ENGG1811 Computing for Engineers

Week 9C
Machine Learning

ENGG1811 © UNSW, CRICOS Provider No: 00098G1 slide 1



We are collecting a lot of data

e Example: Tyre pressure is important for vehicle
fuel efficiency

A company puts sensors inside the tyres of its fleet
and transmits the pressure data via the Internet

system that is installed with additional
ws individual signals coming from all
1 simultaneously and then transmitted
te...) to a centralised database.

%
1 the internet through a specific web- %
snsor sends data on the temperature Internet
rvals, so faults can be reporting and

‘els,
of data transmission systems, each
e can be tracked and, indreotly, e G@SM/GPRS/UMTS Interface

2ds.

e
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Data versus information

e Data: Raw records of facts / measurements

e Information: Patterns in the underlying data
- We also call the pattern a model

e Example:

- In lab07, you worked on the data on the extent of sea ice
e Data: raw measurements

e Information: The extent of sea ice in the 1ast 10 years
was lowest in record, ...

- What are needed to feel fulfilled in life?
e Data: People around you, life stories, biographies

e Information to discover: What are the attitudes,

mentalities, ways of thinking, actions etc. that can lead
to fulfillment in life?
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Machine learning

e Given the huge amount of data generated, can
data analysis be automated?

e Machine learning

— Algorithms to automatically extract patterns from the
data

e |et us see what machine learning can do
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Damage detection

Toward Data-Driven Structural Health Monitoring:
Application of Machine Learning and Signal
Processing to Damage Detection

Yujie Ying'; James H. Garrett Jr., F.ASCEZ Irving J. Oppenheim, M.ASCE?;
Lucio Soibelman, F.ASCE?*; Joel B. Harley®; Jun Shi® and Yuanwei Jin’

JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / NOVEMBER/DECEMBER 2013 / 667
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e Detection

Detection problem

problem: A yes or no answer

- Is it damaged? Is it not damaged?
— Is it present? Is it absent?

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 60, NO. 1, JANUARY 2013

Machine Learning-Based Method for Personalized

and Cost-E

Tective Detection of Alzheimer’s Disease

Javier Escudero*, Member, IEEE, Emmanuel Ifeachor, Member, IEEE, John P. Zajicek, Colin Green, James Shearer,
and Stephen Pearson, for the Alzheimer’s Disease Neuroimaging Initiative
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Damage classification (1)

FGSETHSY THE ROYAL

A

The application of machine learning to structural
health monitoring

Keith Worden and Graeme Manson

Phil. Trans. R. Soc. A 2007 365, doi: 10.1098/rsta.2006.1938, published 15
February 2007
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Damage classification (2)

Figure 2. Gnat aircraft and acquisition system.
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Damage classification (3)

