of finding a “hyper-
plane” that separates the positive and negative examples in a training data set. This is straightforward to
do with a general property checker, as in theory exploration.

1We will see later that it is not necessary, or even desirable, for the property to hold for all witnesses, but this is a good first
approximation.
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The more interesting component is the term generator. What should be the language (i.e., function
symbols) that determines the possible terms that lead to possible hypotheses? It is often the case that the
missing hypothesis is a type hypothesis. ACL2 is an untyped language, but many functions are written
with specific types in mind. This is certainly the case where reverse is concerned, since the obvious
programmer intent is for reverse to work with lists, more specifically true-lists. Theorems about these
functions usually require some typing hypothesis to make explicit the intended use of the function, and
such hypotheses are easy to miss.

The tau system is an important component of ACL2 that helps the theorem prover benefit from the
implicit notions of type assumed by programmers [2]. Tau is designed “to be a lightweight, fast, and
helpful decision procedure for an elementary subset of the logic focused on monadic predicates and
function signatures” [2]. So a reasonable language for the term generator is the set of types (“monadic
predicates”) in use by the tau system. This set begins with a hard-coded list of primitive predicates,
including consp, natp, and so on. The set is enhanced when new definitions are encountered, e.g.,
primep, but only monadic predicates are considered. To account for the fact that sometimes the result
of comparisons is a useful notion of type, tau hardcodes some common comparisons as primitive type
predicates, e.g., 0 <= x, 1 < x, and “x is a non-NIL true-listp.” DrLA adopts the primitive types
recognized by the tau system, but unlike the tau system, it does not currently expand this dictionary as
new functions are introduced. Rather, it uses the the predicates mentioned in the theorem and used in
the definitions of functions present in the theorem. For example, when considering (equal (reverse

(reverse x)) x), it will add the function reverse to the list of types, as well as functions used in its
definition such as revappend. This illustrates another departure from the tau system, in that revappend
is a binary function, so it would be ignored by the tau system.

DrLA will take these selected symbols and generate terms by nesting syntactically valid function
invocations. These terms are the expression trees that can be generated using these function symbols up
to a maximum depth. The leaves of the terms correspond to either variable symbols, which must occur
in the original theorem, or one of a list of predefined constant symbols, e.g., 0 or NIL. Thus, DrLA will
explore terms including the following:

• (posp x)

• (consp x)

• (reverse x)

• (revappend x 0)

• (equal (reverse x) x)

DrLA will also consider boolean combinations of these terms, up to a maximum depth. For example,
DrLA may consider the hypothesis (or (posp x) (consp x)). DrLA allows the user to control all
of the depth parameters: how many levels of function definitions to explore for new function names,
how deeply to nest boolean expressions, and how deeply to nest non-boolean terms such as (reverse
(reverse x)).

We will have more to say about the implementation of DrLA in Sect. 4, but it is important to note now
that DrLA attempts to avoid unnecessary computation when exploring the search space. For instance,
DrLA is aware that the boolean predicates and and or are commutative, so it considers only one of the
terms (and P Q) or (and Q P). Moreover, it avoids nesting the primitive predicates, so that it will
consider (posp (reverse x)) but never (posp (consp x)).

As described thus far, DrLA will respond to the motivating example with an excess of possible
hypotheses. Included in this list is the expected (true-listp x). But DrLA also finds other possible
suggestions, such as
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• (equal x ’nil)

• (equal (revappend x x) ’nil)

• (true-listp (revappend x x))

• (and (consp x) (true-listp x))

• (and (true-listp x) (equal (reverse x) ’nil))

Actually, DrLA finds dozens of similar, unhelpful suggestions.
Thus, the final component of DrLA is a filter that reduces the number of suggestions in a manner

reminiscent of subsumption. Specifically, suppose that DrLA has two suggestions P and Q such that
P→Q but Q 6→ P. For example, P may be (natp x) while Q is (integerp x). We say in this case that
Q is more general (logically weaker) than P, and we prefer to suggest Q. With this heuristic, DrLA will
suggest (true-listp x) but not (equal x ’nil) since (true-listp x) is the more general term.
This heuristic eliminates many of the useless suggestions above, but not all. For instance, (true-listp
(revappend x x)) is logically equivalent to (true-listp x), so neither is more general than the
other. In these cases, a complexity heuristic comes into play—if P and Q are logically equivalent and
Q is syntactically simpler than P, DrLA will suggest Q but not P. Our notion of syntactic complexity is
simple and partial, so it is possible that DrLA will find two suggestions that are logically equivalent and
just as simple syntactically. In these cases, DrLA will offer both suggestions, letting the user pick which
one to use as the “better” hypothesis.

As mentioned previously, this notion of “more general” is similar to the notion of subsumption in
resolution theorem proving. In the implementation of DrLA, it is used in much the same way. First, a
suggestion is ignored if it is subsumed by a prior suggestion (c.f. forward subsumption.) Then, when a
suggestion is added to the list of suggestions, prior suggestions subsumed by the new one are discarded
(c.f. backward subsumption.)

We note briefly that these heuristics also have a useful side-effect. In Sect. 1, we warned about
the dangers of suggesting vacuous hypotheses, such as nil. In fact, DrLA would never make such a
suggestion, since such hypotheses would never be true of all the witnesses. But DrLA may suggest
overly constrained hypotheses, such as (equal x ’nil). However, the heuristics described will rule
out that hypothesis in favor of the more general (true-listp x).

With these heuristics, DrLA suggests a single hypothesis to the user, but it is not the expected
(true-listp x). Instead, DrLA suggests that the correct theorem is

(implies (or (stringp x)

(true-listp x))

(equal (reverse (reverse x)) x))

We believe that most users of ACL2 think of reverse as a function that operates on lists, but in fact
the programmers of this function allowed for both lists and strings. The heuristics of DrLA select this
hypothesis since it is more general than the expected (true-listp x).

3 Assessment

In this section we describe our efforts to assess the performance of DrLA. The approach is to give DrLA
versions of theorems from the Community Books, after removing one or more of the hypotheses in the
theorem. This is the same idea used to assess the more general advice tool that we built as part of the
PEARLS project, but with an important difference. The other suggested fixes address the proof itself,
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e.g., by suggesting a hint. DrLA, on the other hand, suggests a modification to the theorem, e.g., a new
hypothesis to add. DrLA is never invoked unless cgen demonstrates that the theorem is false, i.e., by
finding some counterexamples.

What this means for assessment is that it is insufficient simply to check if the the suggestion results
in a successful proof attempt. What is really important is to determine whether the suggestion matches
the original intent of the ACL2 user, who presumably forgot to list one of more key hypotheses. Simply
comparing the suggested hypothesis with the original one, i.e., the one that was removed earlier, is also
insufficient, because there may be more than one way to express the necessary constraint.

So we chose to do much of the assessment manually, by running DrLA on examples from the Com-
munity Books and determining whether DrLA’s output is effective. For example, the book std/lists/

append.lisp is part of the lists library in ACL2, and it starts with the theorem
(implies (consp x)

(< 0 (len x)))

Removing the hypothesis leaves just (< 0 (len x)), and when this is submitted to DrLA, it provides a
single suggestion: (consp x). Moreover, DrLA reports that after adding this hypothesis to the theorem,
ACL2 is indeed able to find a proof. In this specific example, DrLA’s performance is an unqualified
success.

The next theorem in the file is
(implies (not (consp x))

(equal (append x y)

y))

When DrLA is prompted with the conclusion, it suggests (atom x) as the missing hypothesis. Note that
atom is defined in ACL2 as not consp, so this is 100% consistent with the original theorem, although
not identical. This is why we think a manual assessment process is necessary.

A more interesting theorem is
(iff (append x y)

(or (consp x)

(consp y)))

DrLA does not support iff, but we can use this by breaking the theorem up into two implications.
When presented with (append x y), DrLA accurately suggests (or (consp x) (consp y)), but it
also makes a number of other suggestions which, while valid, are less useful. For instance, it suggests
(or (acl2-numberp y) (consp x)). Notice that neither of these suggestions subsumes the other,
and neither is syntactically simpler than the other, so DrLA suggests both2 and lets the user decide which
is the best alternative.

In the other direction, DrLA is completely ineffective. There are many witnesses and counterexam-
ples for (or (consp x) (consp y)), but DrLA fails to find a single suggestion. The reason is that
cgen finds many counterexamples to this formula, but it actually does not find any witnesses. In any case,
the conclusion is a disjoint of simple types, so DrLA would be hard-pressed to find a simpler formula to
suggest. It would certainly not even explore terms with the function symbol append.

The situation is somewhat better in the case of the following theorem:
(implies (and (not (index-of k x))

(index-of k y))

(equal (index-of k (append x y))

(+ (len x) (index-of k y))))

2Actually, DrLA gives six total suggestions in this case.

std/lists/append.lisp
std/lists/append.lisp
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When DrLA is presented with just the conclusion of this theorem, it discovers the missing hypotheses
(and (not (index-of k x)) (index-of k y)). This reason this succeeds, is precisely that the
key predicate, index-of, appears in the conclusion of the theorem, so DrLA knows to generate possible
hypotheses that involve index-of.

In contrast, consider the following theorem, also from the standard lists library:

(implies (member k x)

(equal (nth (index-of k x) x)

k))

DrLA will consider terms that feature the primitive typing predicates, as well as any functions used in the
theorem and the definition of functions that appear in the theorem, e.g., nth and index-of. However,
member does not appear in the theorem or any of those definitions, so DrLA will fail to suggest the
hypothesis of the theorem. These situations, where the missing hypothesis requires a predicate that does
not otherwise appear in the theorem, are common.

To address this, DrLA allows the user to provide a list of additional predicate symbols that it should
also consider. If member is provided in this way, DrLA may suggest (member k x) as a possible miss-
ing hypothesis. Unfortunately, DrLA’s subsumption heuristic leads DrLA astray in this scenario. The
problem is that any term that looks like (or (member k x) P) subsumes (member k x) regardless
of what P is. Thus, DrLA suggests terms like the following instead of the correct (member k x):

• (or (member k x) (and (rationalp x) (< x 0)))

• (or (complex-rationalp x) (member k x))

But in fact, these weaker hypotheses are not sufficient to prove the theorem; when x is 1/2, for example,
(nth (index-of k x) x) is equal to nil, not necessarily equal to k. But the reason this shows
up as a candidate missing hypotheses is that the candidates are chosen empirically by examining the
counterexamples and witnesses—not by invoking the theorem prover directly. What DrLA lacks here is
a large enough sample of witnesses and counterexamples, e.g., at least one counterexample where x is a
rational or complex rational. So DrLA provides the user with 11 total suggestions, though it does inform
the user that only two of them are sufficient to prove the original theorem, and those two end up being
vacuous, i.e., with x=nil.

As these examples make clear, it is vital to the success of DrLA to start with a suitable set of function
symbols so the forest of possible hypotheses is rich enough to contain useful candidates. Allowing
the user to provide some candidates helps DrLA to succeed in some difficult cases, but it also feels
inappropriate: If the user knows that member is a suitable hypothesis, surely she can simply provide the
necessary hypothesis without using DrLA at all. This is an open issue that we will return to.

4 Implementation Notes

In this section, we describe some of the implementation decisions and tradeoffs that we encountered im-
plementing DrLA. As previously mentioned, the first step is to invoke cgen using the function prove/cgen
to generate a list of witnesses and counterexamples, and we ask cgen for 50 of each. If cgen cannot find
any witnesses or any counterexamples, DrLA reports an error and does not attempt to find missing hy-
potheses.

Otherwise, DrLA proceeds by generating the expressions that may become candidate hypotheses.
Although there is no such distinction in ACL2, DrLA considers Boolean patterns, predicates, and terms
separately. Boolean patterns are partial expressions such as
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• (or NIL NIL)

• (and (or NIL NIL) NIL)

• (and (not NIL) NIL)

• NIL

The NILs are placeholders where an arbitrary predicate can be placed. These are just slots; there are no
restrictions on the way predicates may appear, and in particular there is no requirement that the same
predicate be used to replace multiple NILs. Note: The significance of the last template, a single NIL, will
become clear shortly.

DrLA then collects the primitive type predicates (as in the tau system), essential comparators (such
as equal and <<), and any extra predicates suggested by the user (e.g., member above). Then it generates
templates, similar to the Boolean patterns, using these names. For example, DrLA may generate terms
such as

• (equal NIL NIL)

• (integerp NIL)

• (member NIL NIL)

Unlike the case with the Boolean expressions, DrLA does not nest these templates, since they are in-
tended to be Booleans that operate on terms. (Recall that DrLA makes a distinction between Boolean
patterns, predicates, and general terms.) The intent is to avoid considering unpromising expressions such
as (integerp (memberp X (equal Y Z))).

DrLA then combines these two template lists into a single list of templates, which may include such
entries as

• (equal NIL NIL)

• (or (equal NIL NIL) (integerp NIL))

Note that each template is created by replacing one of the NILs in the Boolean templates by one of the
predicate templates (and now the reason for the single NIL Boolean template should be clear.) There
is an exponential explosion here, so care is taken to use only tail-recursive functions to avoid running
out of stack space. Using DrLA’s default values, the total number of templates formed at this stage is
2,380—but that number can go up, e.g., if the user specifies a larger depth for boolean expressions.

Next, DrLA generates the term templates, which are similar to the above, but based on the functions
that are present in the theorem or that appear in the definitions of those functions, up to a certain depth
limit. For example, for the theorem

(equal (index-of k (append x y))

(+ (len x) (index-of k y)))

DrLA will construct terms from the functions APPEND, INDEX-OF, +, CDR, LEN, and BINARY-+. Thus, it
will generate the following 13 templates:

• (+ NIL NIL)

• (append NIL NIL)

• (binary-+ NIL NIL)

• (car NIL)

• (cdr NIL)
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• (eqlablep NIL)

• (index-of NIL NIL)

• (index-of-aux NIL NIL NIL)

• (index-of-aux-eq NIL NIL NIL)

• (index-of-aux-eql NIL NIL NIL)

• (len NIL)

• (return-last NIL NIL NIL)

• NIL

In essence, the next step is to combine these templates with each of the 2,380 previously generated
templates. However, that would lead to a veritable explosion of resulting templates, since many of
the earlier templates have more than one placeholder NIL, e.g., the template (or (equal NIL NIL)

(integerp NIL)) which has three NILs, so it would result in 133 = 2197 templates by itself. In a
language with lazy evaluation, this would not be a major problem, but with ACL2 we were concerned
about space limitations if we tried to generate all the templates.

Instead, DrLA proceeds as follows. For each template, it determines how many placeholders it has,
e.g., 3. Then it computes the total number of possible results, which in this case would be 133 = 2197.
Then it uses a counter to go through all of the possibilities, and generates the corresponding template
just-in-time. E.g., a few of the templates generated may be3

0. [000] (or (equal (+ NIL NIL) (+ NIL NIL)) (integerp (+ NIL NIL)))

1. [001] (or (equal (+ NIL NIL) (+ NIL NIL)) (integerp (append NIL NIL)))

12. [00c] (or (equal (+ NIL NIL) (+ NIL NIL)) (integerp NIL))

13. [010] (or (equal (+ NIL NIL) (append NIL NIL)) (integerp (+ NIL NIL)))

The important point is that DrLA does not generate all of these at once. Rather, it generates the first,
fully processes it (as described below), and then loops to generate the next template.

A further optimization is performed at this stage, which helps to manage the combinatorial explo-
sion. Consider a term like (and (integerp NIL) (integerp NIL)). We call these terms redundant,
and the key observation is that such a term was formed from a Boolean template, (and NIL NIL) in
this case, and a predicate, (integerp NIL) in this case. But since NIL is a Boolean template in its
own right, then (integerp NIL) will also be generated as a possible hypothesis—thus, we can safely
ignore the more complicated but logically equivalent (and (integerp NIL) (integerp NIL)). It’s
not just duplicates that cause this, e.g., consider (and (integerp X) (acl2-numberp X)) where one
subterm implies the other. DrLA recognizes these cases and will ignore any template with a redundant
subterm, since it knows a simpler, equivalent term will also be considered.

These are still templates, however, not full ACL2 terms. The next step is to consider the leaves that
may be placed in each individual template. These are the free variables appearing in the original theorem,
and possibly4 a handful of constants such as 0, 1, t, nil. In our running example, the variables are K, X,
and Y. The final step in term generation is to use these variables and constants to fill in the placeholders
in the templates generated above. Again, this is done lazily by filling in each template with each possible
n-tuple of values before moving to the next. The resulting terms will include the following (and many,
many more):

3In the list, the numbers refer to the counter in decimal and [base13].)
4By default, DrLA does not use the built-in binary predicates equal and <<, in which case it also does not consider built-in

constants. This reflects an attempt to manage the combinatorial explosion of term generation.
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• (or (equal (+ X X) (+ X X)) (integerp (+ X X)))

• (or (equal (+ K Y) (+ Y X)) (integerp (+ X K)))

DrLA then processes each term to determine which should be candidate hypotheses. Recall that
DrLA started by gathering a set of counterexamples and witnesses from cgen. Each counterexample or
witness consists of a list of bindings for the free variables in the original theorem. E.g., a counterexample
may look like

((K 3) (X ’(1 2 3)) (Y ’(10 20 30)))

and a witness may look like

((K 10) (X ’(1 2 3)) (Y ’(10 20 30)))

The important point is that witnesses and counterexamples fully bind the terms under consideration, so
DrLA can use ACL2’s executable interpreter to determine the value of each term under that assignment.
We use trans-eval for this purpose, although there are other hooks into the ACL2 interpreter. What
remains, then, is to check if the term evaluates to false for all of the counterexamples. If that’s the case,
then

(implies TERM

BROKEN-THEOREM)

may be an actual theorem, so the term may be a good candidate hypothesis. At the very least, it eliminates
all the (known) counterexamples.

Of course, we want the term to be satisfiable so that adding it as a hypothesis does not make the final
theorem vacuously true. This is where the witnesses come in. Ideally, the proposed hypothesis will be
true for all the witnesses. Such a hypothesis neatly separates the witnesses from the counterexamples
(always true for the former and false for the latter).

However, we found that this is not always desirable. Our intuition is that when a user submits a theo-
rem to ACL2, she has an expectation of the types of the variables under consideration, or some constraint
on the possible values of them. The reason the proof attempt failed, however, is that this expectation was
not explicit in the hypothesis, so the theorem as stated is in fact false. The counterexamples clearly attest
to that, but the witnesses do not necessarily do the same. For example, consider the (false) theorem

(equal (<= (* k x) (* k y))

(<= x y))

Here, the user forgot to specify that K is a non-negative integer. However, cgen may find witnesses
such as k=-1, x=0, and y=0. In fact, it may find witnesses such as k=-1, x=NIL, and y=NIL. We call
these witnesses, which are necessarily outside of the user’s intent, “false witnesses.” Insisting that any
proposed hypothesis fully separates the counterexamples from the witnesses is too strict a requirement
in the presence of false witnesses, so DrLA considers a hypothesis to be a good candidate if it is false for
all the counterexamples, and true for at least one witness.

As mentioned previously, DrLA performs a subsumption check to eliminate as many candidate hy-
potheses as possible. The subsumption check is not just syntactic (as in traditional subsumption) but
semantic, since it involves logical entailment. It would be possible to use the theorem prover itself to
determine this, but we chose not to for two reasons. First, the subsumption checks happen often, as each
potential hypothesis is compared to all other hypotheses. Making these many calls to the prover may
simply prove impractical. Second, the theorem prover is not complete, so it may fail to prove that one
hypothesis does in fact subsume another. Instead, we chose to use the witnesses and counterexamples
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gathered from cgen to test logical entailment using the executable interpreter in ACL2. The same tradeoff
calculation led to using the interpreter to determine when a template is redundant, as mentioned previ-
ously. Additional experiments are necessary to determine the right tradeoffs, so these design decisions
may change in the future.

The last step is reporting the final list of candidate hypotheses to the user. Here, DrLA invokes the
theorem prover on each “fixed” theorem, to see which of the suggested hypotheses in fact succeed in
fixing the proofs. DrLA displays all suggestions to the user, not just the ones that resulted in successful
proof attempts, since the real goal isn’t a “Q.E.D.”, but making explicit the hidden assumption that the
user had forgotten. It may well be that one of the failing suggestions is actually closer to what the user
intended, and seeing that suggestions will inspire the user to correct the theorem.

5 Conclusion and Further Improvements

This paper introduced DrLA, a tool that can help ACL2 users fix broken theorems by suggesting a
forgotten hypothesis. This is done by borrowing and repurposing ideas from theory exploration and
machine learning.

Our experience suggests that DrLA is a promising tool, though more work is needed before it can
reach its potential. Some problems are technological. For example, since DrLA relies on counterexample
generation, it can be only be used on formulas that are fully executable, i.e., no encapsulates. This
problem may be addressed effectively using defattach.

Other problems are about efficiency. There is a combinatorial explosion at the heart of DrLA. Com-
puters are getting faster, but combinatorics can’t just be brushed aside. There are certainly more algo-
rithmic tricks we can use to reduce the number of templates generated. The reader may have noticed, for
example, that the templates described in Sect. 4 had entries for both + and binary-+. Detecting such
redundancies could result in significant speedups.

Other improvements may come from revisiting DrLA’s heuristics. This is particularly true of the
selection of function names to be used in the term templates. DrLA looks for function symbols in
the theorem itself, and in the definitions of functions used in the theorem. Some of this is necessary,
or DrLA would only ever be able to suggest simple typing hypotheses. But as the examples showed,
DrLA wastes a lot of time considering possible terms that are highly improbable, e.g., eqlablep or
index-of-aux-eql.

On the other hand, DrLA sometimes fails to find any suitable hypotheses simply because it does
not know to use certain functions. One possible way of addressing this is to follow the strategy of
the tau system, which is to consider all unary predicates. (It is worth noting that unary predicates are
especially effective at battling the combinatorial problem, since adding a unary predicate does not change
the number of available slots.) However, this too could result in an excess of templates, since unary
predicates are very common, and DrLA can’t use the greedy optimizations that are so effective in the tau
system. One possibility is to use an explicit system, as in the defdata types of ACL2. That is something
we plan to explore in the near future. Another possible solution can be found by using machine learning,
which is part of the broader context in which DrLA was developed. In particular, machine learning could
be used to explore the Community Books for clusters of predicates in hypotheses that are associated with
other predicates in conclusions of theorems. For example, theorems about binary trees may often use
hypotheses about balanced trees. Even if “balanced” is not mentioned in the conclusion, DrLA could use
such information to automatically consider it in such cases.

Finally, another place where DrLA could be improved is in the interaction with the counterexample
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generator. Cgen makes extensive use of the known datatypes in the way that it searches for counterex-
amples. For instance, if the formula contains a variable X that is known to be a binary tree, cgen will
try to find witnesses and counterexamples where X is bound to a binary tree. But this information is
made available to cgen through the related defdata framework, which not all ACL2 users currently use.
Addressing this is a major challenge, but one that is worthwhile. A better way of finding witnesses and
counterexamples will immediately upgrade DrLA.

DrLA is an ongoing project, and we hope to continue improving it in the near future by following
the roadmap described in this section.
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Zero-knowledge circuits are sets of equality constraints over arithmetic expressions interpreted in a
prime field; they are used to encode computations in cryptographic zero-knowledge proofs. We make
the following contributions to the problem of ensuring that a circuit correctly encodes a computation:
a formal framework for circuit correctness; an ACL2 library for prime fields; an ACL2 model of the
existing R1CS (Rank-1 Constraint Systems) formalism to represent circuits, along with ACL2 and
Axe tools to verify circuits of this form; a novel PFCS (Prime Field Constraint Systems) formalism
to represent hierarchically structured circuits, along with an ACL2 model of it and ACL2 tools to
verify circuits of this form in a compositional and scalable way; verification of circuits, ranging from
simple to complex; and discovery of bugs and optimizations in existing zero-knowledge systems.

1 Introduction

In cryptography, a zero-knowledge proof is a method by which a prover can convince a verifier that they
know a secret x that satisfies a computable predicate P, without revealing x and without involving third
parties [22, 10]. Spurred by recent advances that have greatly improved their efficiency [9, 23, 14, 7, 13],
zero-knowledge proofs are finding increasingly wide application, particularly in the blockchain world
[20, 32, 8, 19, 12, 1], holding promise to rebalance privacy on the Internet [37, 18].

While most of the technical details of zero-knowledge proofs are irrelevant to this paper, the one
crucial fact is that the predicate P must be expressed as a zero-knowledge circuit, which can be defined1

as a set of equality constraints over integer variables where the only operations are addition and multipli-
cation modulo a large prime number. This is a low-level representation PL of P, at odds with the need for
P to be clearly understood by both prover and verifier, who we presume would understand a higher-level
representation PH of P, e.g. expressed in a conventional programming language. Unless PL and PH denote
the same P, the zero-knowledge proof may not quite prove what is expected.

This leads to the mathematically well-defined problem of formally proving that a zero-knowledge
circuit correctly represents a higher-level description. Note the difference between formal proofs, which
provide logic-based unconditional evidence of mathematical assertions, and zero-knowledge proofs,
which provide cryptography-based statistically overwhelming evidence of computational assertions. Be-
sides formal proofs about zero-knowledge proofs, which is the topic of this paper, one could imagine
doing zero-knowledge proofs of formal proofs (i.e. prove a theorem without revealing the proof, which
may have interesting applications), but we have not explored that yet. Given the above characterization
of the problem in terms of zero-knowledge circuits, the zero-knowledge proof aspect is largely irrelevant
here; the unqualified ‘proof’ and similar words in the rest of this paper have the familiar meaning.

This paper describes our endeavors, in the course of various projects, to tackle the zero-knowledge
circuit verification problem, using ACL2 [26] and tools built on it. Our contributions are:

(a) A general formal framework for zero-knowledge circuit correctness, i.e. that PL⇐⇒ PH.
(b) A library of rules to reason about prime fields—the arithmetic basis for zero-knowledge circuits.

1There seems to be no universal definition of zero-knowledge circuits and of some related notions in the literature.
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(c) A formal model of Rank-1 Constraint Systems (R1CS), an existing formalism commonly used to
represent zero-knowledge circuits.

(d) Rules and tools to verify R1CS circuits, including a new specialized version of Axe [38, axe].
(e) A formal model of Prime Field Constraint Systems (PFCS), a novel formalism developed by us

that generalizes R1CS with richer forms of constraints and with hierarchical structure.
(f) Rules and tools to verify PFCS circuits, in a compositional and scalable way.
(g) Verification of zero-knowledge circuits, ranging from simple to complex, in R1CS and PFCS form.
(h) Discovery of two bugs and several optimizations in a zero-knowledge circuit construction library.

Section 2 provides the necessary background on zero-knowledge circuits. Section 3 describes con-
tribution (a). Section 4 describes contribution (b). Section 5 describes contributions (c), (d), (g), and (h).
Section 6 describes contributions (e), (f), and (g). Related work is discussed in Section 7. Future work is
outlined in Section 8. Some conclusions are drawn in Section 9.

2 Background

A prime field is a set Fp = {0, . . . , p−1}, consisting of the natural numbers below p, where p is a prime
number. The arithmetic operations on Fp are:

addition: x⊕p y = (x+ y) mod p
subtraction: x	p y = (x− y) mod p
multiplication: x⊗p y = (x× y) mod p
division: x�p y = z, where x = y⊗p z, if y 6= 0

That is, all the operations are modular versions of the ones on the integers, except that the division of x
by y yields the unique z (which always exists) that yields x when multiplied by y, provided that y 6= 0.
We may denote the prime field arithmetic operations with the same symbols as the integer arithmetic
operations, i.e. +, −, ×, /. We may also omit the multiplication symbol altogether, e.g. (x+ 1)(y− 1)
may stand for (x+1)× (y−1), which in turn may stand for (x⊕p 1)⊗p (y	p 1). We may also just write
F, leaving p implicit. Context should always disambiguate these commonly used abbreviations.

A zero-knowledge circuit is a set of constraints that are equalities between expressions built out of
variables, constants, additions, and multiplications, all interpreted in F. By designating certain vari-
ables as inputs and outputs, the constraints can represent a computation of outputs from inputs. Zero-
knowledge circuits generalize arithmetic circuits, which are like boolean circuits, except that wires carry
integers instead of booleans, and gates perform arithmetic operations instead of boolean ones.

For reasons that depend on the details of zero-knowledge proofs, such constraints must be written in
specific forms [15]. A popular formalism is Rank-1 Constraint Systems (R1CS), whose constraints have
the form (a0+a1x1+ · · ·+anxn) (b0+b1y1+ · · ·+bmym) = (c0+c1z1+ · · ·+clzl), where n,m, l≥ 0, each
ai,b j,ck is a coefficient in F, and each xi,y j,zk is a variable ranging over F. That is, an R1CS constraint
is an equality between the product of two polynomials and a polynomial, each polynomial having zero or
more variables with exponent 1, i.e. a linear combination. An R1CS circuit is a set of these constraints.
Literature definitions of R1CS are usually in terms of vectors and matrices; the definition just given here
is more like an abstract syntax of R1CS.

(w) (x− y) = (z− y) z :=

{
x if w = 1
y if w = 0

Figure 1: An ‘if-then-else’ conditional.

For example, if w is boolean, i.e. either 1 or
0, the circuit in the left part of Figure 1 represents
the computation in the right part, which sets z to
x or y based on whether w is 1 or 0. If w = 0, the
left side of the constraint is 0 and thus z = y; if

http://acl2.org/manual?topic=ACL2____AXE
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w = 1, the −y cancels and thus z = x.

(u− v) (s) = (1−w)
(u− v) (w) = (0)

w :=

{
1 if u = v
0 if u 6= v

Figure 2: An equality test.

As another example, the circuit in the
left part of Figure 2 represents the compu-
tation in the right part, which sets w to 1 or
0 based on whether u= v or not. If u= v, the
first constraint makes w = 1, and the second
constraint is satisfied because 0× 1 = 0. If
u 6= v, the second constraint makes w = 0, and the first constraint is satisfied by s = 1/(u− v).

These and other examples can be found in the literature, e.g. [30] and [24, Appendix A]. Circuits vary
in size and complexity. Even the ones in Figure 1 and Figure 2 require a little thought to understand.

Larger circuits are built from smaller ones by joining their constraints and sharing some variables.
For instance, combining Figure 1 and Figure 2 yields a circuit that represents the computation that sets
z to x or y based on whether u = v or not; the variable w is shared, with Figure 2 guaranteeing that it
is boolean as assumed in Figure 1. In this kind of hierarchical construction, a gadget is a circuit with a
well-defined purpose, usable as a component of larger gadgets, and possibly made of smaller gadgets.
The zero-knowledge circuit PL in Section 1 is a top-level gadget; it represents the computation, described
in some high-level way PH, of the predicate P on the secret input x.

While all the variables in the gadget in Figure 1 are involved in the represented computation, the
variable s in the gadget in Figure 2 is not. It is an internal variable, while the other ones are external
variables; the latter are divided into input and output variables according to the represented computation.
When the two gadgets are combined as just described, the shared external variable w becomes internal
to the combined gadget. The distinction between external and internal variables, and between input
and output variables, is not captured in the R1CS formalism, but it is arguably implicit in the notion
of gadget. In general, internal variables cannot be avoided in gadgets; attempts to eliminate them often
result in subtly non-equivalent constraints that fail to adequately represent the intended computation.

Although direct support is limited to F as a data type and (field) addition and multiplication as
operations, R1CS circuits are at least as expressive as boolean circuits: if x and y are boolean variables
(like w earlier), the constraint (x)(y) = (1−z) represents a ‘nand’ gate with output z (and similarly simple
constraints represent other logical gates); and higher-level data types can be always encoded as bits. But
more efficient representations (fewer variable and constraints) are often possible.

(z0) (1− z0) = (0)
...

(zn) (1− zn) = (0)
(∑n

i=0 2izi) (1) = (∑n−1
i=0 2ixi +∑

n−1
i=0 2iyi)

Figure 3: An unsigned n-bit integer addition.

For example, two unsigned n-bit integers, en-
coded as the bits x0, . . . ,xn−1 and y0, . . . ,yn−1 in
little endian order, can be added via the gadget
in Figure 3. The first n + 1 constraints force
z0, . . . ,zn to be boolean. The last constraint forces
them to be the bits of the sum, in little endian or-
der, where zn is the carry. This assumes that the
prime p has at least n+ 2 bits, so that the field
operations do not wrap around p; a typical p has about 250 bits, sufficient for fairly large integers.

R1CS circuits are normally constructed programmatically using libraries [3, 4, 6, 27, 28] that pro-
vide facilities to build gadgets hierarchically. These libraries are invoked directly, by programs written to
build specific circuits, or indirectly, by compilers of higher-level languages to R1CS [2, 5, 25, 31, 11, 29].
As these libraries are invoked, they generate growing sequences of the R1CS constraints that form the
gadgets.2 Separate instances of the same gadget have different variables, which are typically generated

2The final sequence consists of the constraints for the predicate P in Section 1, and is part of the zero-knowledge proof.
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via monotonically increasing indices. The gadgets’ hierarchical structure, reflected in both the static or-
ganization and the dynamic execution of the libraries, is lost in the generated flat sequence of constraints;
this is not an issue for zero-knowledge proofs, but it can be for formal proofs, as elaborated later.

3 Formal Framework

An R1CS circuit, along with an ordering of the r variables that occur in it, determines a relation R⊆ Fr

consisting of the r-tuples that satisfy all the constraints, when assigned element-wise to the variables.
If additionally the variables are partitioned into q external ones and r− q internal ones (in the sense
of Section 2), and ordered so that the former precede the latter, a relation R̃ ⊆ Fq is also determined,
defined as R̃ = {〈φ1, . . . ,φq〉 | ∃〈φ ′1, . . . ,φ ′r−q〉.R(φ1, . . . ,φq,φ

′
1, . . . ,φ

′
r−q)}, i.e. consisting of the q-tuples

that satisfy all the constraints, when assigned element-wise to the external variables, for some (r− q)-
tuples assigned element-wise to the internal variables. The tuples are solutions of the constraints. The
informal notion of gadget described in Section 2 can be more precisely defined as an R1CS circuit
accompanied by an ordering and designation of its variables as just described; R̃ is the semantics of the
gadget. For example, for the gadget in Figure 2, R = {〈u,v,w,s〉 | (u− v) s = 1−w ∧ (u− v)w = 0} and
R̃ = {〈u,v,w〉 | ∃s.R(u,v,w,s)}.

Given this semantic characterization, it is natural to use a relation S⊆ Fq as specification of the gad-
get, and to express correctness of the gadget as R̃ = S. The specification S may be defined in whichever
high-level way that is convenient (more on this later), but in any case it denotes the set of q-tuples that
must be the solutions of the gadget. Correctness consists of soundness R̃ ⊆ S (i.e. every solution of the
gadget satisfies the specification) and completeness S ⊆ R̃ (i.e. everything satisfying the specification is
a solution of the gadget). To prove soundness and completeness, the definition of R̃ must be expanded,
to expose the constraints that define R. To prove soundness, the existential quantification over the an-
tecedent can be turned into a universal quantification over the implication, leading to the quantifier-free
formula R(φ1, . . . ,φq,φ

′
1, . . . ,φ

′
r−q) =⇒ S(φ1, . . . ,φq). To prove completeness, no such move is possible:

the formula S(φ1, . . . ,φq) =⇒ ∃〈φ ′1, . . . ,φ ′r−q〉.R(φ1, . . . ,φq,φ
′
1, . . . ,φ

′
r−q) demands dealing with the exis-

tential quantification explicitly, typically by exhibiting witnesses for the internal variables φ ′1, . . . ,φ
′
r−q.

When a gadget represents a computation (as in Section 2), the specification S must specify the com-
putation. For this, a computation is modeled as a function f : I1×·· ·× In→ (O1×·· ·×Om)∪{E} from
n≥ 0 inputs to m≥ 0 outputs or to a distinct error E. The case n = 0 is uninteresting but unproblematic.
The case m = 0 models assertion-like computations, e.g. for each gadget (zi)(1− zi) = (0) that checks
whether zi is a bit, used in Figure 3: the computation represented by the gadget returns the empty tuple
of outputs 〈〉 if zi is boolean, or E otherwise. The function f always models a deterministic computation,
which is appropriate for zero-knowledge applications.3 The function f only captures the computation’s
input/output behavior, not other aspects of its execution; this is consistent with the fact that R1CS con-
straints only express relations among variables. For example, for the gadget in Figure 2, I1 = I2 =O1 =F,
f (u,v) = 1 if u = v, f (u,v) = 0 if u 6= v, and thus f (u,v) 6= E always.

To represent f in R1CS form, its inputs and outputs must be represented as field elements, via injec-
tive encoding functions eI

i : Ii→Fni , where eI
i maps each input xi ∈ Ii to some number ni of field elements,

and eO
j : O j→ Fm j , where eO

j maps each output y j ∈ O j to some number m j of field elements. This leads
to a computation on encoded inputs and outputs f̂ : FN → FM ∪{E}, with N = ∑i ni and M = ∑ j m j,
defined as follows: (1) if f (x1, . . . ,xn) = 〈y1, . . . ,ym〉 then f̂ (eI

1(x1), . . . ,eI
n(xn)) = 〈eO

1 (y1), . . . ,eO
m(ym)〉;

3While zero-knowledge proofs themselves involve non-deterministic computations, normally they (probabilistically) prove
facts about deterministic computations.
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(2) if f (x1, . . . ,xn) = E then f̂ (eI
1(x1), . . . ,eI

n(xn)) = E; and (3) f̂ returns E outside the range of the input
encodings. For example, for the gadget in Figure 2, eI

1 = eI
2 = eO

1 = id (identity) and f̂ = f .
The computation f̂ is represented by a gadget with q = N +M external variables for the inputs and

outputs. The specification of f̂ is S(x1, . . . ,xN ,y1, . . . ,yM) = [ f̂ (x1, . . . ,xN) = 〈y1, . . . ,yM〉]. Thus, sound-
ness means that every solution of the gadget corresponds to a non-erroneous instance of the computation,
and completeness means that every non-erroneous instance of the computation corresponds to a solution
of the gadget. Soundness alone is not sufficient for correctly representing a computation: a gadget with-
out solutions is trivially sound; completeness ensures that there is a solution for every input for which
the computation is not erroneous. For example, for the gadget in Figure 2, S = {〈u,v,w〉 | f (u,v) = w}.

For a top-level gadget PL that represents P in a zero-knowledge proof (see Section 1 and Section
2), whose formal semantics is a relation R̃P as above, the specification SP is derived from the high-level
description PH of P. If PH is a program in a higher-level language [2, 5, 25, 31, 11, 29], a function fP that
denotes the execution of the program is formally defined, based on a formalization of the language, and
a specification relation SP is derived from it as above. If PH is a description of a fixed application-specific
computation (e.g. Zcash shielded transactions [19]), fP is defined by formalizing that description, and SP

is derived from it as above. For sub-gadgets of PL, specifications may be written in any formal form that is
convenient; these specifications play a role in the formal verification of PL (see Section 5.5 and Section 8),
but they are not directly exposed to the zero-knowledge prover and verifier mentioned in Section 1. The
understandability of PH by prover and verifier, mentioned in Section 1, as with all complex technologies,
boils down to trusting authoritative high-level informal descriptions for users from the general public,
analyzing the aforementioned programs for users who are also software developers, and examining the
formalizations and theorems for users who are also formal verification specialists.

4 Prime Fields

Starting with the recognizer of prime numbers primep from [39, [books]/projects/numbers], the
prime fields library [38, prime-fields] introduces a recognizer fep of field elements, and functions
add, sub, mul, div, neg, inv, pow, and minus1 for field operations. These are all parameterized over a
prime p, e.g. (fep x p) checks if x is in Fp, and (add x y p) returns x⊕p y (see Section 2).

The recognizer and operations are executable. The multiplicative inverse inv is calculated via pow,
according to the known equation 1�p x = xp−2 mod p; we prove that this definition indeed yields the
multiplicative inverse. The definition of pow is an mbe whose :logic is recursively repeated multiplica-
tion and whose :exec is fast modular exponentiation mod-expt-fast from [38, arithmetic-3].

The library provides basic theorems, such as all the standard field axioms (e.g. commutativity of ad-
dition); these theorems often suffice for relatively simple reasoning. The library also provides collections
of rules that realize certain normalization strategies, useful for more elaborate reasoning.

5 Rank-1 Constraint Systems

5.1 Model

Based on the prime fields library described in Section 4, the R1CS library [38, r1cs] provides an ACL2
model of R1CS. It follows the nomenclature of literature definitions of R1CS, which are in terms of
vectors and matrices. The model consists of a dense formulation, where linear combinations have mono-
mials for all the involved variables (many with zero coefficients), and a sparse formulation, where linear

https://github.com/acl2/acl2/tree/master/books/projects/numbers
http://acl2.org/manual?topic=PFIELD____PRIME-FIELDS
http://acl2.org/manual?topic=ACL2____ARITHMETIC-3
http://acl2.org/manual?topic=R1CS____R1CS
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combinations may omit monomials with zero coefficients. The dense formulation is of intellectual inter-
est but impractical for verification; the rest of this paper focuses on the sparse formulation.

The model formalizes a pseudo-variable as either a variable (an ACL2 symbol) or the number 1. A
linear combination is formalized as a (sparse) vector, i.e. an ACL2 list of pairs (ACL2 lists of length 2)
where each pair consists of a coefficient (a field element) and a pseudo-variable; the notion of pseudo-
variable provides uniformity between monomials of degrees 1 and 0 in linear combinations. A constraint
is formalized as an aggregate [38, defaggregate] with components a, b, and c that are the three linear
combinations; this corresponds to the equality (a) (b) = (c), referring to Section 2. Finally, a (rank-1
constraint) system is formalized as an aggregate consisting of a prime, a list of variables, and a list of
constraints. The model also defines well-formedness conditions on this aggregate and its sub-structures,
e.g. that all the variables in the constraints are also in the list of variables of the R1CS aggregate. This
aggregate and its sub-structures form the model’s formal syntax of R1CS.

The semantics of R1CS is formalized in terms of satisfaction of constraints by valuations, which are
ACL2 alists from variables to field elements, i.e. assignments of field elements to variables. Given a
valuation, a linear combination evaluates to a field element, in the obvious way; the model defines this
evaluation in terms of dot product of vectors, as in the literature. Given a valuation, a constraint evaluates
to a boolean, in the obvious way. A valuation satisfies a system iff it makes all its constraints true.

Besides basic theorems about the syntax and semantics sketched above, the R1CS library also in-
cludes rules for reasoning about R1CS, for both ACL2 and Axe (see below).

5.2 Extraction

To verify gadgets using the R1CS model described above, the gadgets must be represented in the syntactic
form defined by the model. The gadget construction libraries mentioned in Section 2 produce R1CS
constraints that are not in that form, and sometimes they do not provide facilities to export them in any
form. Thus, the approach to extract gadgets for verification is case by case.

In a Kestrel project funded by the Ethereum Foundation, we worked on the verification of Ethereum’s
Semaphore circuit [38, semaphore]. Since Semaphore was written in the high-level language Circom
[25], whose compiler had a facility to export the R1CS constraints in JSON format, we developed an
ACL2 converter from that format [39, [books]/kestrel/ethereum/semaphore/json-to-r1cs], and
we used that along with our ACL2 JSON parser [39, [books]/kestrel/json-parser]. Taking advan-
tage of the modularity of the Circom code, we extracted not only the complete circuit gadget, but also
several sub-gadgets.

In a Kestrel project funded by the Tezos Foundation, we worked on the verification of Zcash’s Jubjub
elliptic curve operation circuits [38, zcash]. Since these circuits were generated programmatically in
Rust, we instrumented that Rust code, with help from the Zcash team, to export R1CS constraints directly
as s-expressions in the R1CS model’s format. We extracted the top-level gadgets and several sub-gadgets,
by invoking the library at different points.

At Aleo, we are working on the verification of the snarkVM gadgets [17]. With our Aleo colleagues,
we have instrumented snarkVM’s Rust code to export R1CS constraints in JSON format (different from
Circom’s). We have developed an ACL2 converter from that format to the model’s format, which we are
using along with the ACL2 JSON parser. We are extracting gadgets at varying levels of granularity.

In the current situation, in all the above cases, the gadget extraction is trusted: an error in our instru-
mentation of the gadget construction libraries, or in our conversion to ACL2, may cause us to unwittingly
verify a different gadget from the real one. However, the top-level gadget PL (discussed in Section 1, Sec-
tion 2, and Section 3) is part of the zero-knowledge proof, which has a well-defined (protocol-dependent)

http://acl2.org/manual?topic=STD____DEFAGGREGATE
http://acl2.org/manual?topic=ZKSEMAPHORE____SEMAPHORE
https://github.com/acl2/acl2/tree/master/books/kestrel/ethereum/semaphore/json-to-r1cs
https://github.com/acl2/acl2/tree/master/books/kestrel/json-parser
http://acl2.org/manual?topic=ZCASH____ZCASH
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format, and is generated by tools like snarkVM [3] that use or include gadget construction libraries, That
format can be formalized in ACL2, and the formal verification can be applied directly to (the PL gad-
get in) the zero-knowledge proof. In this eventual situation, the extraction of sub-gadgets of PL via
instrumentation and conversion will merely provide building blocks for the top-level formal proof of PL
(especially in the compositional approach in Section 5.5), but will no longer be trusted.

5.3 Verification in ACL2

Regardless of the exact approach, the result of the above extraction is an ACL2 constant, say *gadget*,
whose value is an R1CS aggregate of the form described in Section 5.1. The model confers semantics to
this aggregate, amounting to the relation R in Section 3. More precisely, the model provides a predicate
over an assignment of field elements to variables: (r1cs-holdsp *gadget* asg) means that the assign-
ment asg satisfies all the constraints in *gadget*, given the prime that is part of the *gadget* aggregate
(which is left implicit in R). This can be turned into a finitary relation over the field elements assigned to
the variables, like R, by specializing r1cs-holdsp with an assignment to the gadget’s specific variables,
e.g. if the variables in *gadget* are ’x0, ’x1, . . . , the relation R is formalized as

(defun gadget (x0 x1 ...)
(r1cs-holdsp *gadget* (list (cons 'x0 x0) (cons 'x1 x1) ...))

where each ’xi is a variable and each xi is a field element.
To state and prove correctness, a specification is written in ACL2, amounting to S in Section 3:

(defun spec (x0 x1 ...) ...) ; this can be defined in any form

If the gadget has no internal variables, correctness is stated as

(defthm gadget-correctness
(implies (and ... ; boilerplate hypotheses

...) ; preconditions (if applicable)
(equal (gadget x0 x1 ...) (spec x0 x1 ...)))) ; R = S

where the boilerplate hypotheses say that x0, x1, . . . are field elements, and where examples of precon-
ditions are that some xi is boolean or that some xi is non-zero. If the gadget has internal variables,
spec has fewer parameters, but soundness can be stated and proved similarly, using implies in place of
equal. Completeness is less straightforward; it is discussed, in a more general context, in Section 5.5.

The proofs are carried out by first enabling certain functions of the R1CS semantics, so that the
(evaluated) constraints deeply embedded in ACL2 are rewritten to ACL2 terms involving prime field
operations, i.e. constraints shallowly embedded in ACL2. Then the core of the proof is handled via other
hints and lemmas, of varying complexity, that depend on the details of the constraints and specification.

After verifying, in the manner just described, the correctness of a number of Semaphore sub-gadgets
for elliptic curve operations and data multiplexing [39, [books]/kestrel/ethereum/semaphore], two
related issues became apparent. One issue was that the numbers of variables and constraints and the
resulting ACL2 terms grew quickly as we moved from simpler to more complex gadgets, making the
proofs harder and less efficient. Another issue was that because each gadget was extracted in isolation,
with its own specific variable names generated by the gadget construction libraries (typically via mono-
tonically increasing indices), it was not easy to use proofs of sub-gadgets in proofs of super-gadgets:
the same sub-gadget could appear with different variable names in different super-gadgets, or in differ-
ent instantiations within the same super-gadget, but the proof for the separate sub-gadget used different
variable names than would be seen in any of these instantiations.

https://github.com/acl2/acl2/tree/master/books/kestrel/ethereum/semaphore
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5.4 Verification in Axe

To combat the growth of terms mentioned in Section 5.3, we turned to the Axe toolkit [38, axe]. The Axe
Rewriter is functionally similar to the ACL2 rewriter, but it represents terms as directed acyclic graphs
(DAGs) instead of trees: these DAGs share sub-terms, affording the practical handling of very large
terms, such as fully unrolled AES implementations.

We developed a specialization of the Axe Lifter for R1CS, which turns deeply embedded constraints
into shallowly embedded ones, similarly to what is described in Section 5.3, and also performs some
simplifications of the lifted constraints using the Axe Rewriter. This specialized lifter [38, lift-r1cs]
generates an ACL2 constant whose value is a DAG representing the simplified lifted constraints.

We developed a specialization of the Axe Prover for R1CS, which, given a DAG from the lifter
as above and a specification like spec in Section 5.3, attempts to prove soundness [38, verify-r1cs]
or completeness (via a more general event macro to prove implications). This specialized prover uses
rewriting and variable elimination via substitution, and it supports applying different sets of rewrite
rules in sequence. Substitution is enabled by the fact that certain constraints essentially equate certain
variables to expressions over other variables, though rewriting must often be performed first to make this
explicit by solving the constraints. A constraint is a candidate for substitution if it equates a variable
with some sub-DAG not involving that variable. Large R1CS proofs can involve hundreds or thousands
of substitution steps, and we optimized Axe to apply many substitutions at once when possible. For
each round of substitution, Axe substitutes a set of variables each of which is equated to a sub-DAG
not involving any variables in the set. The set of equalities used in the round is then removed from
the assumptions of the proof. Repeated substitution of intermediate variables can incrementally turn
a large unstructured conjunction of constraints into a deeply nested operator tree (represented in DAG
form), of the kind commonly verified by Axe. The ability to apply the rewriting tactic with different sets
of rewrite rules supports the staging of inter-dependent proof steps, which depend on previous steps and
enable subsequent steps. Suitable rewrite rules can recognize R1CS idioms and turn them into equivalent
higher-level formulations that may facilitate the rest of the proof. Similarly, certain sub-gadgets may also
be recognized and raised in abstraction using rewrite rules based on the correctness properties of such
sub-gadgets; this partially addresses the second issue described in Section 5.3.

The Axe verification of the soundness of an R1CS gadget looks like

(lift-r1cs *gadget-dag* ; name of the generated defconst
'(x0 x1 ...) ; variables of the gadget
... ; constraints of the gadget
... ; prime of the gadget
...) ; options

(verify-r1cs *gadget-dag* ; gadget (simplified and lifted, in DAG form)
(spec x0 x1 ...) ; specification
:tactic ... ; proof tactics, e.g. (:rep :rewrite :subst)
...) ; other information and options

We used this approach to verify the soundness, and in some cases also the completeness, of a
number of Semaphore and Zcash (see Section 5.2) sub-gadgets that perform fixed-size integer opera-
tions, elliptic curve operations, instances of the MiMC cipher, and parts of the BLAKE2s hash [39,
[books]/kestrel/ethereum/semaphore] [39, [books]/kestrel/zcash/gadgets]; these range from
relatively small and simple to relatively large and complex. We also verified the soundness of the large
and complex BLAKE2s hash gadget generated by (an earlier version of) snarkVM [3]; this is currently
not open-source, but it will be in the future.

http://acl2.org/manual?topic=ACL2____AXE
http://acl2.org/manual?topic=R1CS____LIFT-R1CS
http://acl2.org/manual?topic=R1CS____VERIFY-R1CS
https://github.com/acl2/acl2/tree/master/books/kestrel/ethereum/semaphore
https://github.com/acl2/acl2/tree/master/books/kestrel/zcash/gadgets
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While using Axe helps address the term growth problem, the sub-gadget proof re-use problem re-
mained largely unsolved. The recognition and rewriting of sub-gadgets mentioned above, which worked
for certain cases, in general may need to recover the sub-gadgets from a sea of constraints. Each sub-
gadget may consist of multiple constraints, some of which may even have the same form across different
sub-gadgets, requiring the exploration of multiple recovery paths. Furthermore, constraint optimiza-
tions, such as the ones performed by the Circom compiler and by snarkVM, which blend gadgets under
certain conditions, may greatly complicate, or defeat altogether, the recovery of sub-gadgets. Solving
these problems is not necessarily impossible, but it is challenging; as a data point, the aforementioned
soundness verification of snarkVM’s BLAKE2s took several person-days to develop and takes several
machine-hours to run.

5.5 Compositional Verification

As mentioned in Section 2, the hierarchical structure in the gadget construction libraries gets flattened
away in the generated R1CS constraints. Thus, as discussed in Sections 5.3 and 5.4, the gadgets extracted
from the libraries are verified as wholes, with limited ability to discern their hierarchical structure and
leverage proofs of their sub-gadgets, resulting in difficult and slow proofs.

More scalability can be achieved via compositional verification, where the proof of a gadget uses
the proofs of its sub-gadgets and is used in the proofs of its super-gadgets. This could be accomplished
by extending the gadget construction libraries to generate such compositional proofs along with the
gadgets, but doing so is impractical due to the libraries’ complexity and ownership. A viable approach
is to (1) replicate the gadget constructions in the theorem prover, (2) verify correctness properties of
the constructions, and (3) validate the replicated gadget constructions by checking that the constructed
gadgets are the same as the ones extracted from the libraries. We propound the term detached proof-
generating extension for this kind of solution.

The gadget constructions are formalized by ACL2 functions that take variable names as inputs and
return lists of R1CS constraints as outputs. The constraints are built either directly or by calling functions
that build sub-gadgets, concatenating all the resulting constraints together. These functions return lists
of constraints, which are readily composable by concatenation; they do not return R1CS aggregates
(see Section 5.1), which are not readily composable. The gadget hierarchy corresponds to the function
hierarchy. The parameterization over the variable names is critical, because separate instances of the
same gadget have different variables, as mentioned in Sections 2 and 5.3.

To validate that these constructions are consistent with the libraries, we extract sample gadgets from
the libraries as in Section 5.2, and we formulate ACL2 ground theorems saying that the extracted R1CS
constraints are identical to the ones built by the ACL2 functions when passed suitable variable names as
arguments. Currently this validation process amounts to testing our constructions against the libraries.
Eventually, this validation will be performed every time the libraries are run to generate a zero-knowledge
proof, as explained in Section 8.

The correctness of the ACL2 gadget constructions is proved for generic variable names and generic
prime p (sometimes under restricting hypotheses). The proof opens the function definition and uses the
theorems for any called functions, whose definitions are unopened; if the function builds some constraints
directly, certain semantic functions of the R1CS model are also opened, lifting those constraints to equal-
ities and prime field operations. Given this proof setup, the correctness of the gadget (family) built by
the function is proved by reasoning over the specifications of the sub-gadgets (not the sub-gadgets’ con-
straints) and/or the constraints of the gadget; the details depend on the gadget, and may involve hints and
lemmas of varying complexity.
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For example, a gadget to force a variable to be boolean as in Section 2 is constructed as

(defun boolean-assert-gadget (x)
(list (make-r1cs-constraint :a (list (list 1 x)) ; (x)

:b (list (list 1 1) (list -1 x)) ; (1 - x)
:c nil))) ; (0)

where x is the variable name to use. Correctness (soundness and completeness) is expressed as

(defthm boolean-assert-gadget-correctness
(implies ... ; boilerplate hypotheses

(equal (r1cs-constraints-holdp (boolean-assert-gadget x) asg p) ; R
(bitp (lookup-equal x asg))))) ; S

where asg assigns field elements to variables, lookup-equal retrieves them, and bitp is the specification
of this gadget; in the notation of Section 3, this theorem rewrites R (= R̃ in this case) to S.

As another example, the gadget in Figure 2 is constructed as

(defun equality-test-gadget (u v w s)
(append (list (make-r1cs-constraint ...)) ; (u - v) (s) = (1 - w)

(list (make-r1cs-constraint ...)))) ; (u - v) (w) = (0)

Soundness is expressed as

(defthm equality-test-gadget-soundness
(implies (and ... ; boilerplate hypotheses

(r1cs-constraints-holdp (equality-test-gadget u v w s) asg p)) ; R
(equal (lookup-equal w asg) ; S

(if (equal (lookup-equal u asg) (lookup-equal v asg)) 1 0))))

where the specification of this gadget is that the value of w is 1 or 0 based on whether the values of u and
v are equal or not; in the notation of Section 3, this theorem derives S from R (6= R̃ in this case).

The gadget described in Section 2 as the combination of Figure 2 and Figure 1 is constructed as

(defun if-equal-then-else-gadget (u v x y z w s)
(append (if-then-else-gadget w x y z)

(equality-test-gadget u v w s)))

which calls the functions for the sub-gadgets (the definition of if-then-else-gadget is not shown).
To exemplify varying numbers of variables and constraints, the gadget in Figure 3 is constructed as

(defun addition-gadget (xs ys zs)
... ; guard requires (len xs) = (len ys) = (len zs) - 1
(append (boolean-assert-list-gadget zs)

(list (make-r1cs-constraint
:a (append (pow2sum-vector xs) (pow2sum-vector ys))
:b (list (list 1 1))
:c (pow2sum-vector zs)))))

where xs, ys, and zs are lists of variables, boolean-assert-list-gadget constructs boolean con-
straints for all the variables in zs, and pow2sum-vector constructs a powers-of-two weighted sum. The
parameterization covers not only the names of the variables, but also the number of bits n in Figure 3,
which is the length of xs and ys. Correctness is expressed as

(defthm addition-gadget-correctness
(implies (and ... ; boilerplate hypotheses

(< (1+ (len xs)) (integer-length p)) ; restriction on n
(bit-listp (lookup-equal-list xs asg)) ; precondition
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(bit-listp (lookup-equal-list ys asg))) ; precondition
(equal (r1cs-constraints-holdp (addition-gadget xs ys zs) asg p)

(and (bit-listp (lookup-equal-list zs asg))
(equal (lebits=>nat (lookup-equal-list zs asg))

(+ (lebits=>nat (lookup-equal-list xs asg))
(lebits=>nat (lookup-equal-list ys asg))))))))

where lebits=>nat turns a list of bits into the integer they denote in little endian order, and where the
restriction on n ensures that the modular weighted sums can be turned into non-modular sums. This is
proved for every n, using a property of pow2sum proved by induction. While the proofs for the previously
exemplified gadgets are straightforward, this gadget takes a little more work.

The details of the examples above, and of the other ones in Section 2, are in the supporting mate-
rials, in [39, [books]/workshops/2023/coglio-mccarthy-smith]. Other examples are in the R1CS
library, in [39, [books]kestrel/crypto/r1cs/sparse/gadgets], where in particular the proofs in
range-check.lisp were quite laborious.

We have employed this approach to verify compositionally a substantial portion of the snarkVM
gadgets [17], specifically most of the ones for boolean, field, and integer operations. In the process, we
have discovered two bugs in the gadgets, which have been fixed:4 (i) the gadget to convert a field element
into its bits failed to constrain the integer value of the bits to be below the prime, leading to indeterminacy
(e.g. the field element 0 could be converted to not only all zero bits as expected, but also to the bits that
form the prime, since p mod p = 0); and (ii) the gadget to calculate square root allowed both positive and
negative roots (when the input is a non-zero square), leading to indeterminacy. We have also identified
some possible optimizations, which have been or are being applied, saving a large number of constraints
in some cases. Our ACL2 work on snarkVM is currently not open-source, but it will be in the future.

But even this approach eventually runs into a scalability issue, due to the internal variables of gadgets.
The names of these variables are exposed as function parameters of not only the gadgets that directly use
them to build constraints, but also any super-gadgets that contain (possibly many instances of) those
sub-gadgets. As increasingly large gadgets are constructed, the function parameters for variable names
keep growing, including all the internal variables at every level. Furthermore, while soundness theorems
like equality-test-gadget-soundness above can ignore internal variables in the consequent of the
implication, completeness theorems need to say something about the internal variables. In the notation of
Section 3, a gadget correctness theorem R̃ = S reduces to R = S if there are no internal variables, which is
a good rewrite rule, as in boolean-assert-gadget-correctness above. But internal variables cannot
be existentially quantified in the gadget construction functions, because these functions must return the
gadgets given all their variables. Instead, the specification S over the external variables must be extended
to a specification S′ over all variables, including the internal ones at every level. This exposure of internal
variables violates modularity and impedes compositionality.

6 Prime Field Constraint Systems

The scaling issue discussed in Section 5.5 is addressed by Prime Field Constraint Systems (PFCS),
a formalism introduced by the authors. PFCS generalizes R1CS in two ways: (1) constraints can be
equalities between any expressions, built out of variables, constants, additions, and multiplications; and
(2) constraints can be grouped into named relations with parameters, and these relations can be used as
constraints with the parameters replaced by argument expressions (as in function calls).

4The Aleo blockchain mainnet had not been launched yet, so these bugs did not affect real applications and assets.

https://github.com/acl2/acl2/tree/master/books/workshops/2023/coglio-mccarthy-smith
https://github.com/acl2/acl2/tree/master/books/kestrel/crypto/r1cs/sparse/gadgets
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The first extension is useful to represent zero-knowledge circuit formalisms different from R1CS,
but is not especially relevant to verifying R1CS gadgets. The second extension is important for verifying
R1CS and other kinds of gadgets, because it explicitly captures their hierarchical structure. A PFCS
relation formalizes a gadget; the relation’s parameters are the gadget’s external variables, while the other
variables in the relation’s defining body are the gadget’s internal variables.5 PFCS explicitly handles
the existential quantification that takes R to R̃: while R is the semantics of a PFCS relation’s body, R̃ is
the semantics of the PFCS relation itself. The internal variables of a gadget are taken into consideration
when proving the correctness R̃ = S of a gadget, which involves R, but can be ignored when proving the
correctness of super-gadgets that include that sub-gadget, whose semantics R̃ can be rewritten to S in
proofs for the super-gadgets; no extended specification S′ (see end of Section 5.5) is needed.

Our development and use of PFCS is still somewhat preliminary. It is overviewed here, but it will be
described in more detail in future publications. More information is in the PFCS library [38, pfcs].

6.1 Model

names N ::= 〈letter then letters/digits/underscores〉
integers I ::= . . . | -2 | -1 | 0 | +1 | +2 | . . .

expressions E ::= N | I | E+E | E*E
constraints C ::= E=E | N(E∗ )

relations R ::= N(N∗ ){C∗ }

Figure 4: PFCS syntax.

The syntax of PFCS is approximately
described by the grammar in Figure 4,
consistently with the informal descrip-
tion above. A relation R consists of a
name N, a sequence of parameters N∗,
and a defining body that is a sequence
of constraints C∗. The abstract syntax
is formalized via recursive types [38,
fty]. The concrete syntax is formalized via an ABNF grammar [38, abnf] complemented by some
(upcoming) restricting predicates.

α(e1) = α(e2)

α `ρ e1 = e2

r(v1 · · ·vn){c1 · · ·cm} ∈ ρ

α ′ ⊇ {v1 7→ α(e1), . . . ,vn 7→ α(en)}
∀i ∈ {1, . . . ,m}. α ′ `ρ ci

α `ρ r(e1 · · ·en)

Figure 5: PFCS semantics.

The semantics of PFCS is approximately described
by the inference rules in Figure 5, which inductively de-
fine when an assignment α (a finite map from variables
to field elements) satisfies a constraint c in the context
of a set of relations ρ , written α `ρ c. The first rule
says that α satisfies an equality constraint e1 = e2 when
the evaluations α(e1) and α(e2) yield the same field ele-
ment; α extends from variables to expressions in the ob-
vious way. The second rule says that α satisfies a rela-
tion constraint r(e1 · · ·en) when ρ includes the relation
r(v1 · · ·vn){c1 · · ·cm} and each constraint ci in its body is satisfied by an assignment α ′ that extends the
assignment of each evaluated argument expression α(e j) to the corresponding parameter v j of the rela-
tion; besides the parameters, α ′ must assign field elements to the other variables (if any) in the body of
the relation, which are internal to the gadget. Since α ′ appears in the premises but not in the conclu-
sion, it is existentially quantified; since the values of the relation’s parameters are prescribed by the rule,
the existential quantification reduces to the values assigned to the internal variables (if any), capturing
exactly the existential quantification in R̃. The prime p is left implicit in Figure 5.

Since ACL2 disallows mutually recursive defun and defun-sk, the PFCS semantics is formalized,
over the PFCS abstract syntax, via (1) proof trees for the inference rules in Figure 5 and (2) a proof

5PFCS does not distinguish between input and output external variables. This distinction only matters to the formulation of
the specification S, which is still always a relation over the external variables, as is the semantics R̃ of the gadget.

http://acl2.org/manual?topic=PFCS____PFCS
http://acl2.org/manual?topic=ACL2____FTY
http://acl2.org/manual?topic=ABNF____ABNF
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checker for those proof trees; that is, a mini-logic is formalized in ACL2. Since this definition is in-
convenient for reasoning about gadgets, ACL2 rules are provided that capture the inference rules more
directly, without proof trees and proof checker, as if defun and defun-sk were mutually recursive.

6.2 Verification

In the PFCS framework, gadget constructions are formalized by ACL2 functions that take no or few
inputs and return (abstract syntax of) PFCS relations as outputs. Gadgets with fixed numbers of variables
and constraints are built by ACL2 functions with no inputs. Gadgets with varying numbers of variables
or constraints are built by ACL2 functions whose inputs are non-negative integers that specify those
varying numbers. None of these ACL2 functions take variable names as inputs, because variables in
PFCS relations are local to the relations and can be fixed for each gadget: the external variables, i.e.
the parameters, can be replaced when the relations are called; and the internal variables are existentially
quantified. These ACL2 functions do not call each other, unlike the ones that construct R1CS gadgets;
the gadget hierarchy is captured directly in the PFCS relations.

Correctness is proved for generic prime p and (if applicable) for generic numbers of variables and
constraints (sometimes under restricting hypotheses). The deeply embedded PFCS relations built by the
ACL2 functions are lifted to shallowly embedded PFCS relations, which are ACL2 predicates over field
elements, with parameters for the external variables and an existential quantification (via defun-sk)
for the internal variables. These predicates are defined as conjunctions of (1) calls of other predicates,
one per sub-gadget, and (2) equalities between terms involving prime field operations, one per equality
constraint; the predicates’ call graph corresponds to the gadget hierarchy. For gadgets with fixed numbers
of variables and constraints, a deep-to-shallow lifter automatically generates the predicates, along with
theorems connecting the deep and shallow formulations; for gadgets with varying numbers of variables
and constraints, currently the predicate and theorem are manually generated, but a future extension of
the lifter may automate these as well. Correctness of a shallowly embedded PFCS relation is proved by
opening the predicate definition, using the called predicates’ correctness theorems as rewrite rules, and
using other hints and lemmas of varying complexity as needed. Correctness is extended to the deeply
embedded PFCS relation via the lifting theorem, in a way that may be automated in the future.

For example, a PFCS version of boolean-assert-gadget in Section 5.5 is constructed as

(defun boolean-assert-gadget () ; deeply embedded PFCS relation
(pfdef "boolean_assert" ; name

(list "x") ; parameter
(pf= (pf* (pfvar "x") ; (x)

(pf+ (pfconst 1) (pfmon -1 "x"))) ; (1 - x)
(pfconst 0)))) ; (0)

The lifter call (lift (boolean-assert-gadget)) generates the predicate

(defun boolean-assert (x p) ; shallowly embedded PFCS relation
(and (equal (mul x (add (mod 1 p) (mul (mod -1 p) x p) p) p)

(mod 0 p))))

and the lifting theorem

(defruled definition-satp-of-boolean-assert-to-shallow
(implies ... ; boilerplate hypotheses

(equal (definition-satp "boolean_assert" defs (list x) p) ; deep
(boolean-assert x p)))) ; shallow
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where (definition-satp r ρ (list φ1 · · · φn) p) formalizes {v1 7→ φ1, . . . ,vn 7→ φn} `ρ r(v1 · · ·vn).
The correctness of the predicate is expressed as

(defthm boolean-assert-correctness
(implies ... ; boilerplate hypotheses

(equal (boolean-assert x p) ; R (shallow)
(bitp x)))) ; S

which is extended to the gadget via the lifting theorem as

(defthm boolean-assert-gadget-correctness
(implies ... ; boilerplate hypotheses

(equal (definition-satp "boolean_assert" defs (list x) p) ; R (deep)
(bitp x)))) ; S

As another example, a PFCS version of if-equal-then-else-gadget in Section 5.5 is built as

(defun if-equal-then-else-gadget ()
(pfdef "if_equal_then_else"

(list "u" "v" "x" "y" "z")
(pfcall "if_then_else" (pfvar "w") (pfvar "x") (pfvar "y") (pfvar "z"))
(pfcall "equality_test" (pfvar "u") (pfvar "v") (pfvar "w"))))

The lifter generates the predicate

(defun-sk if-equal-then-else (u v x y z p)
(exists (w)

(and (fep w p)
(and (if-then-else w x y z p)

(equality-test u v w p)))))

which existentially quantifies w and which calls the lifted predicates for its sub-gadgets (not shown here).
Correctness is expressed as

(defthm if-equal-then-else-gadget-correctness
(implies ... ; boilerplate hypotheses

(equal (definition-satp "if_equal_then_else" defs (list u v x y z) p) ; R
(equal z (if (equal u v) x y))))) ; S

which rewrites R to S without involving the internal variable w.
To exemplify varying numbers of variables and constraints, a PFCS version of boolean-assert-

list-gadget mentioned (but not shown) in Section 5.5 is constructed as

(defun boolean-assert-list-gadget (n)
(pfdef (iname "boolean_assert_list" n) ; "boolean_assert_list_<n>"

(iname-list "x" n) ; (list "x_0" "x_1" ...)
(boolean-assert-list-gadget-aux ; ((pfcall "boolean_assert" (pfvar "x_0"))
(iname-list "x" n))))) ; (pfcall "boolean_assert" (pfvar "x_1"))

; ...)
(defun boolean-assert-list-gadget-aux (vars)
(cond ((endp vars) nil)

(t (cons (pfcall "boolean_assert" (pfvar (car vars)))
(boolean-assert-list-gadget-aux (cdr vars))))))

where iname constructs an indexed name, iname-list constructs a list of indexed names, and the aux-
iliary function constructs a list of PFCS relations calls for generic variable names (which is useful for
induction), which the main function instantiates to specific variable names. Correctness is expressed as
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(defthm boolean-assert-list-gadget-correctness
(implies ... ; boilerplate hypotheses

(equal (definition-satp "boolean_assert_list" defs xs p) ; R
(bit-listp xs)))) ; S

The details of the examples above, and of the other ones in Section 2, are in the supporting materials,
in [39, [books]/workshops/2023/coglio-mccarthy-smith]. Other examples are in the PFCS library,
in [39, [books]kestrel/crypto/pfcs/examples.lisp].

We are porting the verified snarkVM gadgets mentioned in Section 5.5 from R1CS form to PFCS
form, which we will also use for the remaining snarkVM gadgets.

6.3 Validation

The PFCS gadget constructions in ACL2 are built in the same way as the R1CS gadget constructions
in Section 5.5, namely by replicating what the gadget construction libraries do. For the ACL2 R1CS
constructions, different choices of function call graph are possible, so long as they produce the same
R1CS constraints as the libraries. For the ACL2 PFCS constructions, different choices of PFCS hierarchy
are possible, so long as, when flattened, they produce the same R1CS constraints as the libraries.

We plan to develop a flattener of PFCS to R1CS, which will also generate theorems of correct flat-
tening, i.e. that the flattened R1CS constraints are equivalent to the PFCS constraints. The flattener will
inline all the relation constraints, resulting in a sequence of equalities, all of which have the R1CS form
because our PFCS constructions use equality constraints of the R1CS form.

The PFCS gadget constructions in ACL2 will be validated against sample gadgets from the libraries
in the same way as explained in Section 5.5 for the R1CS gadget constructions in ACL2, with the addition
of the aforementioned PFCS flattener.

7 Related Work

The authors are not aware of any other work to formally verify zero-knowledge circuits using ACL2;
the paper [17] describes our snarkVM verification work in more detail. There is work using other tools,
discussed below.

The QED2 tool [36] is a specialized verifier that combines a dedicated algorithm with an SMT solver
to automatically establish whether the outputs of a zero-knowledge circuit are uniquely determined by the
inputs, or are instead under-constrained; it may also fail to find an answer. Their approach is automated,
but our work addresses a stronger property (correctness); the unique determination of outputs from inputs
is implied by soundness, when the specification of a gadget is that the gadget represents a computation
(see Section 3). Their approach works on individual circuits like the ones in Sections 5.3 and 5.4, not on
parameterized circuit families like the ones in Sections 5.5 and 6.2.

The SMT solver for finite fields described in [34] has been used to verify automatically whether
circuits produced by certain compilers are sound (with respect to the compilation source) and determin-
istic (i.e. the outputs are uniquely determined by the inputs, as in [36]). Since our circuit specifications
prescribe computations, in a way that may be similar to the sources of circuit compilers, their sound-
ness proofs are analogous to ours (with determinism implied by soundness, at least in our case, as noted
above); but their work does not cover completeness proofs. Their approach works on individual circuits,
not on parameterized circuit families (as also noted above for [36]). For example, in our work, an un-
signed n-bit integer addition circuit family as in Figure 3 is verified once, quickly, for every possible n
(see Section 5.5), and can be used to verify correct compilation via a syntactic check; in contrast, in their

https://github.com/acl2/acl2/tree/master/books/workshops/2023/coglio-mccarthy-smith
https://github.com/acl2/acl2/tree/master/books/kestrel/crypto/pfcs/examples.lisp
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work, instances of that family for different values of n are verified separately, taking increasing resources
as n grows. Another advantage of verifying parameterized circuit families is that their definitions are
essentially formal models of the circuit construction libraries and therefore help validate the libraries’
design and implementation. The tradeoff between their and our approach is automation versus generality.

The Ecne tool [40] uses a dedicated algorithm to perform weak verification (their term to mean that
the outputs are uniquely determined by the inputs) and witness verification (their term to mean that the
outputs and the internal variables are uniquely determined by the inputs); their paper also discusses strong
verification (i.e. correctness in our work), but only as future work. As already noted, the determinism
of output variables is a consequence of soundness in our work. The determinism of internal variables is
unnecessary for correctness, but it becomes a consequence of correctness if the latter is stated with respect
to an extended specification S′ that includes the internal variables (as in Section 5.5) and prescribes their
computation from the inputs; Ecne’s witness verification can be thus addressed with our techniques.

There is work on verifying the compilation of higher-level languages to zero-knowledge circuits [21,
35, 29]. While there is probably overlap with our work, and thus the opportunity for cross-fertilization,
the purpose is a bit different: we verify the circuits constructed by existing libraries, which may be used
as compilation targets, or for more general purposes such as programmatic construction of circuits; as
noted above, our approach also helps validate the libraries.

As a final remark, the notion of existentially quantified circuits (EQCs) in [33] is related to the
existential quantification of internal variables in PFCS.

8 Future Work

The main thread of future work is the continued verification of the snarkVM gadgets at Aleo, extending
and improving the ACL2 PFCS library along the way. We plan to extend the PFCS lifter to work on
parameterized gadgets, which requires a leap in sophistication in order to operate on the ACL2 functions
that construct those gadgets rather than on the PFCS abstract syntax produced by the ACL2 functions.
We also plan to build a proof-generating flattener of PFCS to R1CS form, to enable validation against
samples extracted from snarkVM (see Section 6.3). To handle the gadget optimizations in snarkVM, we
plan to develop proof-generating PFCS-to-PFCS transformations that correspond to those optimizations:
these can be composed with the proofs for the vanilla (unoptimized) gadgets to obtain proofs of the
optimized gadgets. The end goal is to verify all the snarkVM gadgets, including complex ones for
cryptographic operations. These gadgets are being verified against specifications written in ACL2, which
are not directly exposed to prover and verifier (cf. end of Section 3); they are building blocks for the next
steps described below.

After reaching the above goal, the next verification target is the snarkVM compiler from Aleo in-
structions (the assembly-like language used to represent program code in the Aleo blockchain) to R1CS
constraints, which uses the snarkVM gadget constructions to generate the constraints. The approach
will be a detached proof-generating extension of the snarkVM compiler, built on the detached proof-
generating extension of the snarkVM gadget constructions; every time the compiler is run, its generated
constraints will be syntactically compared to the ones generated in ACL2, including flattening and op-
timizations as described above, to ensure that they are identical and thus that the proof applies to that
exact compilation, as in a verifying compiler. The specification for the R1CS constraints generated by
the snarkVM compiler is the source Aleo instructions program, which software developers can read and
understand; the formal proof relies on a formalization of Aleo instructions that we are building in ACL2.

The same detached proof-generating extension approach will then be used for the compilation from
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Leo [2] (a high-level programming language for the Aleo blockchain) to Aleo instructions, providing an
end-to-end verifying compiler functionality from Leo to R1CS constraints via Aleo instructions. The
specification for the R1CS constraints generated by the Leo and snarkVM compilers is the Leo source
program, which software developers can read and understand; the formal proof relies on a formalization
of Leo that we are building in ACL2 [16].

The roadmap delineated above is part of our overarching work to apply formal verification to ideally
every aspect of the Aleo blockchain and ecosystem. The aforementioned formalizations of Aleo instruc-
tions and of Leo have more general value than their role in the formal verification of the compilation.

Alongside the PFCS-based compositional verification approach, it would also be interesting to con-
tinue exploring the Axe-based whole-gadget verification approach, in particular to improve the ability
to recover sub-gadgets. There are tradeoffs between the two approaches: the first one keeps the proofs
more manageable and efficient, but requires the formalization of the gadget constructions; the second
one does not require that formalization, but needs to recover some of that structure during the proofs.

It would also be interesting to investigate the use or specialization of Axe for PFCS-based composi-
tional proofs. Although PFCS aims at keeping proofs relatively small via parameterization and compo-
sition, Axe may come handy in case some large proof tasks arise. Axe’s tactics may also be useful for
certain proofs regardless of size, and not only for zero-knowledge circuits.

While interactive theorem proving is needed to verify parameterized circuit families with efficiency
and generality, automated tools like SMT solvers could be useful for certain proof sub-tasks. ACL2
already has facilities to interface with automated reasoning tools.

There may be opportunities to partially automate the replication of the gadget constructions in the
theorem prover, in the detached proof-generating extension approach (see Section 5.5). One avenue is
the abstraction and translation of code in the gadget construction libraries. Another avenue, suggested
by a reviewer, is to leverage any structure that can be recovered from generated gadgets.

9 Conclusion

Our exploration of the zero-knowledge circuit verification problem has shed more light into the problem,
created and improved libraries and tools of more general use (e.g. the prime fields library), and evaluated
increasingly sophisticated solution approaches. The PFCS-based compositional approach is promising,
but completing the verification of the snarkVM gadgets will provide a more definitive validation.

The inherent restrictions on zero-knowledge circuits might initially lead to think of their verification
as more tractable than general verification. Our exploration shows the opposite. As the size and com-
plexity of the circuits grows, one eventually hits the “program verification wall”. This should not be sur-
prising, for a formalism that can describe sufficiently general computations. Although zero-knowledge
circuits are not Turing-complete, and their verification is technically decidable because of their finiteness,
the constraint solution space is so large that their verification is “practically undecidable”.

Our exploration also confirms the importance of structure in formal verification. Preserving and
leveraging the structure that is naturally available when the circuits are built promotes more manageable
and efficient proofs, compared to losing that structure and then attempting to recover it.
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GossipSub is a popular new peer-to-peer network protocol designed to disseminate messages quickly
and efficiently by allowing peers to forward the full content of messages only to a dynamically se-
lected subset of their neighboring peers (mesh neighbors) while gossiping about messages they have
seen with the rest. Peers decide which of their neighbors to graft or prune from their mesh locally
and periodically using a score for each neighbor. Scores are calculated using a score function that
depends on mesh-specific parameters, weights and counters relating to a peer’s performance in the
network. Since a GossipSub network’s performance ultimately depends on the performance of its
peers, an important question arises: Is the score calculation mechanism effective in weeding out
non-performing or even intentionally misbehaving peers from meshes? We answered this question
in the negative in our companion paper [31] by reasoning about GossipSub using our formal, official
and executable ACL2s model. Based on our findings, we synthesized and simulated attacks against
GossipSub which were confirmed by the developers of GossipSub, FileCoin, and Eth2.0, and pub-
licly disclosed in MITRE CVE-2022-47547. In this paper, we present a detailed description of our
model. We discuss design decisions, security properties of GossipSub, reasoning about the security
properties in context of our model, attack generation and lessons we learnt when writing it.

1 Introduction

GossipSub is a new peer-to-peer network protocol used by popular applications like Eth2.0 [12] and
FileCoin [6]. Messages transmitted in a GossipSub network are typically categorized into topics, which
peers of the network can subscribe to or unsubscribe from. A peer can be part of several meshes cor-
responding to different topics. In contrast to flood publishing where a peer forwards every message it
receives to all of its neighboring peers subscribed to the corresponding topic, GossipSub uses lazy pull,
wherein a peer forwards full messages only to its mesh neighbors in the relevant topic. A peer can graft
or prune a mesh neighbor based on various heuristic security mechanisms that ultimately rely on a lo-
cally computed score. The score is calculated periodically by each peer for each of its neighbors and
is never shared. The score function, which is used to calculate a neighboring peer’s score, depends on
application-specific parameters and weights, and takes into account the performance of the neighbor both
generally and on a given topic. Ideally, the score of misbehaving peers (e.g., peers that drop messages or
forward invalid ones) is penalized, which matters because negatively scored mesh neighbors get pruned.

The GossipSub developers specified their protocol in English prose [55, 56, 57] and implemented it
in GoLang [4]. They relied on unit-tests and network emulation [58, 36] of pre-programmed scenarios
for testing to show that misbehaving peers in a GossipSub network are eventually pruned. However,
simple testing is not enough. Dijkstra famously quoted: “Program testing can be a very effective way to
show the presence of bugs, but it is hopelessly inadequate for showing their absence.”

In our companion paper [31], we formalized the GossipSub specification in the ACL2s (the ACL2
Sedan) [22, 13] theorem prover. ACL2s extends ACL2 [27, 28] with an advanced data definition frame-
work (Defdata) [16], the cgen [17, 15, 18, 14] framework for automatic counterexample generation,
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a powerful termination analysis based on calling context graphs [48] and ordinals [45, 46, 47], and a
property-based modelling/analysis framework, each of which helped immensely in our formalization
and verification effort. Our publicly available model [3] is designed to be modular and pluggable i.e.,
it allows us to reason about parts of the model in isolation as well as about applications running on top
of the network. Officially, GossipSub does not come with any properties. We formalized and attempted
to prove security properties which (1) we thought should be reasonable for a score-based protocol like
GossipSub to satisfy and which (2) the GossipSub developers agree with. One such property, which
states that continuously misbehaving peers are eventually pruned, turned out to be invalid in the case
of Eth2.0. We leveraged the cgen facility in ACL2s to automatically discover vulnerable network states
that invalidate our property. We built attack gadgets using sequences of events which can take a network
from a reasonable starting state to one of the discovered vulnerable states. We synthesized attacks which
were confirmed by the GossipSub, FileCoin, and Eth2.0 developers and publicly disclosed in MITRE
CVE-2022-47547. At the time of writing, the GossipSub developers are actively working on a fix. These
results are explained in our companion paper [31]. In this work, we focus on our formalization of the
GossipSub ACL2s model and its use for reasoning, simulation and attack synthesis.
Paper Outline. Section 2 describes the GossipSub protocol and our ACL2s model simultaneously.
Section 3 describes properties we used to reason about GossipSub. Based on the insights gleaned from
proving/disproving these properties, Section 4 describes how we synthesized attacks that can disrupt
communication in an Eth2.0 GossipSub network. Section 5 describes some limitations of our model.
Section 6 presents related work on mechanized theorem proving efforts in the field of distributed systems.
Section 7 concludes.

2 GossipSub Model Description

In this section, we describe our ACL2s model, while also giving an overview of how the GossipSub
protocol works. Interested readers are encouraged to walk through our ACL2s formalization whose
presentation mirrors this section [2]. Consider the mesh shown in Figure 1. Full-message payloads are

Figure 1: A mesh of peers subscribing to the same topic. This Figure was taken from [5].

forwarded on the full-message peering edges, which consume more bandwidth, while the metadata-only
peering edges are used only to advertise and request full-messages using corresponding “IHAVE” and
“IWANT” Remote Procedure Calls (RPCs). These RPCs carry the metadata of the full-message being
advertised or requested, which is considerably smaller than the message itself. In this way, network
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Figure 2: A community graph of Eth2.0 nodes where a bigger node implies greater degree. Similarly
colored nodes have more edges among them than to the rest of the graph.

congestion is kept in check, and full-messages are supposed to be eventually disseminated to all peers
who subscribe to the given topic. As an example, peers numbered 1 and 2 can send full-messages
to each other, since they are mesh neighbors on the illustrated topic and share a full-message peering
edge. However, peer 29 can receive a full-message from 1 only if it requests one, by sending an IWANT

message in response to a corresponding IHAVE message received from peer 1. Note, Figure 1 only shows
a single GossipSub mesh. However, real world applications can have an arbitrary number of topics and
corresponding meshes, e.g., Eth2.0 supports up to 71 topics. Figure 2 illustrates a community graph of
an actual Eth2.0 network from Li et. al. [35].

In order to model and analyze GossipSub in ACL2s, we rely heavily on Defdata to easily model
network components, and on cgen for property-based testing. Distributed systems are often described in
terms of state machines, namely automata that encode the discrete behaviors of a peer in the system [32,
53]. In our model, we describe the state-space of a GossipSub peer with a peer-state type, and then
implement the GossipSub state machine using a state transition function. We use a Defdata map from
peers to their corresponding states to capture the state of an entire network.

(defdata group (map peer peer-state))

We use records whenever we need to store state because of the convenience of using named fields to
access the internals of the state. While proving theorems referring to states, we noticed that we routinely
had to prove helper lemmas about the types of the contents of those states. This motivated us to rewrite
records in the ACL2s books to enable such helper lemmas automatically, leading to cleaner code.

The local state of a peer is modeled as a record using the following definition:

(defdata peer-state
(record (nts . nbr-topic-state)

(mst . msgs-state)
(nbr-tctrs . pt-tctrs-map)
(nbr-gctrs . p-gctrs-map)
(nbr-scores . peer-rational-map)))

where (1) nts is a record that stores information about the peer’s neighbors’ subscriptions, the peer’s
mesh neighbors, and the peer’s fanout (which we describe later); (2) mst is a record that stores the peer’s
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messages and related state; (3) nbr-tctrs and nbr-gctrs are total maps that store counters used for
computing a neighbor’s topic-specific and general scores (respectively); and finally (4) nbr-scores is
a total map from peers to their scores. Note that peer and topic are ACL2 symbols, while tctrs is a
record that keeps track of a peer’s behaviors in each topic:

(defdata tctrs
(record (invalidMessageDeliveries . non-neg-rational)

(meshMessageDeliveries . non-neg-rational)
(meshTime . non-neg-rational)
(firstMessageDeliveries . non-neg-rational)
(meshFailurePenalty . non-neg-rational)))

Similarly, gctrs keeps track of a peer’s general behaviors, not pertaining to any single topic:

(defdata gctrs
(record (apco . rational) ;; application provided score

(ipco . non-neg-rational) ;; ip-colocation factor
(bhvo . non-neg-rational))) ;; track misbehavior

Notice that each of the counters is a rational, not a natural. This is because counters are supposed to
fractionally decay at regular intervals. The rate of decay is dependent on the application running on top
of GossipSub. We define maps for each of these counters:

(defdata pt (cons peer topic))
(defdata pt-tctrs-map (map pt tctrs))
(defdata p-gctrs-map (map peer gctrs))
(defdata peer-rational-map (map peer rational))

For each map, we define a lookup function with default values. ACL2s automatically proves termi-
nation and input-output contracts, which suffices to show that the maps are total. As an example, the
following is the lookup function for scores:

(definecd lookup-score (p :peer prmap :peer-rational-map) :rational
(let ((x (mget p prmap)))
(match x
(nil 0) ;; default value
(& x))))

We now explore each component of the peer-state.

Neighbor topics state. A key objective of the GossipSub protocol is to reduce network congestion,
while forwarding data as quickly as possible. To achieve this, a peer forwards full messages only to
a subset of its neighboring peers. A GossipSub peer keeps track of the topics its neighbors subscribe
to, using the nbr-topicsubs field in nbr-topic-state. Using this information, it is able to build up
a picture of the topics around it and which peers are subscribed to each topic. The peers to which it
forwards full messages in topics it does not itself subscribe to constitute a list called a fanout, and is
stored in the topic-fanout field, which is a map from topics to lists of peers (lop). The peer forwards
full messages to other peers with whom it shares mesh membership. Mesh memberships are stored in
the topic-lop-map field topic-mesh. Finally, the peer stores the last time it published a message to its
fanout. This is used to expire a peer’s fanout, if it has been too long since the peer last published.

(defdata peer symbol)
(defdata lop (listof peer))
(defdata topic-lop-map (map topic lop))
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(defdata topic-nnr-map (map topic non-neg-rational))

(defdata nbr-topic-state
(record (nbr-topicsubs . topic-lop-map)

(topic-fanout . topic-lop-map)
(last-pub . topic-nnr-map)
(topic-mesh . topic-lop-map)))

Messages state. msgs-state is a record type used to store information about messages received, re-
quested, seen, or forwarded by a peer. First we define the types pid-type, which is just an alias for the
type symbol, and the record type payload-type.

(defdata-alias pid-type symbol)
(defdata payload-type (record (content . symbol)

(pid . pid-type)
(top . topic)
(origin . peer)))

payload-type is a record used to represent full messages, carrying the message content, payload id,
the topic of this message and the peer who originated it. pid-type represents payload ids, a hash of a
message payload which can identify the full message content. The msgs-state is defined as follows:

(defdata msg-peer (v (cons payload-type peer)
(cons pid-type peer)))

(defdata msgpeer-rat (map msg-peer rational))
(defdata msgs-waiting-for (map pid-type peer))
(defdata mcache (alistof payload-type peer))

(defdata msgs-state
(record (recently-seen . msgpeer-rat)

(pld-cache . mcache)
(hwindows . lon)
(waitingfor . msgs-waiting-for)
(served . msgpeer-rat)
(ihaves-received . nat)
(ihaves-sent . nat)))

msgs-state stores (1) recently-seen, a map from either a full-message or a message hash to the
time since receipt; (2) pld-cache, an association list of full messages and their senders; (3) hwindows,
or history windows, a list of naturals where each is the number of messages received in an interval; (4)
waitingfor, a map from message ids of messages that haven’t been received yet, to peers one has sent
corresponding IWANT requests to; and (5) served, a map from either a full-message or a message hash
to a rational, denoting the count of the number of times this message was served. The served map helps
to detect peers sending too many IWANT messages. Finally, msgs-state contains (6) ihaves-received
and ihaves-sent, which store the number of IHAVE messages received and sent, respectively.

Events. Our model includes events that can occur in a network. Events include peers sending or receiving
(1) control messages like GRAFT or PRUNE for mesh control, SUB, UNSUB, JOIN and LEAVE for topics, or
CONNECT1 or CONNECT2 messages to edit neighbors; (2) PAYLOAD for carrying message payload, or IHAVE
for advertising or IWANT for requesting message payloads; and (3) HBM for heart-beat events occurring at
each peer at regular intervals. A list of events will have type loev. Events are defined as follows:
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(defdata verb (enum ’(SND RCV)))
(defdata rpc (v (list ’CONNECT1 lot)

(list ’CONNECT2 lot)
(list ’PRUNE topic)
(list ’GRAFT topic)
(list ’SUB topic)
(list ’UNSUB topic)))

(defdata data (v (list ’IHAVE lopid)
(list ’IWANT lopid)
(list ’PAYLOAD payload-type)))

(defdata mssg (v rpc data))
(defdata evnt (v (cons peer (cons verb (cons peer mssg)))

(list peer ’JOIN topic)
(list peer ’LEAVE topic)
(list peer verb peer ’CONNECT1 lot)
(list peer verb peer ’CONNECT2 lot)
(list peer ’HBM pos-rational)
(list peer ’APP payload-type)))

(defdata hbm-evnt (list peer ’HBM pos-rational))
(defdata-subtype hbm-evnt evnt)

(defdata loev (listof evnt))

Heart-beat events occur at regular intervals at each peer in a GossipSub network. Several mainte-
nance activities are performed during each such event. Scores are updated for neighboring peers, which
are then used to update mesh memberships. Counters are multiplied by some application-specific decay
factors. Neighboring peers that are not part of any mesh are sent GRAFT messages at regular intervals,
provided that their addition could improve the average score of peers in the corresponding mesh. Several
of these actions depend on application-specific weights (used for calculating scores) and parameters.

Parameters and Scoring. We store the weights and parameters relevant for scoring in a record called a
twp. This record totally captures the application-specific configuration of a GossipSub instance, e.g., we
can uniquely specify the configuration used by Eth2.0 in a twp. Thus, in order to simulate an application
running on top of GossipSub with our model, all we need to know is the application-specific twp. This
is what we mean when we say our model is “pluggable”.

(defdata weights
(record (w1 . non-neg-rational)

(w2 . non-neg-rational)
(w3 . non-pos-rational)
(w3b . non-pos-rational)
(w4 . neg-rational)
(w5 . non-neg-rational)
(w6 . neg-rational)
(w7 . neg-rational)))

(defdata params
(record (activationWindow . nat)

(meshTimeQuantum . pos)
(p2cap . nat)
(timeQuantaInMeshCap . nat)
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(meshMessageDeliveriesCap . pos-rational)
(meshMessageDeliveriesThreshold . pos-rational)
(topiccap . rational)
(grayListThreshold . rational)
(d . nat)
(dlow . nat)
(dhigh . nat)
(dlazy . nat)
(hbmInterval . pos-rational)
(fanoutTTL . pos-rational)
(mcacheLen . pos)
(mcacheGsp . non-neg-rational)
(seenTTL . non-neg-rational)
(opportunisticGraftThreshold . non-neg-rational)
(topicWeight . non-neg-rational)
(meshMessageDeliveriesDecay . frac)
(firstMessageDeliveriesDecay . frac)
(behaviourPenaltyDecay . frac)
(meshFailurePenaltyDecay . frac)
(invalidMessageDeliveriesDecay . frac)
(decayToZero . frac)
(decayInterval . pos-rational)))

(defdata wp (cons weights params))
(defdata twp (map topic wp))

Note that GossipSub required weights w3 and w3b to be negative. However, the use of Defdata
allowed us to automatically find that FileCoin used an invalid twp because it set w3 and w3b to zero.
We discussed this with the GossipSub developers who then agreed to allow zero values. Given T, a set
of topics which the neighbor subscribes to; tctrs, the neighbor’s topic specific counters; gctrs, the
neighbor’s global counters; and a twp containing entries for each topic our neighbor subscribes to, the
score function calculates a neighbor’s score as shown below.

score(q) = min
(
TC, ∑

τ∈T
twτ × ∑

i∈{1,2,3,3b,4}
wτ

i Pτ
i
)
+w5P5 +w6P6 +w7P7

where

(weights . params)= (mget τ twp)

wτ
i = (weights-wi weights)

Pτ
1 = (calcP1(tctrs-meshTime tctrs) (params-meshTimeQuantum params)

(params-timeQuantaInMeshCap params))

Pτ
2 = (calcP2(tctrs-firstMessageDeliveries tctrs) (params-p2cap params))

Pτ
3 = (calcP3(tctrs-meshTime tctrs) (params-activationWindow params)

(tctrs-meshMessageDeliveries tctrs)

(params-meshMessageDeliveriesCap params)

(params-meshMessageDeliveriesThreshold params))

Pτ
3b = (calcP3b(tctrs-meshTime tctrs) (params-activationWindow params)
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(tctrs-meshFailurePenalty tctrs)

(tctrs-meshMessageDeliveries tctrs)

(params-meshMessageDeliveriesCap params)

(params-meshMessageDeliveriesThreshold params))

Pτ
4 = (calcP4(tctrs-invalidMessageDeliveries tctrs))

P5 = (gctrs-apco gctrs)

P6 = (gctrs-ipco gctrs)

P7 = (calcP7 (gctrs-bhvo gctrs))

twτ = (params-topicweight params)

TC = (params-topiccap (cddar twp))

TC does not depend on any topic, but since it is stored in a twp which is indexed by topic, its value is
replicated in each of the corresponding params. So, it is fine to extract its value from the first entry of a
twp. Note that for score calculations, we require a non-empty twp.

Each of the calcPi functions where i ∈ {1,2,3,3b,4,7} is used to calculate contributions to the
score by one or more of counter values from tctrs. calcP1 calculates the contribution to a neighbor’s
score based on the time spent in common meshes. calcP2 awards score for being one of the first few
to forward a message. calcP3 calculates penalties due to the mesh message transmission rate being
below a given threshold of (params-meshMessageDeliveriesThreshold params). Whenever a peer
is pruned, its corresponding tctrs counter meshFailurePenalty is augmented by the mesh message
transmission rate deficit. This counter is not cleared even after the peer has been pruned. calcP3b scores
mesh message delivery failures based on the value of this counter. Hence, Pτ

3b is a “sticky” value which is
supposed to discourage a peer that was pruned because of under-delivery from quickly getting re-grafted
in a mesh. calcP4 calculates the penalty on score due to sending invalid messages. calcP7 calculates
penalties due to several kinds of misbehaviors described by the GossipSub specification. An example of
such misbehaviors includes spamming with too many IHAVE messages which are either bogus and/or not
following up to the corresponding IWANT requests.
The Transition Function. We define a transition function run-network, which, given an initial Group
state and a list of evnt, produces a trace of type egl, which is an alist of evnt and group. Hence,
after running a simulation, we have access to the state of the Group after each evnt was processed.
run-network depends on the transition function for the peer-state (transition), which depends on
the transition functions for nbr-topic-state (update-nbr-topic-state) and for msgs-state
(update-msgs-state). For brevity, we mention only the signatures of each of these functions below.
Notice that each of these signatures represents neatly and concisely the types of the formal arguments
and the function return type, which is very useful in a large code base.

(defdata egl (alistof evnt group)) ;; simulation trace

(definecd run-network (gr :group evnts :loev i :nat r :twp s :nat) :egl
...)

(defdata peer-state-ret
(record (pst . peer-state)

(evs . loev)))

(definecd transition
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(self :peer pstate :peer-state evnt :evnt r :twp s :nat) :peer-state-ret
...)

(defdata msgs-state-ret
(record (mst . msgs-state)

(evs . loev)
(tcm . pt-tctrs-map)
(gcm . p-gctrs-map)))

(definecd update-msgs-state (mst :msgs-state evnt :evnt pcm :pt-tctrs-map
gcm :p-gctrs-map r :twp) :msgs-state-ret

...)

(defdata nbr-topic-state-ret
(record (nts . nbr-topic-state)

(evs . loev)
(tcm . pt-tctrs-map)
(gcm . p-gctrs-map)
(sc . peer-rational-map)))

(definecd update-nbr-topic-state (nts :nbr-topic-state
nbr-scores :peer-rational-map
tcm :pt-tctrs-map gcm :p-gctrs-map
evnt :evnt r :twp s :nat) :nbr-topic-state-ret

...)

A GossipSub peer can select a random subset of its fanout and promote them as mesh members.
It can also selects a random subset of its neighbors to advertise with “IHAVE” messages. Such non-
determinism is handled by sending a random seed s as a formal parameter to run-network, which is
then propagated to the other transition functions it depends on. Observe that a single event like full
message forwarding can trigger several more forwards, causing a cascade of events. Such events are
represented by the evs field in the return types of update-msgs-state and update-nbr-topic-state.
In order to limit the total number of events processed, we send a natural number i as a formal parameter
to the run-network function.

When proving contract theorems for the transition functions, we needed to prove the types of terms
returned by utility functions, like shuffle, or ACL2 functions like set-difference-equal. For this,
we used polymorphism and automated type-based reasoning provided by Defdata, as shown below:

(sig set-difference-equal ((listof :a) (listof :a)) => (listof :a))
(sig shuffle ((listof :a) nat) => (listof :a))

We made heavy use of higher-order macros written by Manolios [1] to improve the readability of our
code. For example, create-map* is a list functor. Given an admitted function name or a lambda expres-
sion f of type a → b, create-map* defines a function map*-*f of type (listof a) → (listof b).
In the following code snippet, we show theorems proving that it obeys the functor laws, and give an
example of its usage. map* is a syntactic sugar that maps function f onto a list without referring to the
generated function name map*-*f.

(definec id (x :all) :all
x)

;; Proof that create -map* is a list functor
;; 1) functor mapping preserves the identity function
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(property functor-id (xs :tl)
(== (map* id xs) ;; id is an identity function for lists

(id xs)))

;; 2) functor mapping preserves function composition. f and g are declared
;; using defstub. gof is defined as a composition of g and f
(property functor-comp (xs :tl)
(== (map* gof xs)

(map* g (map* f xs))))

;; function to create a list of SND GRAFT events from peer p to a list of peers
(create-map* (lambda (tp p) ‘(,p SND ,(cdr tp) GRAFT ,(car tp)))

lotopicpeerp
loevp
(:name mk-grafts)
(:fixed-vars ((peerp p))))

(check= (map* mk-grafts ’((FM . A) (DS . B)) ’P)
’((P SND A GRAFT FM) (P SND B GRAFT DS)))

Given an admitted function name or a lambda expression f of type a × b → b, the higher order
function create-reduce* defines a function reduce*-*f which accepts a list of elements of type a, an
initial accumulator value of type b, and returns a reduction of the list using f, from left to right.

;; function to extract all the subscribers (neighboring peers) from a topic-lop-map
(create-reduce* (lambda (tp-ps tmp) (app tmp (cdr tp-ps)))

lopp
topic-lop-mapp
(:name subscribers))

(check= (reduce* subscribers ’()
’((T1 P1 P2 P3)
(T2 P4 P5 P1)))

’(P4 P5 P1 P1 P2 P3))

3 Reasoning about the scoring function

Based on the observation that honest peers can be distinguished from malicious ones based on their
observable behaviors (using local counters and scores), and thus, the overall network can be made more
secure and performant if every honest peer promotes their well-behaving neighbors and demotes poorly-
behaved ones, we came up with the following informal fundamental property.

Fundamental Property of GossipSub Defense Mechanisms. Peers who behave poorly will be
demoted by their neighbors. Peers who behave better-than-average will be promoted by their neighbors.
Promotion/demotion is entirely based on local peer behavior.
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Figure 3: An example network.

Before reasoning about the formalization of this fundamental property later in the paper, we discuss
the importance of this fundamental property. Consider the simple example shown in Figure 3, where
peers A and B subscribe to, and are mesh neighbors in both Red and Blue topics. It might be possible
for B to observe that A behaves perfectly well in the Blue topic while simultaneously misbehaving in
the Red topic. This is not good for B because it depends on A for all of its messages in the Red topic.
Note that this is a very simplified example. In an actual network, B could have several other neighbors
subscribed to the Red topic. But as we will show later, it is equally trivial to have a scenario where all of
B’s neighbors isolate it from communications in the Red topic. In this example, we want B to prune A
from its Red mesh in hopes of finding a better mesh neighbor later on. Reasoning about this fundamental
property directly would be difficult due to the massive search-space of possible attack vectors. Hence,
we focus on the following liveness property capturing the essence of the fundamental property:

Property 1 If a peer’s score relating to its performance in any topic is continuously non-positive, then
the peer’s overall score should eventually be non-positive:

∀q,τ :: 〈G(score(q) for topic τ ≤ 0)⇒ F(score(q)≤ 0)〉

where score(q) for topic t is defined below.

twτ × ∑
i∈{1,2,3,3b,4}

wτ
i Pτ

i

Notice that Property 1 is temporal. We write the non-temporal version of this property in context
of Eth2.0 (using Eth2.0 twp) in ACL2s as shown below, and disprove the temporal version using an
induction argument later in the paper.

Property 2
(property (ptc :pt-tctrs-map pcm :p-gctrs-map p :peer top :topic)
:hyps (^ (member-equal ‘(,p . ,top) (acl2::alist-keys ptc))

(> (lookup-score p (calc-nbr-scores-map ptc pcm *eth-twp*)) 0))
(> (calcScoreTopic (lookup-tctrs p top ptc) (mget top *eth-twp*)) 0))

The following is one of the counter-examples to the above property, generated by cgen in ACL2s:

((top ’agg)
(p ’p4)
(pcm ’((p3449 (:0tag . gctrs) (:apco . 0) (:bhvo . 0) (:ipco . 0))

(p3450 (:0tag . gctrs) (:apco . 0) (:bhvo . 0) (:ipco . 0))
(p3451 (:0tag . gctrs) (:apco . 0) (:bhvo . 0) (:ipco . 0))))

(ptc ’(((p4 . agg)
(:0tag . tctrs)
(:firstmessagedeliveries . 0)
(:invalidmessagedeliveries . 0)
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(:meshfailurepenalty . 0)
(:meshmessagedeliveries . 1)
(:meshtime . 42))
((p4 . blocks)
(:0tag . tctrs)
(:firstmessagedeliveries . 324)
(:invalidmessagedeliveries . 0)
(:meshfailurepenalty . 0)
(:meshmessagedeliveries . 330)
(:meshtime . 377))
((p4 . sub1)
(:0tag . tctrs)
(:firstmessagedeliveries . 371)
(:invalidmessagedeliveries . 0)
(:meshfailurepenalty . 0)
(:meshmessagedeliveries . 377)
(:meshtime . 324))
((p4 . sub2)
(:0tag . tctrs)
(:firstmessagedeliveries . 318)
(:invalidmessagedeliveries . 0)
(:meshfailurepenalty . 0)
(:meshmessagedeliveries . 324)
(:meshtime . 371))
... ))

For brevity, we omit entries for peer-topic key values for peers other than p4. In property-based testing,
the free variables of a property under test are assigned values using a synergistic combination of theorem
proving and random assignments computed using type-based enumerators (generators) in an effort to
discover counterexamples to the property. Observe that Property 2 depends on ptc and pcm which do
not have trivial types. These are maps containing records which themselves consist of several numerical
values, which makes the search space of possible counter-examples immensely large. In order to make
it easier for cgen to find counter-examples, we wrote custom enumerators to enumerate restricted values
for topic, tctrs, gctrs, pt-tctrs-map and p-gctrs-map. Specifically, we limit the penalties on the
score due to some counters, such that the negative contributions due to misbehavior are comparable to
the positive contributions due to good behavior. Below we define custom enumerators for topic and
tctrs.

(definec topics () :tl
;; valid topics used in Ethereum
’(AGG BLOCKS SUB1 SUB2 SUB3))

(definec nth-topic-custom (n :nat) :symbol
(nth (mod n (len (topics))) (topics)))

(defdata lows (range integer (0 <= _ <= 1))) ;; high values
(defdata-subtype lows nat)
(defdata highs (range integer (300 < _ <= 400))) ;; low values
(defdata-subtype highs nat)

(defun nth-bad-counters-custom (n)
;; setting invalidMessageDeliveries and meshFailurePenalty to 0 due to high penalty
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(defun nth-good-counters-custom (n)
(tctrs 0 (nth-highs (+ n 2)) (nth-highs (+ n 3)) (nth-highs (+ n 4)) 0))

(defun nth-counters-custom (n) ;; custom enumerator for tctrs
(if (== 0 (mod n 4))

(nth-bad-counters-custom n)
(nth-good-counters-custom n)))

Besides Property 2, we formalize three safety properties for GossipSub, stated below. Together, these
four are the most general properties of the score function, which must hold in order for the fundamental
property to hold.

Property 3 Increasing bad-performance counters (which are multiplied with negative weights) should
decrease the overall score.

Property 4 Increasing good-performance counters (which are multiplied with positive weights) will not
decrease the score for a mesh peer that has been in the mesh for a sufficiently long time.

Property 5 If two peers subscribe to the same topics, and achieve identical per-topic counters, and
identical global counters, then they achieve identical scores.

We are able to find counterexamples to Property 3 in much the same way as 2, however, in this work we
focus on the counterexamples to Property 2, which are more interesting in terms of attack generation.
We manually prove that Property 4 holds over all configurations (available with the paper artifacts). The
proof that Property 5 holds over all configurations follows directly from referential transparency.

We also prove a limit on the maximum score achievable in a topic, as shown below.

(property max-topic-score (tctrs :tctrs weights :weights params :params)
(<= (calcScoreTopic tctrs (cons weights params))

(* (params-topicweight params)
(+ (* (mget :w1 weights) (params-timeQuantaInMeshCap params))

(* (mget :w2 weights) (params-p2cap params))))))

4 Attack Generation

The counter-example 3 which we obtained in the previous section is a specification for an unsafe state
that does not satisfy Property 2 for an Eth2.0 network. However, we are also interested in characterizing
and generating attacks against an Eth2.0 GossipSub network for three main reasons: (1) to show that an
unsafe state is reachable from a reasonable start state, (2) invalidation of our temporal Property 1 using
the trace generated from the attack, and finally (3) demonstration of scalability of our attack to large
networks, typically of the size and shape used by real world applications.

Counter-example 3 suggests that an unsafe state is one where a neighboring peer throttles communi-
cation in a particular topic while maintaining an overall positive score, hence, avoiding getting pruned.
Using this insight, we design attack gadgets that can perpetrate such attacks locally. We define an attack
gadget as a tuple 〈A,V,S〉, where A,V are peers (A is the attacker and V is the victim), S is a set of subnet
topics (the attacked topics), and A,V are mesh neighbors over a set of topics that is a superset of S. For
each i ∈N, we define AGi to be the set of attack gadgets where |S| = i. Figure 4 illustrates an example
attack gadget in AG2 where peers A and V are neighbors in four meshes corresponding to topics: Red,
Yellow, Blue and Green, out of which A is attacking V in S = {Red,Blue}. We generate a sequence of
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A V

Figure 4: An example AG2 attack gadget 〈A,V,{Red,Blue}〉.

events consisting of message transmission events from A to V (referred to as a and v in code) as well as
heart-beat events at V (V updates the scores of its peers during heart–beat events). These events are de-
signed to either restrict or completely block communication to V in the attacked topics while maintaining
normal communication rate in all the other topics, as shown in the following code snippet.

(definecd emit-evnts (a v :peer ts ats :lot n m e :nat) :loev
;; mesh message deliveries in attacked topics
(app (emit-meshmsgdeliveries-peer-topics a v ats m)

;; mesh message deliveries in other topics
(emit-meshmsgdeliveries-peer-topics a v (set-difference-equal ts ats) n)
;; heart-beat events at the victim node
‘((,p2 HBM ,e))))

The expression (emit-meshmsgdeliveries-peer-topics a v ts ats n m e) generates a list of events
E sending m mesh messages in the attacked topics and n mesh messages in the other topics from peer a
to peer v per heart-beat at v which happens every e seconds. m is generally set to 0 or 1 in order to block
or throttle communication in the attacked topic meshes. We choose a start state of the network based on
actual full-network topologies of the Eth2.0 testnets Ropsten (shown in Figure 2), Goerli and Rinkeby,
as measured by Li et. al [35]. Table 1 characterizes each of these topologies.

Network Nodes
Degree

Diameter
min max avg

Ropsten 588 1 418 25.49 5
Goerli 1355 1 712 28.26 5
Rinkeby 446 1 191 68.96 6

Table 1: Eth2.0 Network Characteristics

We create our start state as a Group, using the topologies provided. In this Group, we initialize
our attack gadget and simulate its run over the generated sequence of events E using the run-network

function. We use function scorePropViolation described below, to detect violations of Property 2 in
peer states occurring in the output trace.

;; ats is the list of topics being attacked
(definec scorePropViolation (ps :peer-state p :peer ats :lot twpm :twp) :boolean
(match ats
(() (> (lookup-score p (calc-nbr-scores-map (peer-state-nbr-tctrs ps)

(peer-state-nbr-gctrs ps) twpm))
0))

((top . rst) (^ (< (calcScoreTopic
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Figure 5: An eclipse attack using AG2 gadgets
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Figure 6: A partition attack using AG2 gadgets

(lookup-tctrs p top (peer-state-nbr-tctrs ps))
(mget top twpm))
0)

(scorePropViolation ps p rst twpm)))))

We observe that after the first heart-beat event at the victim peer, the state of the network at each
subsequent heart-beat is identical. Since Property 2 is being violated at each of these events, we make an
inductive claim that it will forever be violated, thus giving a counter-example to our liveness Property 1.
We wrote optimized versions of the run-network function to generate traces of property violations as
a list of booleans, instead of generating the full trace of type egl. We ran our simulations for 100,000
events to ensure that we ended up in identical states, taking about a minute on an M1 Macbook Air.

Finally, we scaled our attacks to build eclipse and network partition attacks using a combination of
attack gadgets. Figures 5 and 6 give an intuition of how to combine our attack gadgets to carry out these
attacks. Our companion paper discusses the specifics of these attacks in more detail.

5 Limitations

We now discuss limitations of our model. The most crucial aspect of property-based testing is counter-
example generation for invalid properties. As explained previously, our properties depend on complex
types, for which we had to write custom enumerators. Coming up with enumerators that had a high
probability of satisfying the hypotheses of our properties required considerable analysis of Eth2.0 so as
to restrict certain tctrs values from skewing the scores too much. Testing properties for new applications
will likewise require writing new custom enumerators. One might need to write a new event generator
as well, possibly generating events of shapes different from the ones we showed.

6 Related Work

The Protocol Labs ResNetLab and software audit firm Least Authority tested GossipSub against a list of
specific pre-programmed attack scenarios [59] designed to degrade overall network performance using a
network emulator called TESTGROUND [7]. Due to their use of simplified configurations with only one
topic (and because simple testing is not enough to find bugs) they found that all the attacks failed against
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GossipSub, and the score function made GossipSub more resilient to malicious nodes attacks than the
other tested protocols [58]. Separate from simulation testing, Least Authority also audited the Golang
implementation and provided recommendations for improvement [36]. Though our work contributes the
first formalization of GossipSub, there has been considerable previous work on utilizing formal methods
to reason about distributed systems. We survey such works below.
Model Checking based approaches. Lamport’s modeling language TLA+ [33] and the corresponding
TLC model checker [63] have been used to analyze properties of distributed systems including DISK

PAXOS [23], MONGORAFTRECONFIG [54], Byzantine PAXOS [34], SPIRE [30], etc. McMillan and
Zuck applied specification-based testing to the QUIC protocol, and found vulnerabilities [49]. Wu et. al.
formally modeled the Bluetooth stack using PROVERIF, a model checker, and found five known vulner-
abilities and two new ones [62]. Chothia et. al. demonstrated the use of PROVERIF to verify distance-
bounding protocols, e.g., those used by MasterCard and NXP [20]. Separately, Chothia modeled the
MUTE anonymous file-sharing system using the π-calculus, and proved the system insecure (discov-
ering a novel attack) [19]. Cremers et. al. modeled all handshake modes of TLS 1.3 using TAMARIN,
another model checking tool, and discovered an unexpected behavior [21]. An issue with using model
checking tools like ProVerif or Tamarin to verify a protocol like GossipSub is the immense size of the
state space needed to be checked, making them infeasible for our use.
Refinement-based proof formalization. The theory of refinement has proved to be useful for enabling
the mechanical verification of distributed systems’ properties. Manolios’ work on refinement [38, 40,
39] has been previously used for mechanical verification of pipelined processors [37, 41, 42, 44, 43].
Manolios et. al. combined theorem proving (using refinement maps) with model checking to verify
the alternating bit protocol. [40]. IRONFLEET [25] refines TLA style state-machine specification of a
PAXOS-based library and a sharded key-value store to low level implementation in Dafny (a SMT based
program verifier) for verification using Hoare-logic. Woo et. al. [61] formally verified 90 properties of
the RAFT protocol using VERDI [60], a tool they built in the COQ proof assistant. Though they did not
build an executable model, their framework can be used to extract an executable protocol implementation
in OCaml. VERDI provides verified system transformers used to refine a system in an ideal fault model
to a more realistic fault model, without any proof overhead on part of the user. We believe that looking at
GossipSub through the lens of refinement will be interesting because, not only will it allow us to explain
why it failed our properties, but also guide us towards improving it.
Inductive-invariant based proof formalization. Padon et. al. [51] proved the correctness of a simple
model of Paxos described in Effectively Propositional Logic (a decidable fragment of First Order Logic)
using IVY [52], a SMT-based safety verification tool. IVY can be used for verifying inductive invariants
about global states of a distributed protocol. Both the modeling and the specification languages of IVY
are restricted to a decidable fragment of First Order Logic to ensure that all verification conditions can be
checked algorithmically. Hippel et. al. [26] also used IVY to formally describe and reason about Karn’s
Algorithm, a mechanism used to study rount trip times of message transmissions. However, since IVY
lacks a theory of rationals, modelling the scoring function of GossipSub would not have been possible
using this tool.
Full stack verification. Certain high-assurance distributed systems might require the whole stack to
be formally-verified. Such applications could, for instance, be implemented on top of SEL4: a high-
performance operating system microkernel that was formally verified against an abstract specification
using higher-order logic [29]. Another example is the fully verified CLI stack [8], a system comprising
of an operating system with some applications running in it, operational semantics for two high level
languages, a stack based assembly language and the instruction set architecture (ISA), all the way down
to the register transfer level (RTL) design for a microprocessor. The full stack was verified in Nqthm [11].
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7 Conclusion and Future Work

In this paper, we described the GossipSub protocol, as well as our official formalization based on its
prose specification using the ACL2s theorem prover. We explained our state models, transition functions
as well as design decisions. We showed our security property for GossipSub and how we were able to
find counter-examples against it. Finally, we described several kinds of attacks we synthesized based on
our attack gadgets, using the couter-examples as specifications.

In the future, we would like to characterize an ideal variant of GossipSub as a refinement of simpler
protocols so as to prove safety properties, as well as to contrast the ideal variant with our current model
in order to better explain why it is susceptible to attacks from misbehaving peers. We would also like to
support reasoning for the application layer on top of our network model layer, since interesting bugs can
be found at the interface of these two layers.
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Teaching proofs is a crucial component of any undergraduate-level program that covers formal rea-

soning. We have developed a calculational reasoning format and refined it over several years of

teaching a freshman-level course, “Logic and Computation”, to thousands of undergraduate students.

In our companion paper [28], we presented our calculational proof format, gave an overview of the

calculational proof checker (CPC) tool that we developed to help users write and validate proofs,

described some of the technical and implementation details of CPC and provided several publicly

available proofs written using our format. In this paper, we dive deeper into the implementation de-

tails of CPC, highlighting how proof validation works, which helps us argue that our proof checking

process is sound.

1 Introduction

Calculational Proof Checker (CPC) is a tool designed to help teach undergraduate computer science

students how to write proofs. In a previous work [28] we presented the calculational proof format used

by CPC and gave an overview of its design and implementation. Here we provide additional details about

CPC’s implementation and provide an argument for CPC’s soundness.

CPC was designed for Manolios’ freshman-level CS2800 “Logic and Computation” course [18],

which uses the ACL2 Sedan (ACL2s) theorem prover [4, 12] to introduce logic and formal reasoning.

ACL2s extends ACL2 with several additional features, including the defdata data definition frame-

work [8], the cgen counterexample generation framework [5–7, 9], a termination analysis system using

calling context graphs [23] and ordinals [20–22] and property-based modeling and analysis. As nearly

anyone who has taught a formal reasoning class can attest to, teaching students how to identify what is

a proof and what is not is challenging, and teaching students how to write proofs is even more so. The

choice of proof format is highly impactful from a pedagogical standpoint, and therefore we put substan-

tial effort into developing ours based on many years of experience teaching CS2800. The proof format

we use in CS2800 is heavily inspired by the calculational proof style popularized by Dijkstra [10, 11].

Dijkstra’s proof format is appropriate here because (1) its linear proofs are easier to check in a local

manner (2) explicit context forces students to identify which parts of the context are used to discharge

each step and (3) it is designed for human consumption rather than for a proof assistant, making these

skills highly transferable.

CPC checks proofs in three phases. Phases 0 and 1 are intended to find problems with the proof in

a way that is aimed at generating actionable and high-quality feedback for the user, and were discussed

in detail in the companion paper [28]. Phase 2 involves translating the proof into one or more ACL2s

theorems with proof-builder [1, proof-builder] instructions and checking these theorems inside of

ACL2s. Therefore, the soundness of CPC reduces to the soundness of the proof-builder and ACL2s.

Our contributions include: (1) a method for translating calculational proofs into ACL2s theorems

checkable by an unmodified ACL2s instance, (2) a proof of soundness of CPC and (3) several exten-
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sions and libraries for ACL2s we developed for CPC. The source code for CPC is available in a public

repository [27].

2 Proof Format

We illustrate our proof format with an example proof of a conjecture, shown in Figure 1. Notice that

the proof document starts with ACL2s definitions of relevant functions required for the proof. We use

ACL2s’ definec to define functions with input and output types. We will discuss definec in more detail

later, but for now one should read the definition (definec aapp (a :tl b :tl) :tl ...) as the definition of

a function aapp that takes as argument two true lists a and b and returns a true list. We also use ACL2s’

property form to state an ACL2 theorem. The first argument to that form describes type constraints on

free variables used in the form; in this case, one can read (property assoc-append (x :tl y :tl z :tl) <body>)

as (defthm assoc-append (implies (and (tlp x) (tlp y) (tlp z)) <body>).

In our proof format, proofs and ACL2s expressions can be arbitrarily interleaved, allowing for exam-

ple a user to define an ACL2s function, write a CPC proof about that function, and then use that proof to

justify the admission of another ACL2s function. Users can also define helper lemmas in ACL2s using

standard ACL2s proof techniques and subsequently apply those lemmas in a CPC proof, as is done in

this example with the ACL2s lemma assoc-append.

The proof starts with a named conjecture “revt-rrev-help” followed by the expression to be

proved. Note that it is not relevant to the proof checker whether one uses Lemma versus Conjecture,

Property or Theorem to name a proof. In this case, we want to prove the conjecture using induction, so

we specify that we are doing a proof by induction and provide the function that gives rise to the induction

scheme we want to use. We then provide a number of subproofs (Induction Case 0 through 2), one for

each proof obligation that induction using the specified scheme gives rise to. In this case, each of these is

an equational reasoning proof, though in general any number of them could be induction proofs instead.

For each equational reasoning proof, we provide an expression to be proved. If the expression is of the

form A→ B→C then we require that the user use the logical rule of exportation to eliminate the nesting

of implications and state (A∧B)→C in the exportation step. This must be done recursively, e.g. it should

apply to an expression of that form in the antecedent of an implication. If desired, the statement may

also be transformed into an equivalent one using propositional logic rules during this step. A contract

completion step (which will be discussed in detail later) comes next, if applicable. The user then writes

out the proof context (the hypotheses of the contract completed statement, if it is an implication) as a

labeled list of context items. Additional context items can be added in the derived context. In Induction

Case 2, derived context items are used to derive the consequent of the induction hypothesis so that it can

be used more easily in the proof. Each derived context item has a list of justifications. If one can derive

nil (false) in a derived context item, there is no need to provide the rest of the sections for that proof.

The proof goal (the consequent of the contract completed statement if it is an implication, or the contract

completed statement itself otherwise) is then listed, followed by a sequence of proof steps. Each proof

step consists of two statements separated by a relation and a set of justifications for that step.

A simplified and compacted version of our proof grammar is shown in Figure 2. For brevity we do

not include the complete grammar of our proof format, but it is available in our repository [27]. Our

companion paper [28] has more examples of proofs written for CPC, both from CS2800 assignments

and Dijkstra’s EWDs [10]. We recommend that interested readers review those example proofs.
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(definec aapp (a :tl b :tl) :tl

(if (endp a)

b

(cons (first a) (aapp (rest a) b))))

(definec rrev (x :tl) :tl

(if (endp x)

nil

(aapp (rrev (rest x)) (list (first x)))))

(definec revt (x :tl acc :tl) :tl

(if (endp x)

acc

(revt (rest x) (cons (first x) acc))))

(property assoc-append (x :tl y :tl z :tl)

(equal (aapp x (aapp y z))

(aapp (aapp x y) z)))

Lemma revt-rrev-help:

(implies (and (tlp x)

(tlp acc))

(equal (revt x acc)

(aapp (rrev x) acc)))

Proof by: Induction on (revt x acc)

Induction Case 0:

;; Elided case where (not (and (tlp x) (tlp acc)))

QED

Induction Case 1:

(implies (endp x)

(implies (and (tlp x) (tlp acc))

(equal (revt x acc)

(aapp (rrev x) acc))))

Exportation:

(implies (and (tlp x) (tlp acc) (endp x))

(equal (revt x acc)

(aapp (rrev x) acc)))

Context:

C1. (tlp x)

C2. (tlp acc)

C3. (endp x)

Derived Context:

D1. (equal x nil) { C1, C3 }

Goal: (equal (revt x acc) (aapp (rrev x) acc))

Proof:

(revt x acc)

== { D1, Def revt }

acc

== { Def aapp }

(aapp nil acc)

== { Def rrev, D1 }

(aapp (rrev x) acc)

QED

Induction Case 2:

(implies (and (not (endp x))

(implies

(and (tlp (cdr x))

(tlp (cons (car x) acc)))

(equal (revt (cdr x) (cons (car x) acc))

(aapp (rrev (cdr x))

(cons (car x) acc)))))

(implies (and (tlp x) (tlp acc))

(equal (revt x acc)

(aapp (rrev x) acc))))

Exportation:

(implies

(and (tlp x)

(tlp acc)

(not (endp x))

(implies

(and (tlp (cdr x))

(tlp (cons (car x) acc)))

(equal (revt (cdr x)

(cons (car x) acc))

(aapp (rrev (cdr x))

(cons (car x) acc)))))

(equal (revt x acc)

(aapp (rrev x) acc)))

Context:

C1. (tlp x)

C2. (tlp acc)

C3. (not (endp x))

C4. (implies (and (tlp (cdr x))

(tlp (cons (car x) acc)))

(equal (revt (cdr x) (cons (car x) acc))

(aapp (rrev (cdr x))

(cons (car x) acc))))

Derived Context:

D1. (tlp (cdr x)) { C1, C3, Def tlp }

D2. (tlp (cons (car x) acc)) { C2, C3, Def tlp }

D3. (equal (revt (cdr x) (cons (car x) acc))

(aapp (rrev (cdr x)) (cons (car x) acc)))

{ D1, D2, C4, MP }

Goal: (equal (revt x acc) (aapp (rrev x) acc))

Proof:

(revt x acc)

== { Def revt, C3 }

(revt (cdr x) (cons (car x) acc))

== { D3 }

(aapp (rrev (cdr x)) (cons (car x) acc))

== { Def aapp, car-cdr axioms }

(aapp (rrev (cdr x)) (aapp (list (car x)) acc))

== { Lemma assoc-append ((x (rrev (cdr x)))

(y (list (car x))) (z acc)) }

(aapp (aapp (rrev (cdr x)) (list (car x))) acc)

== { C3, Def rrev, car-cdr axioms }

(aapp (rrev x) acc)

QED

QED

Figure 1: An example proof written in our proof format. This proof file is available in our repo [27] at

the path example/ind-examples/pass/rrev.proof.
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〈ProofDocument〉 ::= (〈Proof 〉 | 〈SExpression〉)+

〈Proof 〉 ::= 〈Type〉 V : E [Exportation: E ] [Contract Completion: E ] 〈Body〉 QED

〈Body〉 ::= 〈Simple〉 | 〈Inductive〉

〈Simple〉 ::= [Context: 〈Ctx〉] [Derived Context: 〈Dtx〉] Goal: E Proof: 〈Seq〉

〈Inductive〉 ::= Proof by: E [〈ContractCase〉] 〈BaseCase〉+ 〈InductionCase〉*

〈ContractCase〉 ::= Contract Case N: E 〈Body〉 QED

〈BaseCase〉 ::= Base Case N: E 〈Body〉 QED

〈InductionCase〉 ::= Induction Case N: E 〈Body〉 QED

〈Type〉 ::= Conjecture | Property | Lemma | Theorem

〈Ctx〉 ::= (CN: E )*

〈Dtx〉 ::= (DN: E )*

〈Seq〉 ::= B (R {〈Hint〉 (, 〈Hint〉)*} B)*

〈Hint〉 ::= 〈Type〉 V [S ] | CN | DN | Def F | A | algebra | obvious | PL | MP

Figure 2: EBNF grammar for our calculational proofs where, in the ACL2s universe, V is a fresh variable

or natural number, E is an expression, N is a natural number, B is a Boolean expression, R is a binary

relation on Boolean expressions, S is an association list used to represent a valid substitution, F is a

valid function name, A is an axiom, and 〈SExpression〉 is an ACL2s event form. PL and MP stand for

Propositional Logic and Modus Ponens hints respectively. Items in square brackets are optional.
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3 System Architecture

We summarize the architecture of CPC here. We refer interested readers to our companion paper [28]

for a detailed description. The architecture of CPC consists of three primary pieces — the user interface,

the Xtext [31] language support, and the ACL2s backend. Xtext is a framework for building domain-

specific languages, and automatically generates a lexer and parser from our proof format grammar. A

user submits a proof document for checking through one of the CPC interfaces, which is parsed by

Xtext and turned into an Xtext document. Next, an Xtext validator that we developed runs on the Xtext

document, translating it into a form that is usable by the ACL2s backend and invoking that backend. The

ACL2s backend then runs through the proof document and reports any issues back to the Xtext validator,

which sends that information back to the user interface for reporting to the user. A major benefit of using

Xtext in this way is the ability to associate errors detected by the backend with regions of the user’s proof

document. This means that, for example if a step is determined to be incorrect, we can produce error

underlining for that step to help the user localize the error. Xtext also allows us to provide IDE features

like syntax highlighting and code folding with minimal additional effort.

The ACL2s backend of CPC is implemented using our ACL2s Systems Programming methodology,

which we described in an ACL2 Workshop paper last year [29]. That is, the backend is implemented

mainly in “raw Lisp” and makes queries to ACL2s using the API described in our paper. This allows

us to use programming constructs that are not legal in logic-mode ACL2s code, like the Common Lisp

condition system.

As the proof format’s grammar (see Figure 2) specifies, a proof document consists of a sequence

of elements, where each element is either a proof or an event form. Here, an event form is a call to

any of the ACL2s event functions, which are a superset of the ACL2 event functions [1, events]. In our

examples, the most commonly used event forms consist of property, defdata and definec. When CPC

is run on a proof document, it processes each element of the proof document in sequence, evaluating the

element in ACL2s using ld [1, ld] if the element is an event form, or performing proof checking and

generation if the element is a proof. Operating in this way adds some complexity but also makes CPC

more flexible. For example, a user can define an ACL2s function, write a proof about that function, and

then use that proof to justify the admission of another ACL2s function. This would not be possible if we

only supported documents where a set of ACL2s expressions (or a book) ran before all of the proofs. If

an event form evaluation or a proof check fails, CPC will report an error to the user but will continue to

operate on subsequent elements inside the proof document.

As previously stated, CPC performs proof checking in three phases. Phases 0 and 1 are primarily

designed to find problems in a proof document that we can provide actionable and high-quality feedback

for. In Phase 2, CPC will translate the proof file into appropriate ACL2s theorems complete with proof-

builder commands, which are then run through ACL2s to confirm that the proofs in that file are correct.

Our soundness argument is based entirely on Phase 2.

4 Proof Checking

Our prior work [28] describes Phases 0 and 1 in detail. Here we will summarize Phases 0 and 1 and

describe some relevant aspects in more detail.

Phase 0 is a quick, syntactic check of the proof document performed by Xtext. This is provided as

part of the parser that Xtext generates from our grammar. Phase 1 is performed in the ACL2s backend,

and can itself be broken up into performing three checks. The first is to check that the initial setup of the

https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____EVENTS
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____LD
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proof—the contract completion, exportation, context and derived context, all of which we will discuss

in more detail later—is correct. The second is to check that all of the steps (for a non-inductive proof)

or all of the subproofs (for an inductive proof) are correct. For a non-inductive proof, the third step is

to confirm that the conjunction of the steps is sufficient to prove the statement under consideration. For

an inductive proof, the third step is to confirm that the subproofs constitute the proof obligations of the

induction proof that the user specified.

4.1 Guards and Contract Completion

Students in CS2800 are taught to reason about programs. Using ACL2s’ defdata [1, defdata] is helpful

as it is a natural way to introduce students to contract-driven development. Students write all of their

functions using ACL2s’ definec, which requires that the user specify the type of input arguments to

the function as well as the type that the function outputs. definec [1, acl2s::definec] is hooked

into ACL2’s guard system [1, guard] in such a way that a function defined using definec will have

guards that assert that its arguments satisfy their specified types. Recall that the guard obligations for

an expression is the sequence of conditions that must be true to satisfy the guards for every function

call inside that expression. The function contract for a definec function is the statement that if all

arguments to the function in some function call satisfy the specified input types (the input contract for

the function is satisfied), that call evaluates to a value that satisfies the specified output type. When a

definec form is evaluated, in addition to proving termination like defun, ACL2s will prove that the

function’s contract holds and will perform guard verification of the function’s body. Guard verification

is the process of proving that the guard obligations of an expression hold. Note that each defdata type

has a “type predicate” associated with it—a function of one argument that evaluates to true if and only

if that argument is a member of the corresponding type. The function contract theorems that definec

submits are suffixed with -CONTRACT and -CONTRACT-TP.

We require that the statement a user is trying to prove in CPC has an empty sequence of guard

obligations (equivalently, the guard obligations are all satisfied), or if this is not the case, we require that

the user perform contract completion on the statement before proving it. Contract completion refers to the

process of adding appropriate hypotheses to a statement to satisfy its guard obligations. We will also refer

to the resulting statement after contract completion as the contract completion of the original statement.

Performing contract completion on a statement of course changes the logical meaning of the statement.

From a pedagogical standpoint, forcing users to perform contract completion helps us highlight the

correspondence between the statements being proved and the code (the executable bodies of the functions

in the statement). The way that definec works is relevant here—the logical definition of a function

admitted using definec states that a call to the function with inputs that don’t satisfy the function’s input

contract will evaluate to an arbitrary value satisfying the function’s specified return type. A consequence

of this is that a definec function cannot be expanded into its user-provided definition unless it is known

that the function’s input contract is satisfied. It is important to note that this is different from simply

adding guards to a defun, as guards do not affect either the semantics of a function definition or the

theorem prover [1, guard-miscellany]. Enforcing that statements are contract completed eliminates

the possibility of errors or counterexamples due to guard violations (“type errors”).

Note that the order in which hypotheses appear in a conjunction matters, as and in ACL2 is logically

just syntactic sugar for if statements and the type information that a hypothesis provides might be

necessary to satisfy the guards of a subsequent hypothesis. For example, if the original expression

was (implies (in e l) (consp l)) and the ACL2s definition of in requires that (tlp l), the correct contract

completion of the statement is (implies (and (tlp l) (in e l)) (consp l)) and not

https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFDATA
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2S____DEFINEC
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____GUARD
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____GUARD-MISCELLANY
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(implies (and (in e l) (tlp l)) (consp l)).

It would be simpler to enforce that users provide contract completed statements at the get-go, but

having users perform contract completion inside of CPC has some advantages. In particular, having

both the original statement and the contract completed statement inside of CPC allows us to check that

the contract completion was done appropriately, e.g. that only the necessary hypotheses were added to

satisfy the guard obligations. We do not guarantee CPC’s soundness when the user provides a non-trivial

contract completion — one that is not syntactically equivalent to the exported statement (if provided) or

original statement (otherwise). To be clear, the only situation in which a non-trivial contract completion

must be provided is when the original statement has a non-empty sequence of guard obligations, that is,

there is at least one function call in the statement with an input contract that is not provably always true.

If a user provides a non-trivial contract completion, we currently produce a warning notifying the user of

the potential for unsoundness and recommending they update the original conjecture so that it is contract

completed.

An example of a statement with a trivial contract completion is

(implies (and (tlp x) (tlp y)) (equal (app x y) (app y x))). Since the ACL2s definition of app only re-

quires that its arguments are true lists, the two antecedents ensure that the arguments to app are true lists

and both tlp and equal have no guards, the guard obligations for this statement are trivially true and thus

no antecedents need to be added during contract completion.

An example of a statement with a non-trivial contract completion is (implies (in e l) (consp l)),

given the definition of in requires that its second argument is a true list. Since the guard obligations for

this statement (just (tlp l)) are not trivially true, a non-trivial contract completion is required. In this

case, (tlp l) must be added as an antecedent before the (in e l) hypothesis, so the only possible correct

contract completion is (implies (and (tlp l) (in e l)) (consp l)).

4.2 Proof Building Blocks

The basic building block of an equational reasoning proof is a proof step — a statement that two expres-

sions satisfy some relation, justified by one or more hints. In general, a step in an equational reasoning

proof in our format will look like (with α and β being S-expressions and R being either a relation or an

alias for a relation):

α
R { H1, ..., Hn }

β

We say that this step is correct if and only if ACL2s can prove the statement (R α β) under an appro-

priate set of hypotheses and when constrained to an appropriate theory. As we will discuss shortly, the

appropriate set of hypotheses and the appropriate theory both are influenced by the hints H = {H1, ...,Hn}
that the user provided, but also by the context of the proof that the step is contained inside.

Hints

CPC supports several types of hints for justifying reasoning steps. These include Ci and Di which refer

to context and derived context items respectively, def foo which allows one to reference the definition

of a function (allowing one to expand a function call into its body with an appropriate substitution)

and arithmetic which allows many kinds of arithmetic manipulations. Some hints have aliases (for

example, arith is an alias for arithmetic). Other hints only exist for readability—for example, we use

MP (Modus Ponens) to indicate that a step or derived context item is justified by the conclusion of an
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implication after satisfying that implication’s hypotheses, but it does not affect CPC’s checking. Each

hint for a proof step gives rise to zero or more of hypotheses (Hyps), Rules and Lemma instantiations,

used in proving the proof step. Rules here refer to proved theorems in ACL2’s database, which ACL2 can

automatically apply. We define functions hyps(h), rules(h) and instances(h) to be the set of hypotheses,

rules and lemma instantiations (in a format amenable to ACL2) that a hint h gives rise to, respectively.

• Ci: add the expression corresponding to the ith context item as a hypothesis

• Di: add the expression corresponding to the ith derived context item as a hypothesis

• def foo: enable the definition rule(s) for the function foo

• cons axioms: enable the following rules regarding cons: (:rewrite car-cons),

(:rewrite cdr-cons), car-cdr-elim, cons-equal, default-car, default-cdr, cons-car-cdr

• arithmetic: enable the set of rules added by including the arith-5 books

• evaluation: enable all rules of type :executable-counterpart

• lemma foo: add a lemma instance :use hint for foo with the given instantiation (if provided). This

effectively instantiates the given lemma and adds the resulting expression as a hypothesis.

Theories

At different times during both Phases 1 and 2, it is useful to be able to ask ACL2s to prove a statement

while limiting the types of reasoning that it can use. One of the ways we do this is by controlling the set

of rules that ACL2s has access to. We define theories for certain sets of rules that are used inside CPC:

• arith-5-theory is the set of rules that are added by including the "arithmetic-5/top" book in

a vanilla ACL2 instance.

• min-theory consists of ACL2’s minimal theory (which includes only rules about basic built-in

functions like if and cons) plus (:executable-counterpart acl2::tau-system),

(:compound-recognizer booleanp-compound-recognizer), and (:definition not). The for-

mer of these three rules enables ACL2 to perform some type-based reasoning, and the latter two

are often useful for reasoning about propositional logic.

• arith-theory which consists of some basic facts about + and *.

• type-prescription-theory which consists of any rules of type :type-prescription

• executable-theory which consists of any rules of type :executable-counterpart.

• contract-theory which is min-theory plus type-prescription-theory and any rules with

names ending in "CONTRACT" or "CONTRACT-TP". The latter rules correspond to the function con-

tracts for any functions admitted using definec.

• min-executable-theory which is the union of the rules in min and executable.

Type Hypotheses

Almost any proof involving a function defined with definec requires that the function’s input con-

tract is satisfied. In early versions of CPC, we found that this resulted in users needing to repeat-

edly include justifications in their steps corresponding to hypotheses that some free variables in the
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proof statement satisfy some type predicates. Given that users already must perform contract comple-

tion on their proof statement, this felt like an unnecessary burden. Therefore for any step or derived

context item, CPC will automatically include hints that correspond to calls of type predicates. For

example, in Induction Case 2 in the proof example in Section 2, C1. (tlp x), C2. (tlp acc),

D1. (tlp (cdr x)) and D2. (tlp (cons (car x) acc)) are all included “for free” as justifica-

tions of any proof step.

5 Soundness

Once the user has provided a proof that passes Phases 0 and 1, we would like to translate it into an ACL2s

theorem. There are two benefits this brings: (1) we can reduce the soundness of CPC to that of ACL2s

and (2) it enables one to perform a proof in CPC that might be challenging to do in ACL2s and then use

the resulting theorem in ACL2s. The second benefit is not currently exposed in a convenient way to users

of CPC, but we believe it would be easy to implement this feature.

It is important to note that ACL2s contains extensions to ACL2 that require trust tags [1, defttag]

and perform potentially unsafe modifications to ACL2. Therefore, we can only reduce the soundness of

CPC to the soundness of ACL2s, not further to the soundness of ACL2.

Our soundness theorem is as follows: given a proof P without a non-trivial contract completion and

whose proof statement is φ , if CPC validates P then φ is a valid statement in ACL2s, given the same

ACL2s world prior to the validation of P. The witness for our soundness theorem is the ACL2s theorem

that proves φ .

This theorem is easy to prove, as CPC will validate a proof only if it was able to prove that proof’s

statement in ACL2s, using the proof-builder instructions that CPC generates as described below. Note

that we make no claims about completeness—CPC may reject a proof of a valid statement.

5.1 Proof Builder

Generating an ACL2s statement of a CPC theorem is straightforward, but we do not want to simply hand

this statement off to ACL2s for an automatic proof—ACL2s may decide to attempt to take a different

proof approach that requires a different set of lemmas, or may just fail to find a proof. Ultimately our

goal is to determine whether or not the user’s proof is correct, so we should be able to transform it and

its justifications into a theorem that ACL2s can prove. For this reason, we use ACL2’s proof-builder

functionality, which allows us to command the theorem prover’s behavior at a much lower level.

The proof-builder operates in a manner similar to an interactive proof assistant like Coq [3] or Is-

abelle [24]: there is a proof state consisting of a stack of goals, each of which contains a set of hypotheses

and a statement to be proved, and one provides instructions that operate on the goal stack. These instruc-

tions range in granularity, with coarse instructions like prove (attempt to prove the current goal entirely

automatically with ACL2’s full power) to fine instructions like dive (focus on a particular subexpres-

sion in the current statement to be proved). ACL2’s documentation provides information about many of

the available proof-builder instructions [1, proof-builder-commands]. For CPC we developed several

new proof-builder instructions, many of which are variants of existing instructions that succeed where

the existing instructions would fail. For example, :retain-or-skip [1, acl2-pc::retain-or-skip]

is exactly like the built-in :retain [1, acl2-pc::retain] instruction, except that it will succeed even

when all of the existing hypotheses are retained (producing no change in the proof-builder state). Many

instructions have similar behavior that is desirable when a human is interacting directly with the proof-

https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____DEFTTAG
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____PROOF-BUILDER-COMMANDS
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2-PC____RETAIN-OR-SKIP
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2-PC____RETAIN
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builder, but that is not when automatically generating instructions. These new proof-builder instructions

are available in the ACL2 distribution, inside books/acl2s/utilities.lisp. All of the new instruc-

tions are listed below:

• :claim-simple: exactly like :claim, except that it does not automatically perform hypothesis

promotion on the newly created goal.

• :pro-or-skip: exactly like :pro, except that it will succeed even when no promotion is possible.

• :drop-or-skip: exactly like :drop, except that it will succeed even when there are no top-level

hypotheses and no arguments are provided.

• :retain-or-skip: exactly like :retain, except that it will succeed even when all of the existing

hypotheses are retained.

• :cg-or-skip: exactly like :cg, except that it will succeed even when the specified goal to change

to is the same as the current goal.

• :instantiate: instantiate a theorem as a hypothesis under the given substitution.

• :split-in-theory: exactly like :split, except that a theory can be provided to use instead of

minimal-theory.

• :by: prove a goal using exactly an existing lemma under a given substitution.

5.2 Instruction Generation Algorithms

We will now describe how we generate proof-builder instructions for steps and derived context items,

equational reasoning proofs, and inductive proofs. In the below algorithm listings, we will use a type-

writer font face like this to denote S-expressions that we generate. Some additional comments on

notation:

• x++ y denotes the sequence produced by appending the sequences x and y. If y is a set, then it is

first transformed into a sequence by enumerating the elements of y in an arbitrary order.

• An ACL2s statement x is a type predicate call if and only if it is a function call with one argument

and the function name is known by defdata to be a type predicate.

• Let hid(x) be an identifier used by the proof-builder to refer to the hypothesis corresponding to the

context or derived context item x.

• Let rules(x) be the set of rules that a hint x gives rise to.

• Let instances(x) be the set of lemma instantiations (in a format amenable to ACL2) that a hint x

gives rise to.

• IndObsAndNames(stmt, indterm) calls ACL2’s proof-builder to determine what goals are created

when one tries to prove stmt by performing an induction on indterm. The output is a set of tuples

(obs,name) where obs is an ACL2s statement expressing one of the created goals and name is the

name that ACL2s gave to that goal.

In the below algorithms, we elide the complexity of matching up the names that the proof-builder

gives to the hypotheses with the names of context items that the user gave in the proof.
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;; A step

α
R { H1, ..., Hn }

β
;; A derived context item

Dn. γ { H1, ..., Hn }

Figure 3: The general form of a proof step and a derived context item.

Hints to Instructions

The processes of generating proof-builder instructions for a step and for a derived context item are

similar, so we will describe them together. Figure 3 shows the general form of a step and a derived context

item. Using names from Figure 3, we will define the equivalent expression of a step to be (R α β) and

the equivalent expression of a derived context item to be γ . Algorithm 1 is the corresponding algorithm

for this process. We pass the equivalent expression of the step or derived context item into the stmt input

of the algorithm. Let EE be the equivalent expression of the step or derived context item in question.

The instructions that we generate should do the following: use :claim-simple to add a hypothesis

that the equivalent expression of the step or derived context item holds, then prove that this hypothesis

holds using the justifications that the user provided.

We first generate a claim-simple instruction with EE as the statement to cause the proof-builder to

add EE as a hypothesis in the current goal. This also results in the creation of a new goal to prove EE

given the current set of hypotheses (before EE was added). We pass :hints :none to the claim-simple

instruction so that ACL2s does not try to prove this new goal automatically. Then, we generate a cg in-

struction to change to the newly generated goal. Next, we calculate the guard obligations that this goal

would have given the current context and generate a claim instruction with those obligations as its state-

ment. This claim instruction will result in ACL2s trying to prove that the statement holds automatically.

Next, based on H1, ...,Hn, we determine which context and derived context items should be available

when proving EE . We then generate a retain-or-skip instruction with appropriate arguments to only

retain the appropriate context and derived context items. We then determine based on H1, ...,Hn what

ACL2 rules should be available. We generate a in-theory instruction with appropriate arguments to

enable and disable rules appropriately. Finally, we generate the instruction (:finish :bash), which

tells ACL2s to attempt to prove the current goal while limiting its abilities. If ACL2s is unable to prove

the goal, it will raise an error and the proof attempt will result in a failure.

Equational reasoning proofs

Generating instructions for an equational reasoning proof is fairly straightforward; the algorithm is shown

in Algorithm 2.

We start with :pro-or-skip to expand the proof statement’s implication into antecedents and a con-

sequent (if it is an implication). Then, we generate instructions to add a hypothesis for each derived

context item and prove that it holds given the provided justifications. We do something very similar for

each proof step. Then, we :demote to turn the goal and hypotheses into an ACL2 implication statement

before repeatedly calling (:split-in-theory min-executable-theory) until the goal has been dis-

charged. We use :split-in-theory (and therefore :split) here as it is a convenient way to invoke

ACL2 with very limited reasoning ability (just simplification, preprocessing, and whatever rules are in

the given theory).
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Algorithm 1: proof-builder instruction generation for a step or derived context item

1 Function ProveUsingHints(stmt, hints, ctx)
Input: stmt is the statement to prove, hints is the set of hints the user provided, and ctx is the

set of context and derived context items it should be proved under.

2 I← [];
/* Add stmt as a hypothesis and as a new goal, do not attempt to prove it

automatically, and switch to the new goal */

3 I← I ++[(:claim-simple stmt... :hints :none),:cg];
4 hyps←{x | x ∈ hints∧ x is a context or derived context hint };
5 contracts← GO((

∧
h∈hyps h)→ stmt);

6 if contracts 6= true then
/* Add contracts as a hypothesis and as a new goal & prove it automatically. */

7 I← I++[(:claim contracts...)];

8 typectx←{x | x ∈ ctx∧ x is a type-predicate call };
9 contractsidx← a set containing the identifier of the contracts hypothesis if contracts 6=

true or /0 otherwise;

/* Only keep the hypotheses we should have given the hints the user provided */

10 I← I ++[(:retain-or-skip {hid(x) | x ∈ hyps∪ typectx∪ contractsidx})];
11 hintrules←

⋃
{rules(x) | x ∈ hints};

/* Ensure that only the rules that we should have access to given the user’s hints

are available */

12 I← I ++[(:in-theory (union-theories (theory ’contract-theory) hintrules))];
13 lemmainstances←

⋃
{instances(x) | x is a hint for Dxi};

/* Add any lemma instances that the user described in the hints */

14 I← I ++{(:instantiate x) | x ∈ lemmainstances};
/* Ask ACL2 to automatically prove this goal without induction, and then reset to

the original theory */

15 I← I ++[(:finish :bash),:in-theory];
16 return I
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Algorithm 2: proof-builder instruction generation for a non-inductive conjecture

1 Function EquationalReasoningTranslate(C, D, R, P, H)
Input: C and D are the sets of all non-derived context and derived context items for a proof

respectively. R, P and H are the relations, step statements and hints for the proof’s

proof steps, indexed from the start of the proof. This function only operates on

equational reasoning proofs.

2 I← [];
/* Perform exportation and expand implication into hyps/conclusion */

3 I← I ++[:pro-or-skip];
/* Generate instructions for each derived context item */

4 foreach i ∈ [1..m] do

5 stmt← the proof statement associated with Dxi;

/* Do not include any later derived context items in the context used to prove

Dxi */

6 ctx←C∪{Dx j | j ∈ [1..i−1]};
7 I← I++ProveUsingHints(stmt, hints, ctx);

/* Generate instructions for each step */

8 foreach i ∈ [1..n] do

9 stmt← ( RiPiPi+1 );

10 ctx←C∪D;

11 I← I++ProveUsingHints(stmt, H_i, ctx);

/* Turn the hypotheses and goal into an implication */

12 I← I ++[:demote];
/* Repeatedly call :split-in-theory until the proof is successful or we reach a

fixpoint */

13 I← I ++
[(:finish (:repeat-until-done (:split-in-theory min-executable-theory)))];

14 return I
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Inductive proofs

The algorithm for generating proof-builder instructions for inductive proofs is provided in Algorithm 3.

Assume we have a proof by induction without a non-trivial contract completion. This can be thought

of as several separate proofs, one for each induction proof obligation. For each of these subproofs, we

will generate a separate ACL2s proof, complete with proof-builder instructions. Then, we generate an

ACL2s proof for the top-level induction proof with instructions to perform a proof by induction using the

induction scheme that the user specified, and generate instructions that discharge each proof obligation

using the corresponding generated ACL2s proof. This approach requires that CPC determine the order of

the subgoals that ACL2s will generate when asked to perform an induction proof with the given induction

scheme so that we can map up the subproofs that the user performed with these subgoals, and thus in

the instructions for each subgoal we can refer to the appropriate generated ACL2s proof. We generate

these subgoals by using the ACL2 function state-stack-from-instructions, which allows one to get

the state of the proof builder after running a sequence of instructions, and then reuse some existing CPC

code to find a bijection between these subgoals and the induction proof cases that the user provided.

Once we have generated proof-builder instructions for an inductive proof, we generate defthms with

proof-builder instructions for all of its subproofs. We then generate an encapsulate statement and insert

all of the subproof defthms in the encapsulate as local. The inductive proof itself is not inserted into a

local and is thus exported from the encapsulate. We do not want to export the subproof defthms, as

they are only needed to show that the top-level inductive proof theorem holds.

6 Related Work

Our previous work [28] contains a longer discussion of works surrounding the use and mechanical veri-

fication of calculational proofs. Below we provide a summary of that discussion, as well as some related

work in ACL2 in particular.

Calculational proofs were popularized by in the early 1990s by Dijkstra and Scholten [11], Gasteren

[13] and Gries [14]. A series of works [2, 15, 16, 25] by Robinson, Stables, Back, Grundy and Wright

resulted in the development of structured calculational proofs, an extension of the calculational proof

style that allows for the hierarchical decomposition of proofs. This format reduces to natural deduc-

tion, but maintains the benefits of calculational proofs while also allowing for improved readability and

browsability of proofs.

Manolios argued for the formalization of calculational proofs and their mechanized checking in

2000 [19]. Mizar [26] is a system for checking calculational proofs first developed in the 1970s. Several

systems inspired by Mizar have been developed since, including Isabelle/Isar [30] and Leino et. al’s

poC extension to Dafny [17]. These systems typically follow Mizar’s format in not requiring the user to

explicitly state the proof context. Mizar has only lightweight support for automated reasoning in prov-

ing that proof steps hold and only allows equality relations inside of proofs. Isar allows for arbitrary

relations and provides access to Isabelle’s powerful reasoning capabilities, like simp for Isabelle’s sim-

plifier, and auto for a combination of several tools [17]. poC only allows a predefined set of relations but

is as declarative as Mizar is, while providing more powerful automated reasoning with its SMT solver

backend.
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Algorithm 3: proof-builder instruction generation for an inductive conjecture

1 Function InductiveTranslate(M, stmt, indterm, PC)
Input: This function only operates on inductive proofs. M is a function mapping the names

of the proof cases of this inductive proof to corresponding ACL2 theorems. stmt is

the proof statement for this inductive proof, and indterm is the induction term. PC is

the set of proof cases given for this inductive proof, where name(PCi) is the name of

PCi and stmt(PCi) is the proof statement for PCi.

/* Generate the proof obligations an induction on indterm will give rise to */

2 obsnames← IndObsAndNames(stmt, indterm);

/* Perform exportation, expand implication into hyps/conclusion, perform induction

*/

3 I← [:pro-or-skip,(:induct indterm)];
4 Attempt to find an injective mapping from obsnames to PC, where an element

(obs,name) ∈ obsnames is mapped to an element PCi ∈ PC iff the conjunction of the

hypotheses of obs after exportation are propositionally equivalent to the conjunction of the

hypotheses of stmt(PCi) after exportation.;

5 if no such mapping exists then

6 raise an error;

7 inj← the injective mapping;

8 foreach (obs,name) ∈ obsnames do

9 injPC← inj((obs,name));
/* Change to the induction obligation, use the existing proof to discharge it

*/

10 I← [(:cg-or-skip name),(:finish :demote (:by M(name(injPC))))];

11 return I
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7 Conclusion and Future work

We have presented an argument for the soundness of CPC, based on its translation of calculational proofs

into ACL2s theorems with proof-builder instructions. We are interested in seeing how CPC can be used

by “professional” users to design their proofs, and have some ideas about functionality that would be

appropriate for these users. In particular, we see the need to provide more automation to such users, for

example automatic generation of context and induction proof obligations or a “bash” mode for eliding

simple subproofs like contract cases in inductive proofs. We hope to continue to extend and improve

CPC based on requests from students and the community, and plan on continuing to use it to help teach

undergraduates how to write proofs.
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We present a proof-producing integration of ACL2 and Imandra for proving nonlinear inequalities.
This leverages a new Imandra interface exposing its nonlinear decision procedures. The reasoning
takes place over the reals, but the proofs produced are valid over the rationals and may be run in
both ACL2 and ACL2(r). The ACL2 proofs Imandra constructs are extracted from Positivstellensatz
refutations, a real algebraic analogue of the Nullstellensatz, and are found using convex optimization.

1 Introduction

Nonlinear inequalities can pose critical formal verification challenges. While nonlinear integer arithmetic
is undecidable, nonlinear real arithmetic is decidable, and advances in decision procedures have brought
many useful classes of problems within reach of automated methods. Unfortunately, most effective
modern methods, e.g., those based on Cylindrical Algebraic Decomposition (CAD) [3], are not proof
producing and rely on nontrivial computer algebra computations which must be trusted. This presents a
major barrier for taking advantage of such techniques in formal proofs.

In this work, we use the Positivstellensatz [6, 15], a fundamental result in real algebraic geometry, to
construct fully formal proofs of nonlinear real inequalities in ACL2. The Positivstellensatz guarantees
the existence of proofs of inequalities in a certain formal system, and advances in convex optimization
(including semidefinite programming (SDP) and sums-of-squares decompositions) allow us to effectively
search over a convex space of certificates to find such proofs. When these proofs are found, we can then
translate them into ACL2 proofs in a structured form that ACL2 can easily check.

Let us motivate our discussion with an example. Consider one direction of the discriminant criterion
for solubility of a quadratic equation:

∀x,a,b,c ∈ R
(
ax2 +bx+ c = 0 =⇒ b2−4ac≥ 0

)
.

To prove this, we will negate and normalize its constraints s.t. all relations are drawn from {=,≥,>, 6=}:

ax2 +bx+ c = 0∧4ac−b2 > 0

and then proceed to derive a contradiction. The Positivstellensatz (cf. Sec 3) guarantees the existence
of a certificate establishing unsatisfiability by a particularly simple form of argument. In this case, a
certificate is given by

(4ac−b2)+(2ax+b)2 +(−4a)(ax2 +bx+ c)

as (4ac−b2)> 0 and (−4a)(ax2+bx+c) = 0 by assumption, and (2ax+b)2 ≥ 0 as it is a square. Thus,
by assumption, the certificate must be strictly positive. But by polynomial arithmetic, it is easy to verify
that the certificate sums to 0. Thus the negation of our conjecture implies that 0 > 0. This is the general
structure of a Positivstellensatz refutation, and all ACL2 proofs we produce proceed in this way.

http://dx.doi.org/10.4204/EPTCS.393.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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2 The Imandra-ACL2 Interface and ACL2 Proofs

We have implemented the Positivstellensatz proof method in Imandra [11], and built an interface which
extracts ACL2 proofs from its refutations.

To use it, one poses a conjecture as an S-expression in which all variables are implicitly taken to
be reals. If Imandra is successful, an ACL2 proof is produced as an (ENCAPSULATE ...) event which
exports a single theorem named FINAL. Note that in the ACL2 theorems we prove, the variables are
RATIONAL instead of REAL, as REALP is available only in ACL2(r).

For our quadratic equation example, the input is:

(IMPLIES (= (+ (* A X X) (* B X) C) 0)

(>= (- (* B B) (* 4 A C)) 0))

and the output (produced in a fraction of a second) is:

(ENCAPSULATE ()

;; Preamble

(SET-IGNORE-OK T)

(SET-IRRELEVANT-FORMALS-OK T)

(LOCAL (DEFMACRO NEQ (X Y)

`(OR (< ,X ,Y) (> ,X ,Y))))

(LOCAL (DEFUN SQUARE (X)

(* X X)))

(LOCAL (DEFTHM SQUARE-PSD

(IMPLIES (RATIONALP X)

(>= (SQUARE X) 0))

:RULE-CLASSES (:LINEAR)))

(LOCAL (DEFTHM SQUARE-TYPE

(IMPLIES (RATIONALP X)

(RATIONALP (SQUARE X)))

:RULE-CLASSES (:TYPE-PRESCRIPTION)))

(LOCAL (IN-THEORY (DISABLE SQUARE)))

(LOCAL (include-book "arithmetic-5/top" :dir :system))

;; Normalized problem polynomials

(LOCAL (DEFUND PROB-0 (A B C X)

(+ (* A (* X X)) (+ (* B X) C))))
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(LOCAL (DEFUND PROB-1 (A B C X)

(- 0 (- (* B B) (* 4 (* A C))))))

;; Normalized goal expressed using problem polynomials

(LOCAL (DEFUN GOAL (A B C X)

(IMPLIES (AND (RATIONALP A)

(RATIONALP B)

(RATIONALP C) (RATIONALP X))

(NOT (AND (= (PROB-0 A B C X) 0)

(> (PROB-1 A B C X) 0))))))

;; Ideal cofactors

(LOCAL (DEFUND IDEAL-CF-0 (A B C X)

(* -4 A)))

(LOCAL (DEFTHM IDEAL-CF-0-TYPE

(IMPLIES (AND (RATIONALP A)

(RATIONALP B)

(RATIONALP C) (RATIONALP X))

(RATIONALP (IDEAL-CF-0 A B C X)))

:hints

(("Goal" :in-theory (enable IDEAL-CF-0)))))

;; Cone cofactors

(LOCAL (DEFUND CONE-CF-0 (A B C X)

(SQUARE (+ (* 2 (* A X)) B))))

(LOCAL (DEFTHM CONE-CF-0-TYPE

(IMPLIES (AND (RATIONALP A)

(RATIONALP B)

(RATIONALP C) (RATIONALP X))

(RATIONALP (CONE-CF-0 A B C X)))

:hints

(("Goal" :in-theory (enable CONE-CF-0)))))

(LOCAL (DEFTHM CONE-CF-0-PSD

(IMPLIES (AND (NOT (GOAL A B C X))

(RATIONALP A)

(RATIONALP B)

(RATIONALP C) (RATIONALP X))

(>= (CONE-CF-0 A B C X) 0))

:hints

(("Goal" :in-theory
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(enable CONE-CF-0 PROB-0 PROB-1)))

:rule-classes (:linear)))

;; Monoid cofactors

(LOCAL (DEFUND MONOID-CF-0 (A B C X)

(- 0 (- (* B B) (* 4 (* A C))))))

;; Positivstellensatz certificate

(LOCAL (DEFUN CERT (A B C X)

(+ (MONOID-CF-0 A B C X)

(CONE-CF-0 A B C X)

(* (IDEAL-CF-0 A B C X) (PROB-0 A B C X)))))

;; Contradictory results on the sign of the certificate

(LOCAL (DEFTHMD CERT-KEY

(IMPLIES (AND (RATIONALP A)

(RATIONALP B)

(RATIONALP C) (RATIONALP X))

(= (CERT A B C X) 0))

:hints

(("Goal" :in-theory

(enable SQUARE

CERT

PROB-0

PROB-1

IDEAL-CF-0 CONE-CF-0 MONOID-CF-0)))))

(LOCAL (DEFTHM CERT-CONTRA-M-0

(IMPLIES (AND (NOT (GOAL A B C X))

(RATIONALP A)

(RATIONALP B)

(RATIONALP C) (RATIONALP X))

(> (MONOID-CF-0 A B C X) 0))

:hints

(("Goal" :in-theory

(enable SQUARE

CERT

PROB-0

PROB-1

IDEAL-CF-0 CONE-CF-0 MONOID-CF-0)))

:rule-classes (:linear)))

(LOCAL (DEFTHM CERT-CONTRA-C-0
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(IMPLIES (AND (NOT (GOAL A B C X))

(RATIONALP A)

(RATIONALP B)

(RATIONALP C) (RATIONALP X))

(>= (CONE-CF-0 A B C X) 0))

:rule-classes (:linear)))

(LOCAL (DEFTHM CERT-CONTRA-I-0

(IMPLIES (AND (NOT (GOAL A B C X))

(RATIONALP A)

(RATIONALP B)

(RATIONALP C) (RATIONALP X))

(= (* (IDEAL-CF-0 A B C X)

(PROB-0 A B C X))

0))

:hints

(("Goal" :in-theory

(enable SQUARE

CERT

PROB-0

PROB-1

IDEAL-CF-0 CONE-CF-0 MONOID-CF-0)))

:rule-classes (:linear)))

(LOCAL (DEFTHM CERT-CONTRA

(IMPLIES (AND (NOT (GOAL A B C X))

(RATIONALP A)

(RATIONALP B)

(RATIONALP C) (RATIONALP X))

(NEQ (CERT A B C X) 0))

:rule-classes nil))

;; Main lemma

(LOCAL (DEFTHM MAIN

(IMPLIES (AND (RATIONALP A)

(RATIONALP B)

(RATIONALP C) (RATIONALP X))

(GOAL A B C X))

:hints

(("Goal" :in-theory

(disable GOAL)

:use (CERT-KEY CERT-CONTRA)))

:rule-classes nil))

;; Final theorem
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(DEFTHM FINAL

(IMPLIES (AND (RATIONALP A)

(RATIONALP B)

(RATIONALP C)

(RATIONALP X) (= (+ (* A X X) (* B X) C) 0))

(>= (- (* B B) (* 4 A C)) 0))

:hints

(("Goal" :in-theory

(enable GOAL PROB-0 PROB-1) :use (MAIN)))

:rule-classes nil))

3 Mathematical Background

The general setting for nonlinear real arithmetic is the theory of real closed fields (RCF). A real closed
field is a field elementarily equivalent to R w.r.t. the language of ordered rings, i.e., the first-order
language of polynomial equations and inequalities over Q[~x]. RCF is complete, decidable and admits
effective elimination of quantifiers [16, 12].

Though decidable, RCF is fundamentally infeasible. For example, Davenport-Heintz have isolated a
family of n-variable RCF formulas of length O(n) whose only quantifier-free equivalents must contain
polynomials of degree 22Ω(n)

and of length 22Ω(n)
[4]. Tarski was the first to give an RCF quantifier elimina-

tion algorithm [16] but its non-elementary complexity makes it impractical for real-world use. Collins’s
CAD [3] achieves an asymptotic best-case of doubly-exponential complexity and is the foundation of
many best performing proof procedures available in computer algebra systems and SMT solvers [12].
Nevertheless, CAD relies on complex algebro-geometric computations and to date no one has succeeded
in extracting foundationally checkable proof objects from CAD.

For restricted fragments of RCF, we can do better. The purely existential fragment is known to only
have singly exponential worst-case complexity [2], and convex optimization techniques can efficiently
handle many specialized but practically useful classes of problems [10]. It is in this context that our work
takes place: we are working only over the purely universal (dually, purely existential) fragment, and our
proof construction uses convex optimization to search over a space of possible foundational proofs.

3.1 The Krivine-Stengle Positivstellensatz

The core of our proof construction relies on the Krivine-Stengle Positivstellensatz. Like its complex
algebro-geometric sibling the Nullstellensatz, the Positivstellensatz guarantees the existence of algebraic
proof certificates witnessing unsatisfiability. While the Nullstellensatz deals only with equations and
ideals and their relationship with satisfiability over C, the Positivstellensatz is more intricate as it must
also take into account ordering relations given R’s status as an ordered field.
Theorem 3.1 (Krivine-Stengle Positivstellensatz).(

k0∧
i

pi = 0

)
∧

(
k1∧
i

qi ≥ 0

)
∧

(
k2∧
i

ri 6= 0

)
s.t. pi,qi,ri ∈Q[~x]

is unsatisfiable over R iff
∃P ∈ Ideal(p1, . . . , pk0)
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∃Q ∈Cone(q1, . . . ,qk1)

∃R ∈Monoid(r1, . . . ,rk2)

s.t.
P+Q+R2 = 0

where

Ideal(a1, . . . ,am) =

{
m

∑
i=1

aibi | bi ∈Q[~x]

}

Cone(a1, . . . ,am) =

{
r+

m

∑
i=1

tiui | r, ti ∈∑(Q[~x])2,ui ∈Monoid(a1, . . . ,am)

}

Monoid(a1, . . . ,am) =

{
m

∏
i=1

(ai)
j | j ∈ N

}

∑(Q[~x])2 =

{
v

∑
i=1

(pi)
2 | pi ∈Q[~x] ∧ v ∈ N

}
.

The sum P+Q+R2 is the certificate of unsatisfiability. Like we reasoned in the introduction, it
is easy to see why unsatisfiability follows: appealing to the fact that ideals generalize nullity, cones
generalize non-negativity, and multiplicative monoids generalize non-nullity, our constraints imply that
P = 0, Q≥ 0 and R2 > 0, and thus that P+Q+R2 > 0. But by polynomial arithmetic alone P+Q+R2

reduces to 0. Thus our constraint system implies 0 > 0 and must be unsatisfiable. The miracle of the
theorem is that these certificates always exist. The next question is: how to find them?

3.2 Sums of Squares Decompositions and Semidefinite Programming

From the guise of logic, the Positivstellensatz gives us both a proof system and a completeness theorem.
The original proofs establishing the Positivstellensatz, however, were non-constructive, giving no hint as
to how one can effectively find the promised proofs.

A major advance occurred in 2000, with Parrilo’s use of semidefinite programming (SDP) relaxations
to efficiently search over convex spaces of certificate coefficients [9, 10].

From our perspective, Parillo’s key theorem is the following (Theorem 5.1 of [9]):

Theorem (SDP for Positivstellensatz Search). Consider a system of polynomial equalities and inequal-
ities. Then, the search for bounded degree Positivstellensatz refutations can be done using semidefinite
programming. If the degree bound is chosen to be large enough, then the SDPs will be feasible, and the
certificates obtained from its solution.

The critical fact is that these searches are over a convex space, and thus can take advantage of efficient
optimization methods. How to make the space convex? For a given certificate bound, we consider which
monomials could possibly appear in the certificate, and introduce fresh variables for them. Then, the
problem polynomials can be expressed as a quadratic form in the fresh variables, and a linear constraint
system (modulo a PSD constraint on the matrix of the quadratic form) can be extracted by comparing
coefficients. But optimizing linear constraints modulo a PSD matrix is a convex optimization problem:
this is precisely the domain of semidefinite programming.
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4 Examples, Caveats and Limitations

While we believe our present approach is promising and useful in many ways, especially for relatively
small but algebraically nontrivial inequalities arising in verification practice, it is not a panacea. First,
the worst-case degree bounds on certificates are in general hyper-exponential in dimension, and we
experience this in practice: the more variables there are, the harder things tend to get. Second, the space
of possible certificates grows rapidly as degree bounds are expanded. And third, efficient SDP solvers use
numerical methods based on floating point, and it is not always easy to recover exact rational coefficients
from SDP solutions. Harrison’s REAL_SOS tactic [5] in HOL-Light addresses many of these challenges,
and we refer the reader to his work for more details. Subsequent theoretical analyses have shown that
some of these issues are insurmountable with the present approach [7].

Nevertheless, we are encouraged by the present state of the method. For example, the following are
all problems which can be solved by Imandra, translated into ACL2, and checked successfully by ACL2
in (at most) seconds:

(IMPLIES (= (+ (* X X) (* Y Y) (* Z Z)) 1)

(<= (* (+ X Y Z) (+ X Y Z)) 3))

(IMPLIES (= (+ (* W W) (* X X) (* Y Y) (* Z Z)) 1)

(<= (* (+ W X Y Z) (+ W X Y Z)) 4))

(IMPLIES (AND (<= 0 X) (<= 0 Y) (= (* X Y) 1))

(<= (+ X Y) (+ (* X X) (* Y Y))))

(IMPLIES (AND (>= X 1) (>= Y 1))

(>= (* X Y) (- (+ X Y) 1)))

(IMPLIES (AND (<= 0 X) (<= 0 Y))

(<= (* X Y (EXPT (+ X Y) 2))

(EXPT (+ (* X X) (* Y Y)) 2)))

(IMPLIES (AND (<= 0 A) (<= 0 B) (<= 0 C)

(<= (* C (EXPT (+ (* 2 A) B) 3)) (* 27 X)))

(<= (* C A A B) X))

There are some problems which, e.g., Harrison’s REAL_SOS can handle, but we cannot. We are not
sure why, but we conjecture this may have to do with numerical differences in the execution of the SDP
solver, as SDP floating point results can be platform dependent [5]. These include:

(IMPLIES (AND (= (+ (* A X X X) (+ B X X) (+ C X) D) 0)

(= (+ (* A Y Y Y) (+ B Y Y) (+ C Y) D) 0)

(< (+ (- (* 18 A B C D) (* 4 B B D))

(- (* B B C C) (* 4 A C C C))

(- 0 (* 27 A A D D)))

0))

(= X Y))

and
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(IMPLIES (AND (= (- X2 U3) 0)

(= (* (- (- X1 U1) U3) (* X2 U2)) 0)

(= (- (* X4 X1) (* X3 U3)) 0)

(= (- (* X4 (- U2 U1)) (* (- X3 U1) U3)) 0))

(= (+ (- (- (* X1 X1) (* 2 X1 X3)) (* 2 X4 X2)) (* X2 X2)) 0))

Encouragingly, in all such failing cases, we fail even to construct a proof in Imandra, rather than finding
a certificate but failing in extracting a valid ACL2 proof. In all of our current examples, if we find a
certificate, we successfully construct an ACL2 version which ACL2 checks quickly.

5 Related Work

Harrison’s HOL-Light REAL_SOS tactic [5] is the moral foundation of this work. For the case of Posi-
tivstellensatz proofs, we have in many ways simply adapted his ideas to the setting of Imandra and ACL2,
including his OCaml interface to the csdp [1] SDP solver and techniques for rational certificate recovery.
Harrison’s work is based on Parillo’s key insight of reducing Positivstellensatz searches to a sequence
of SOS decompositions [10], which in turn builds on the Powers-Wörmann algorithm for reducing SOS
decompositions to a sequence of convex SDP searches [14, 13].

6 Conclusion and Future Work

We have presented an integration of Imandra and ACL2 for constructing ACL2 proofs of nonlinear
inequalities. The approach is built around the Positivstellensatz and uses convex optimization to search
for foundational proofs of unsatisfiability. This work is in many ways an Imandra and ACL2 adaptation
of the pioneering work of Harrison and his REAL_SOS tactic in HOL-Light, and further of Parrilo’s
work on reducing Positivstellensatz searches to semidefinite programming. We are next focusing on
integrating Imandra’s real algebraic counterexample search and region decomposition methods into the
procedure [11, 8], and further handling problems with more general boolean structure. We also aim to
develop an ACL2 client (available in, e.g., Emacs) which makes it easy to send problems to an Imandra
service in the cloud and to then incorporate the delivered proofs into local developments.
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“Dancing Links” connotes an optimization to a circular doubly-linked list data structure implementa-

tion which provides for fast list element removal and restoration. The Dancing Links optimization is

used primarily in fast algorithms to find exact covers, and has been popularized by Knuth in Volume

4B of his seminal series The Art of Computer Programming. We describe an implementation of the

Dancing Links optimization in the Rust programming language, as well as its formal verification

using the ACL2 theorem prover. Rust has garnered significant endorsement in the past few years as

a modern, memory-safe successor to C/C++ at companies such as Amazon, Google, and Microsoft,

and is being integrated into both the Linux and Windows operating system kernels. Our interest in

Rust stems from its potential as a hardware/software co-assurance language, with application to criti-

cal systems. We have crafted a Rust subset, inspired by Russinoff’s Restricted Algorithmic C (RAC),

which we have imaginatively named Restricted Algorithmic Rust, or RAR. In previous work, we de-

scribed our initial implementation of a RAR toolchain, wherein we simply transpile the RAR source

into RAC. By so doing, we leverage a number of existing hardware/software co-assurance tools with

a minimum investment of time and effort. In this paper, we describe the RAR Rust subset, describe

our improved prototype RAR toolchain, and detail the design and verification of a circular doubly-

linked list data structure employing the Dancing Links optimization in RAR, with full proofs of

functional correctness accomplished using the ACL2 theorem prover.

1 Introduction

The exact cover problem [17], in its simplest form, attempts to find, for an n×m matrix with binary

elements, all of the subsets of the rows of the matrix such that all the column sums are exactly one. This

basic notion naturally extends to matrix elements that are in some numerical range; indeed, the popular

puzzle game Sudoku is an extended exact cover problem for a 9× 9 matrix with element values in the

range of 1 to 9, inclusive.

The exact cover problem is NP-complete, but computer scientists have devised recursive, nonde-

terministic backtracking algorithms to find exact covers. One such procedure is Knuth’s Algorithm X,

described in [17]. In this algorithm, elements of the matrix are connected via circular doubly-linked lists,

and individual elements are removed, or restored, as the algorithm proceeds, undergoing backtracking,

etc. As these removals and restorations out of/into the list are quite common, making these operations

efficient is a laudable goal. This is where Knuth’s “Dancing Links” comes in, resulting in an optimized

algorithm for finding exact covers which Knuth calls DLX (Dancing Links applied to algorithm X).

2 Dancing Links

The concept behind Dancing Links is quite simple: when a given element Y of a list is removed in

an exact cover algorithm, it is very likely that this same element will later be restored. Thus, rather

http://dx.doi.org/10.4204/EPTCS.393.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Figure 1: Dancing Links in action. (a) Portion of a circular doubly-linked list prior to a remove operation;

(b) After the remove operation on element Y; (c) After the restore operation for element Y.

than “zero out” the ‘previous’ and ‘next’ links associated with element Y, as good programming hygiene

would normally dictate, in Dancing Links, the programmer leaves the link values in place for the removed

element. The Dancing Links remove operator thus deletes element Y from the list, setting the ’next’

element of the preceding element X to the following element Z, and setting the ’previous’ element of Z

to a link to X, but not touching the ’next’ and ’previous’ links of the removed element Y. Later on, if Y

needs to be restored, it is simply hooked back in to the list using a simple restore operator. In Knuth’s

words, if one monitors the list links as the DLX algorithm proceeds, the links appear to ‘dance’, hence

the name. Knuth’s Dancing Links functionality is summarized in Fig. 1.

3 The Rust Programming Language

The Rust programming language has garnered significant interest and use as a modern, type-safe, memory-

safe, and potentially formally analyzable programming language. Google [29] and Amazon [25] are

major Rust adopters, and Linus Torvalds has commented positively on the near-term ability of the Rust

toolchain to be used in Linux kernel development [1]. And after spending decades dealing with a never-

ending parade of security vulnerabilities due to C/C++, which continue to manifest at a high rate [24]

despite their use of sophisticated C/C++ analysis tools, Microsoft announced at its BlueHat 2023 devel-

oper conference that is was beginning to rewrite core Windows libraries in Rust [6].

Our interest in Rust stems from its potential as a hardware/software co-assurance language. This

interest is motivated in part by emerging application areas, such as autonomous and semi-autonomous

platforms for land, sea, air, and space, that require sophisticated algorithms and data structures, are sub-

ject to stringent accreditation/certification, and encourage hardware/software co-design approaches. (For

an unmanned aerial vehicle use case illustrating a formal methods-based systems engineering environ-

ment, please consult [7] [23].) In this paper, we explore the use of Rust as a High-Level Synthesis (HLS)

language [26].

HLS developers specify the high-level abstract behavior of a digital system in a manner that omits

hardware design details such as clocking; the HLS toolchain is then responsible for “filling in the details”

to produce a Register Transfer Level (RTL) structure that can be used to realize the design in hardware.
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HLS development is thus closer to software development than traditional hardware design in Hardware

Description Languages (HDLs) such as Verilog or VHDL. Most incumbent HLS languages are a subset

of C, e.g. Mentor Graphics’ Algorithmic C [21], or Vivado HLS by Xilinx [31], although other languages

have also been used, e.g. OCaml [15]. A Rust-based HLS would bring a single modern, type-safe, and

memory-safe expression language for both hardware and software realizations, with very high assurance.

For formal methods researchers, Rust presents the opportunity to reason about application-level logic

written in the imperative style favored by industry, but without the snarls of the unrestricted pointers of

C/C++. Much progress has been made to this end in recent years, to the point that developers can ver-

ify the correctness of common algorithm and data structure code that utilizes common idioms such as

records, loops, modular integers, and the like, and verified compilers can guarantee that such code is

compiled correctly to binary [18]. Particular progress has been made in the area of hardware/software

co-design algorithms, where array-backed data structures are common [10, 11]. (NB: This style of pro-

gramming also addresses one of the shortcomings of Rust, namely its lack of support for cyclic data

structures.)

As a study of the suitability of Rust as an HLS, we have crafted a Rust subset, inspired by Russinoff’s

Restricted Algorithmic C (RAC) [27], which we have imaginatively named Restricted Algorithmic Rust,

or RAR [13]. In fact, in our first implementation of a RAR toolchain, we merely “transpile” (perform a

source-to-source translation of) the RAR source into RAC. By so doing, we leverage a number of existing

hardware/software co-assurance tools with a minimum investment of time and effort. By transpiling

RAR to RAC, we gain access to existing HLS compilers (with the help of some simple C preprocessor

directives, we are able to generate code for either the Algorithmic C or Vivado HLS toolchains). But most

importantly for our research, we leverage the RAC-to-ACL2 translator that Russinoff and colleagues at

Arm have successfully utilized in industrial-strength floating point hardware verification.

We have implemented several representative algorithms and data structures in RAR, including:

• a suite of array-backed algebraic data types, previously implemented in RAC (as reported in [10]);

• a significant subset of the Monocypher [30] modern cryptography suite, including XChacha20

and Poly1305 (RFC 8439) encryption/decryption, BLAKE2b hashing, and X25519 public key

cryptography [12]; and

• a DFA-based JSON lexer, coupled with an LL(1) JSON parser. The JSON parser has also been

implemented using Greibach Normal Form (previously implemented in RAC, as described in [14]).

The RAR examples created to date are similar to their RAC counterparts in terms of expressive-

ness, and we deem the RAR versions somewhat superior in terms of readability (granted, this is a very

subjective evaluation).

In this paper, we will describe the development and formal verification of an array-based circular

doubly-linked list (CDLL) data structure in RAR, including the Dancing Links optimization. Along the

way, we will introduce the RAR subset of Rust, the RAR toolchain, the CDLL example, and detail our

ACL2-based verification techniques, as well as the ACL2 books that we brought to bear on this example.

It is hoped that this explication will convince the reader of the practicality of RAR as a high-assurance

hardware/software co-design language, as well as the feasibility of the performing full functional cor-

rectness proofs of RAR code. We will then conclude with related and future work.
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Figure 2: Restricted Algorithmic C (RAC) toolchain.

Formal Verification “Comfort Zone” Real-World Development

Functional programming Imperative programming

Total, terminating functions Partial, potentially non-terminating functions

Non-tail-recursive functions Loops

Okasaki-style pure functional algebraic data types Structs, Arrays

Infinite-precision Integers, Reals Modular Integers, IEEE 754 floating point

Linear Arithmetic Linear and Non-linear Arithmetic

Arithmetic or Bit Vectors Arithmetic and Bit Vectors

Table 1: Formal verification vs. real-world development attributes.

4 RAC: Hardware/Software Co-Assurance at Scale

In order to begin to realize hardware/software co-assurance at scale, we have conducted several experi-

ments employing a state-of-the-art toolchain, due to Russinoff and O’Leary, and originally designed for

use in floating-point hardware verification [27], to determine its suitability for the creation of safety-

critical/security-critical applications in various domains. Note that this toolchain has already demon-

strated the capability to scale to industrial designs in the floating-point hardware design and verification

domain, as it has been used in design verifications for CPU products at both Intel and Arm.

Algorithmic C [21] is a High-Level Synthesis (HLS) language, and is supported by hardware/software

co-design environments from Mentor Graphics, e.g., Catapult [22]. Algorithmic C defines C++ header

files that enable compilation to both hardware and software platforms, including support for the peculiar

bit widths employed, for example, in floating-point hardware design.

The Russinoff-O’Leary Restricted Algorithmic C (RAC) toolchain, depicted in Fig. 2, translates a

subset of Algorithmic C source to the Common Lisp subset supported by the ACL2 theorem prover, as

augmented by Russinoff’s Register Transfer Logic (RTL) books.

The ACL2 Translator component of Fig. 2 provides a case study in the bridging of Formal Model-

ing and Real-World Development concerns, as summarized in Table 1. The ACL2 translator converts

imperative RAC code to functional ACL2 code. Loops are translated into tail-recursive functions, with

automatic generation of measure functions to guarantee admission into the logic of ACL2 (RAC subset-

ting rules ensure that loop measures can be automatically determined). Structs and arrays are converted
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into functional ACL2 records. The combination of modular arithmetic and bit-vector operations of typi-

cal RAC source code is faithfully translated to functions supported by Russinoff’s RTL books. ACL2 is

able to reason about non-linear arithmetic functions, so the usual concern about formal reasoning about

non-linear arithmetic functions does not apply. Finally, the RTL books are quite capable of reasoning

about a combination of arithmetic and bit-vector operations, which is a very difficult feat for most auto-

mated solvers.

Recently, we have investigated the synthesis of Field-Programmable Gate Array (FPGA) hardware

directly from high-level architecture models, in collaboration with colleagues at Kansas State University.

The goal of this work is to enable the generation of high-assurance hardware and/or software from high-

level architectural specifications expressed in the Architecture Analysis and Design Language (AADL)

[9], with proofs of correctness in ACL2.

5 Rust and RAR

The Rust Programming Language [16] is a modern, high-level programming language designed to com-

bine the code generation efficiency of C/C++ with drastically improved type safety and memory man-

agement features. A distinguishing feature of Rust is that a non-scalar object may only have one owner.

For example, one cannot assign a reference to an object in a local variable, and then pass that reference

to a function. This restriction is similar to those imposed on ACL2 single-threaded objects (stobjs) [4],

with the additional complexities of enforcing such “single-owner” restrictions in the context of a general-

purpose, imperative programming language. The Rust runtime performs array bounds checking, as well

as arithmetic overflow checking (the latter can be disabled by a build environment setting).

In most other ways, Rust is a fairly conventional modern programming language, with interfaces

(called traits), lambdas (termed closures), and pattern matching, as well as a macro capability. Also in

keeping with other modern programming language ecosystems, Rust features a language-specific build

and package management sytem, named cargo.

5.1 Restricted Algorithmic Rust

As we wish to utilize the RAC toolchain as a backend in our initial work, Restricted Algorithmic Rust

is semantically equivalent to RAC. Thus, we adopt the same semantic restrictions as described in Russi-

noff’s book. Additionally, in order to enable translation to RAC, as well as to ease the transition from

C/C++, RAR supports a commonly used macro that provides a C-like for loop in Rust. Note that, despite

the restrictions, RAR code is proper Rust; it compiles to binary using the standard Rust compiler.

RAR is transpiled to RAC via a source-to-source translator, as depicted in Fig. 3. Our transpiler

is based on the plex parser and lexer generator [28] source code. We thus call our transpiler Plexi,

a nickname given to a famous (and now highly sought-after) line of Marshall guitar amplifiers of the

mid-1960s. Plexi performs lexical and syntactic transformations that convert RAR code to RAC code.

Recent improvements in the plexi tool include better handling of array declarations, as well as providing

support for Rust const declarations.

The generated RAC code can then be compiled using a C/C++ compiler, fed to an HLS-based FPGA

compiler, as well as translated to ACL2 via the RAC ACL2 translator, as illustrated in Fig. 3.
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Figure 3: Restricted Algorithmic Rust (RAR) toolchain.

6 Dancing Links in Rust

In this section, we describe an array-based circular doubly-linked list (CDLL) employing Knuth’s “Danc-

ing Links” optimization, realized using our RAR Rust subset. The CDLL data structure implementation

constitutes over 700 lines of Rust code, which becomes 890 lines of code when translated to ACL2.

6.1 Definitions

First, we present the basic RAR declaration for the CDLL.

const CDLL_MAX_NODE1: usize = 8191;

const CDLL_MAX_NODE: usize = CDLL_MAX_NODE1 - 1;

#[derive(Copy, Clone)]

struct CDLLNode {

alloc: u2,

val: i64,

prev: usize,

next: usize,

}

#[derive(Copy, Clone)]

struct CDLL {

nodeHd: usize,

nodeCount: usize,

nodeArr: [CDLLNode; CDLL_MAX_NODE1],

}

Rust data structure declarations are similar to those in C, but struct elements are declared by specify-

ing the element name, followed by the : separator, then the element type. Also note that Rust pragmas

may be given using the derive attribute. In the declaration above, the array nodeArr holds the list

element nodes. Each element has next and prev indices. Note that indices in Rust are normally de-

clared to be of the usize type. Note also that by using array indices instead of references, we get around
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fn CDLL_remove(n: usize, mut CDObj: CDLL) -> CDLL {

if (n > CDLL_MAX_NODE) {

return CDObj;

} else {

if (n == CDObj.nodeHd) { // Can’t remove head

return CDObj;

} else {

if (CDObj.nodeCount < 3) { // Need three elements for remove to work

return CDObj;

} else {

let nextNode: usize = CDObj.nodeArr[n].next;

let prevNode: usize = CDObj.nodeArr[n].prev;

CDObj.nodeArr[prevNode].next = nextNode;

CDObj.nodeArr[nextNode].prev = prevNode;

CDObj.nodeCount = CDObj.nodeCount - 1;

return CDObj;

}

}

}

}

Figure 4: cdll_remove() function in RAR.

Rust ownership model issues with circular data structures. The alloc field of the CDLLNode structure

is declared to be a two bit unsigned field, but its only allowed values are two non-zero values: 2 (not

currently allocated), and 3 (allocated). The reason for this has to do with the details of ACL2 untyped

record reasoning, which will be discussed in Section 6.2.

The Dancing Links operators cdll_remove and cdll_restore are presented in Figures 4 and 5,

respectively. Rust functions begin with the fn keyword, followed by the function name, a parenthesized

list of parameters, the -> (returns) symbol, the return type name, followed by the function body (de-

limited by a curly brace pair). A function parameter list element consists of the parameter name, the

: symbol, then the parameter type. Additional parameter modifiers, for example mut, may be present

to indicate that the parameter is changed in the function body. Within the function body, the syntax is

similar to other C-like languages, but local variable declarations begin with let, and use the variable

name, :, variable type declaration syntax. A local variable declaration may also require the mut modifier

if that local variable is updated after its initialization.

6.2 Translation to ACL2

We use Plexi to transpile the RAR source to RAC (not shown), then use the RAC translator to convert

the resulting RAC source to ACL2. The translation of cdll_restore() appears in Fig. 6.
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fn CDLL_restore(n: usize, mut CDObj: CDLL) -> CDLL {

if (n > CDLL_MAX_NODE) {

return CDObj;

} else {

if (n == CDObj.nodeHd) { // Can’t restore head

return CDObj;

} else {

if ((CDObj.nodeCount < 2) || // Need two elements for restore to work

(CDObj.nodeCount == CDLL_MAX_NODE1)) { // Can’t restore to a full list

return CDObj;

} else {

let prevNode: usize = CDObj.nodeArr[n].prev;

let nextNode: usize = CDObj.nodeArr[n].next;

CDObj.nodeArr[prevNode].next = n;

CDObj.nodeArr[nextNode].prev = n;

CDObj.nodeCount = CDObj.nodeCount + 1;

return CDObj;

}

}

}

}

Figure 5: cdll_restore() function in RAR.
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(DEFUND CDLL_RESTORE (N CDOBJ)

(IF1 (LOG> N (CDLL_MAX_NODE))

CDOBJ

(IF1 (LOG= N (AG ’NODEHD CDOBJ))

CDOBJ

(IF1 (LOGIOR1 (LOG< (AG ’NODECOUNT CDOBJ) 2)

(LOG= (AG ’NODECOUNT CDOBJ)

(CDLL_MAX_NODE1)))

CDOBJ

(LET* ((PREVNODE (AG ’PREV (AG N (AG ’NODEARR CDOBJ))))

(NEXTNODE (AG ’NEXT (AG N (AG ’NODEARR CDOBJ))))

(CDOBJ (AS ’NODEARR

(AS PREVNODE

(AS ’NEXT

N (AG PREVNODE (AG ’NODEARR CDOBJ)))

(AG ’NODEARR CDOBJ))

CDOBJ))

(CDOBJ (AS ’NODEARR

(AS NEXTNODE

(AS ’PREV

N (AG NEXTNODE (AG ’NODEARR CDOBJ)))

(AG ’NODEARR CDOBJ))

CDOBJ)))

(AS ’NODECOUNT

(+ (AG ’NODECOUNT CDOBJ) 1)

CDOBJ))))))

Figure 6: cdll_restore() function translated to ACL2 using the RAC tools.
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The first thing to note about Fig. 6 is that, even though we are two translation steps away from

the original RAR source, the translated function is nonetheless quite readable, which is a rare thing for

machine-generated code. Another notable observation is that struct and array ‘get’ and ‘set’ operations

become untyped record operators, AG and AS, respectively — these are slight RAC-specific customiza-

tions of the usual ACL2 untyped record operators. Further, IF1 is a RAC-specific macro, and LOG>,

LOG=, LOG<, and LOGIOR1 are all RTL functions. Thus, much of the proof effort involved with RAR

code is reasoning about untyped records and RTL — although not a lot of RTL-specific knowledge is

needed, at least in our experience.

One aspect of untyped records that can be tricky is that record elements that take on the default value

are not explicitly stored in the association list for the record. For RAC untyped records, that default value

is zero. Thus, it is easy for a given record to attain a nil value. When reasoning about arrays of such

records, it is often desirable to be able to state that the array size remains constant. Thus, for example, for

the CDLL array nodeArr of Section 6.1, we ensure that all CDLLNode elements of that array are non-nil

by making sure that the alloc fields of the CDLLNode elements are always non-zero (2 or 3).

6.3 Dancing Links Theorems

Once we have translated the circular doubly-linked list functions into ACL2, we can begin to prove

theorems about the data structure implementation. We begin by defining a “well-formedness” predicate

for CDLLs.

(defun cdllnodeArrp-helper (arr j)

(cond ((not (true-listp arr)) nil)

((null arr) t)

((not (and (integerp j) (<= 0 j))) nil)

((not (consp (car arr))) nil)

((not (= (car (car arr)) j)) nil)

((not (cdllnodep (cdr (car arr)))) nil)

(t (cdllnodeArrp-helper (cdr arr) (1+ j)))))

(defun cdllnodeArrp (arr)

(cdllnodeArrp-helper arr 0))

(defun cdllp (Obj)

(and (integerp (ag ’nodeHd Obj))

(<= 0 (ag ’nodeHd Obj))

(<= (ag ’nodeHd Obj) (CDLL_MAX_NODE))

(integerp (ag ’nodeCount Obj))

(<= 0 (ag ’nodeCount Obj))

(<= (ag ’nodeCount Obj) (CDLL_MAX_NODE1))

(cdllnodeArrp (ag ’nodeArr Obj))

(= (len (ag ’nodeArr Obj)) (CDLL_MAX_NODE1))))

Given this definition of a good CDLL state, we can prove functional correctness theorems for

Dancing Links operations, of the sort stated below. Note that this proof requires some detailed well-

formedness hypotheses related to the prev and next indices for the nth element:
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(defthm restore-of-remove--thm

(implies

(and (cdllp Obj)

(good-nodep n Obj)

(not (= n (ag ’nodeHd Obj)))

(>= (ag ’nodeCount Obj) 3))

(= (CDLL_restore n (CDLL_remove n Obj))

Obj)))

ACL2 performs the correctness proof for this cdll_restore of cdll_remove theorem automati-

cally. In addition to the Dancing Links operator proofs, we have proved approximately 160 theorems

related to the CDLL data structure, including theorems about cdll_cns() (cons equivalent), cdll_-

rst() (cdr equivalent), cdll_snc() (add to end of data structure), cdll_tsr() (delete from end of

data structure), cdll_nth(), etc. All of these proofs will be made publicly available in the ACL2

workshop books repository.

7 Related Work

A number of domain-specific languages targeting both hardware and software realization, and providing

support for formal verification, have been created. Cryptol [5], for example, has been employed as a

“golden spec” for the evaluation of cryptographic implementations, in which automated tools perform

equivalence checking between the Cryptol spec for a given algorithm, and the VHDL implementation.

Formal verification systems for Rust include Creusot [8], based on WhyML; Prusti [3], based on the

Viper verification toolchain; and RustHorn [20], based on constrained Horn clauses. AWS is developing

a model-checker for Rust, Kani [2]. Additionally, Carnegie-Mellon University is developing Verus,

an SMT-based tool for formally verifying Rust programs [19]. With Verus, programmers express proofs

and specifications using Rust syntax, allowing proofs to take advantage of Rust’s linear types and borrow

checking. It will be interesting to attempt the sorts of correctness proofs achievable on our system using

these verification tools.

8 Conclusion

We have developed a prototype toolchain to allow the Rust programming language to be used as a hard-

ware/software co-design and co-assurance language for critical systems, standing on the shoulders of

Russinoff’s team at Arm, and all the great work they have done on Restricted Algorithmic C. We have

demonstrated the ability to establish the correctness of several practical data structures commonly found

in high-assurance systems (e.g., array-backed singly-linked lists, doubly-linked lists, stacks, and de-

queues) through automated formal verification, enabled by automated source-to-source translation from

Rust to RAC to ACL2, and have detailed the specification and verification of one such data structure, a

circular doubly-linked list employing Knuth’s “Dancing Links” optimization. We have also successfully

applied our toolchain to cryptography and data format filtering examples typical of the sorts of algorithms

that one encounters in critical systems development.

In future work, we will continue to develop our toolchain, increasing the number of Rust features that

we can support in the RAR subset, as well as continuing to improve the ACL2 verification libraries in

order to increase the ability to discharge RAR correctness proofs automatically. We will also continue to
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work with our colleagues at Kansas State University on the direct synthesis and verification of RAR code

from architectural models, as well as working with colleagues at the University of Kansas on verified

synthesis of Rust code from high-level attestation protocol specifications written using the Coq theorem

prover.
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[3] V. Astrauskas, A. Bı́lý, J. Fiala, Z. Grannan, C. Matheja, P. Müller, F. Poli & A. J. Summers (2022): The Prusti

Project: Formal Verification for Rust (invited). In: NASA Formal Methods (14th International Symposium),

Springer, pp. 88–108, doi:10.1007/978-3-031-06773-0_5. Available at https://link.springer.

com/chapter/10.1007/978-3-031-06773-0_5.

[4] Robert S. Boyer & J Strother Moore (2002): Single-Threaded Objects in ACL2. In: Practical Aspects of

Declarative Languages, 4th International Symposium, PADL 2002, Portland, OR, USA, January 19-20, 2002,

Proceedings, LNCS 2257, Springer, pp. 9–27, doi:10.1007/3-540-45587-6_3.

[5] Sally Browning & Philip Weaver (2010): Designing Tunable, Verifiable Cryptographic Hardware Using

Cryptol. In David S. Hardin, editor: Design and Verification of Microprocessor Systems for High-Assurance

Applications, Springer, pp. 89–143, doi:10.1007/978-1-4419-1539-9_4.

[6] Thomas Claburn (2023): Microsoft is busy rewriting core Windows code in memory-safe Rust. Available at

https://www.theregister.com/2023/04/27/microsoft_windows_rust/.

[7] Darren Cofer, Isaac Amundson, Junaid Babar, David Hardin, Konrad Slind, Perry Alexander, John Hatcliff,

Robby, Gerwin Klein, Corey Lewis, Eric Mercer & John Shackleton (2022): Cyber Assured Systems Engi-

neering at Scale. In: IEEE Security & Privacy, pp. 52–64, doi:10.1109/MSEC.2022.3151733.

[8] Xavier Denis (2022): Creusot. Available at https://github.com/xldenis/creusot.

https://arstechnica.com/gadgets/2021/04/google-is-now-writing-low-level-android-code-in-rust/
https://arstechnica.com/gadgets/2021/04/google-is-now-writing-low-level-android-code-in-rust/
https://model-checking.github.io/kani-verifier-blog/2022/05/04/announcing-the-kani-rust-verifier-project.html?fbclid=IwAR2M_B1IEBfkVhIXSuuAxt3McC_QpUnTuzDq9jG40HOaJzxw8z1Nw9XU_i4
https://model-checking.github.io/kani-verifier-blog/2022/05/04/announcing-the-kani-rust-verifier-project.html?fbclid=IwAR2M_B1IEBfkVhIXSuuAxt3McC_QpUnTuzDq9jG40HOaJzxw8z1Nw9XU_i4
https://model-checking.github.io/kani-verifier-blog/2022/05/04/announcing-the-kani-rust-verifier-project.html?fbclid=IwAR2M_B1IEBfkVhIXSuuAxt3McC_QpUnTuzDq9jG40HOaJzxw8z1Nw9XU_i4
https://doi.org/10.1007/978-3-031-06773-0_5
https://link.springer.com/chapter/10.1007/978-3-031-06773-0_5
https://link.springer.com/chapter/10.1007/978-3-031-06773-0_5
https://doi.org/10.1007/3-540-45587-6_3
https://doi.org/10.1007/978-1-4419-1539-9_4
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://doi.org/10.1109/MSEC.2022.3151733
https://github.com/xldenis/creusot


D.S. Hardin 173

[9] Peter H. Feiler & David P. Gluch (2012): Model-Based Engineering with AADL: An Introduction to the SAE

Architecture Analysis & Design Language, 1st edition. Addison-Wesley Professional.

[10] David S. Hardin (2020): Put Me on the RAC. In: Proceedings of the Sixteenth International Workshop on the

ACL2 Theorem Prover and its Applications (ACL2-20), pp. 142–145, doi:10.4204/eptcs.327.13.

[11] David S. Hardin (2020): Verified Hardware/Software Co-Assurance: Enhancing Safety and Security for

Critical Systems. In: Proceedings of the 2020 IEEE Systems Conference, doi:10.1109/SysCon47679.

2020.9381831.

[12] David S. Hardin (2022): Hardware/Software Co-Assurance for the Rust Programming Language Applied to

Zero-Trust Architecture Development. ACM SIGAda Ada Letters 42(2), pp. 55–61, doi:10.1145/3591335.

3591340.

[13] David S. Hardin (2022): Hardware/Software Co-Assurance using the Rust Programming Language and

ACL2. In: Proceedings of the Seventeenth International Workshop on the ACL2 Theorem Prover and its

Applications (ACL2-22), pp. 202–216, doi:10.4204/EPTCS.359.16.

[14] David S. Hardin & Konrad L. Slind (2021): Formal Synthesis of Filter Components for Use in Security-

Enhancing Architectural Transformations. In: Proceedings of the Seventh Workshop on Language-Theoretic

Security, 42nd IEEE Symposium and Workshops on Security and Privacy (LangSec 2021), doi:10.1109/

SPW53761.2021.00024.

[15] Jane Street Group, LLC (2023): Hardcaml: An OCaml library for designing and testing hardware designs.

Available at https://github.com/janestreet/hardcaml.

[16] Steve Klabnik & Carol Nichols (2018): The Rust Programming Language. No Starch Press.

[17] Donald E. Knuth (2022): The Art of Computer Programming. 4B: Combinatorial Algorithms, Part 2,

Addison-Wesley.

[18] Ramana Kumar, Magnus O. Myreen, Michael Norrish & Scott Owens (2014): CakeML: a verified implemen-

tation of ML. In Suresh Jagannathan & Peter Sewell, editors: The 41st Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21,

2014, ACM, pp. 179–192, doi:10.1145/2535838.2535841.

[19] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon Howell,

Bryan Parno & Chris Hawblitzel (2023): Verus: Verifying Rust Programs Using Linear Ghost Types. Proc.

ACM Program. Lang. 7(OOPSLA1), doi:10.1145/3586037.

[20] Yusuke Matsushita, Takeshi Tsukada & Naoki Kobayashi (2021): RustHorn: CHC-Based Verification for

Rust Programs. ACM Trans. Program. Lang. Syst. 43(4), doi:10.1145/3462205.

[21] Mentor Graphics Corporation (2016): Algorithmic C (AC) Datatypes. Available at https://www.mentor.

com/hls-lp/downloads/ac-datatypes.

[22] Mentor Graphics Corporation (2020): Catapult High-Level Synthesis. Available at https://www.mentor.

com/hls-lp/catapult-high-level-synthesis/.

[23] Eric Mercer, Konrad Slind, Isaac Amundson, Darren Cofer, Junaid Babar & David Hardin (2023): Synthesiz-

ing Verified Components for Cyber Assured Systems Engineering. In: Software and Systems Modeling, 22,

pp. 1451–1471, doi:10.1007/s10270-023-01096-3.

[24] Matt Miller (2019): A proactive approach to more secure code. Available at https://msrc-blog.

microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/.

[25] Shane Miller & Carl Lerche (2022): Sustainability with Rust. Available at https://aws.amazon.com/

blogs/opensource/sustainability-with-rust/.

[26] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen,

Hsuan Hsiao, Stephen Brown, Fabrizio Ferrandi, Jason Anderson & Koen Bertels (2016): A Survey and Eval-

uation of FPGA High-Level Synthesis Tools. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 35(10), pp. 1591–1604, doi:10.1109/TCAD.2015.2513673.

https://doi.org/10.4204/eptcs.327.13
https://doi.org/10.1109/SysCon47679.2020.9381831
https://doi.org/10.1109/SysCon47679.2020.9381831
https://doi.org/10.1145/3591335.3591340
https://doi.org/10.1145/3591335.3591340
https://doi.org/10.4204/EPTCS.359.16
https://doi.org/10.1109/SPW53761.2021.00024
https://doi.org/10.1109/SPW53761.2021.00024
https://github.com/janestreet/hardcaml
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/3586037
https://doi.org/10.1145/3462205
https://www.mentor.com/hls-lp/downloads/ac-datatypes
https://www.mentor.com/hls-lp/downloads/ac-datatypes
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://doi.org/10.1007/s10270-023-01096-3
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://aws.amazon.com/blogs/opensource/sustainability-with-rust/
https://doi.org/10.1109/TCAD.2015.2513673


174 Verification of Rust Dancing Links using ACL2

[27] David M. Russinoff (2022): Formal Verification of Floating-Point Hardware Design: A Mathematical Ap-

proach, second edition. Springer, doi:10.1007/978-3-030-87181-9.

[28] Geoffry Song (2020): plex: a parser and lexer generator as a Rust procedural macro. Available at https://

github.com/goffrie/plex.

[29] Jeff Vander Stoep & Stephen Hines (2021): Rust in the Android platform. Available at https://security.

googleblog.com/2021/04/rust-in-android-platform.html.

[30] Loup Vaillant (2022): Monocypher: Boring Crypto that Simply Works. Available at https://monocypher.

org.

[31] Xilinx, Inc. (2018): Vivado Design Suite User Guide: High-Level Synthesis. Avail-

able at https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/

ug902-vivado-high-level-synthesis.pdf.

https://doi.org/10.1007/978-3-030-87181-9
https://github.com/goffrie/plex
https://github.com/goffrie/plex
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://monocypher.org
https://monocypher.org
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf

	Introduction
	Example
	Core Algorithm
	Preprocessing
	Conclusion
	Introduction
	Homomorphisms
	Direct Products
	Factorization of p-Groups
	Factorization of Abelian Groups
	Uniqueness of the Factorization
	Introduction
	Symmetric Groups
	Definition of (sym n)
	Transpositions
	Parity
	Alternating Groups

	Group Actions
	Definition and the defaction Macro
	Orbits and Stabilizers
	Conjugation of Subgroups
	Induced Homomorphism into the Symmetric Group

	Sylow Theorems
	Simple Groups
	Simplicity of (alt 5)
	Groups of Lesser Order

	Conclusion
	1 Introduction
	1.1 Motivating Example

	2 Real Proof
	2.1 Arithmetic Lemmas
	2.2 Translational Lemma
	2.3 Proof of Theorem 1

	3 Rational Proofs
	3.1 Ceiling Proof
	3.1.1 Arithmetic Lemmas
	3.1.2 Inductive Proof of Intermediary Lemma
	3.1.3 Proof of Theorem 1

	3.2 Binomial Proof
	3.2.1 Manual Proof of 0 1/2 -3mulim_n  n = 0.
	3.2.2 Semi-Automatic Proof of 0 1/2 -3mulim_n  n = 0.
	3.2.3 Remainder of Binomial Proof

	3.3 Summary and Closing Thoughts

	4 Analysis of RTO Calculation
	5 Discussion
	6 Conclusion
	Introduction
	User-level introduction to with-brr-data
	User-level introduction to break-rewrite
	Using with-brr-data and break-rewrite together
	Brief introduction to wormholes
	Implementation aspects for break-rewrite
	Implementation aspects for with-brr-data
	Changing the behavior of with-brr-data
	Conclusion
	Introduction
	Background and the Key Idea
	Assessment
	Implementation Notes
	Conclusion and Further Improvements
	Introduction
	Background
	Formal Framework
	Prime Fields
	Rank-1 Constraint Systems
	Model
	Extraction
	Verification in ACL2
	Verification in Axe
	Compositional Verification

	Prime Field Constraint Systems
	Model
	Verification
	Validation

	Related Work
	Future Work
	Conclusion
	1 Introduction
	2 GossipSub Model Description
	3 Reasoning about the scoring function
	4 Attack Generation
	5 Limitations
	6 Related Work
	7 Conclusion and Future Work
	Introduction
	Proof Format
	System Architecture
	Proof Checking
	Guards and Contract Completion
	Proof Building Blocks

	Soundness
	Proof Builder
	Instruction Generation Algorithms

	Related Work
	Conclusion and Future work
	Introduction
	The Imandra-ACL2 Interface and ACL2 Proofs
	Mathematical Background
	The Krivine-Stengle Positivstellensatz
	Sums of Squares Decompositions and Semidefinite Programming

	Examples, Caveats and Limitations
	Related Work
	Conclusion and Future Work
	Introduction
	Dancing Links
	The Rust Programming Language
	RAC: Hardware/Software Co-Assurance at Scale
	Rust and RAR
	Restricted Algorithmic Rust

	Dancing Links in Rust
	Definitions
	Translation to ACL2
	Dancing Links Theorems

	Related Work
	Conclusion
	Acknowledgments