e These are the possible

T SRR locations that the wing
(1)) 0 w (2] O | may be damaged
~~~~~~~~ ' ————eeee=" e The aim is to determine
NG TN from the measured data
B ¢ ' . ¢ . .
@O ) “l - which of these
— T possibilities it is
(15)|’ | w (f6)| \
e e - e e .
(17|, % (f8)] o \
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Classification problem

e There are a number of classes and the problem is
to determine which class the data is coming from

- Example: The wing is damaged and each class is a
location at which the wing is damaged.

— The classification problem is to determine which class
it is. This is the same as determining where the
damage is located.

— Detection problem is a special case of classification
problem with two classes. For example, the damage
detection problem is equivalent to a classification
problem with 2 classes: damaged or not damaged.
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Some other classification problems

e Google driverless cars

— Classify road sign. Classes: Give way, Stop, speed limit, ...
— Classify junction type. Classes: Traffic lights, roundabout, ...

e http://googleblog.blogspot.com.au/2014/05/just-press-go-designing-self-
driving.html
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http://www.gereports.com/post/123572457345/deep-machine-learning-ge-and-bp-will-connect/

Machine learning for prediction

The industry estimates that operators
lose as much as $3 million in revenue per week when a well goes out of

commission.

No wonder all kinds of companies operating in the energy space have started
looking for ways to reduce unplanned downtime as close to zero as possible.
“Telling a customer what to fix after it has failed is relatively easy,” said Bob Judge,
director of product management at GE Oil & Gas. “Telling them to fix something

before it costs them money is the magic.”



Our agenda on machine learning

We will not examine the technical details of machine
learning algorithms

We take a black box approach

Pattern
Data _s| Machine Learning > or
Algorithm Model

e We will give you some intuition of how machines can
learn

o We will start off with a small example so that we can
visualise what’s happening
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Fault detection — Problem setting

e You want to detect whether a device is faulty or not

e You have conducted a lot of measurements on both
working and faulty devices

e For each device:

— You measure two physical properties of the device. We
denote these two physical properties by x and y

— A label which says whether the measurements come from
a working or faulty device

e It's not important to know what type of physical
measurements x and y are in this discussion
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Fault detection — the data

X y label
5.1 3.5 Normal
4.9 3.0 Normal
50 3.3 Normal
7.0 3.2 Faulty
6.2 3.4 Faulty
5.9 3.0 Faulty

ENGG1811
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50 sets of
measurements

100 sets of
measurements
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Fault detection = Finding Boolean condition

X y label
5.1 3.5 Normal
4.9 3.0 Normal
50 3.3 Normal
7.0 3.2 Faulty
6.2 3.4 Faulty
5.9 3.0 Faulty

ENGG1811
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Plottlng the data What pattern do you observe?

scatter plot
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. _ Question: If you take a new device and measure
Question: its x and y. You find that x = 5.0 and y = 3.5. This

is marked as Point A in the diagram. If you are to
Normal or make a guess whether this device is faulty or not,

Faulty’? what is your guess?

scatter plot
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Question:
Normal or
Faulty?

Question: If you take another device and
measure its x and y. You find that x = 6 and y =
2.5. This is marked as Point B in the diagram. If
you are to make a guess whether this device is
faulty or not, what is your guess?

scatter plot
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: . Question: Can you suggest a method
Questlon. How to to separate normal devices from the

Seé parate? faulty devices?

scatter plot
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Manual detection
V-1.4x+4.3 =0

y-1.4x+4.3>0 /
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Python file:
classify_2classes.py

Machine learning method.:
Support vector machines

scatter ply{
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N Python file:
Prediction from SUppOI‘t classify_2classes.py

Vector Machines

For each pair of (x,y), the model from support vector
machine makes a prediction on whether the device is
normal or faulty

prediction If (x,y) is in the
< ___purple region, the
prediction is normal

5.0
4.5
4.0
3.5

3.0

If (x,y) is in the
green region,
L~ the prediction
is faulty

2.5

2.0

1.5

1.0
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Python file:
classify_2classes.py

Machine learning method:
Classification tree

e This method comes out with a set of rules automatically

if x >= 5.45:
if y >= 3.45: X < 5.45 X >= 5.45
# pred: normal

else:
# pred: faulty
else: Y < 3.45, y>= 3.45
if y >= 2.8: y<2.38 y >= 2.8
# pred: normal
else:
# pred: faulty

fault normal fault normal

e Nested for-loop with a depth of 2
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Python file:

Prediction from decision tree  classify_2classes.py

e For a tree with a depth of 2

if x >= 5.45:
if y >= 3.45:
# pred: normal
else:
# pred: faulty
else:
if y >= 2.8:
# pred: normal
else:
# pred: faulty

ENGG1811

Tree classification

1.5

1.0
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ENGG1811

Compare the two methods

Python file classify_2classes.py

Using SVM and classification trees
— Use the maximum possible depth

Display the classification regions for the two
methods

— Key: Purple means normal, green means faulty

— Are the classification regions the same for the two
methods?

© UNSW, CRICOS Provider No: 00098G
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. Python file:
OOPS! Two algorlthms say classify_2classes.py

different things

SVM classification Tree classification

® normal
m fault

e Can we tell which one is better?
e How do we tell?
e We will answer these questions for classification problem

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 27



Fault classification

e The same set of data as before

e The device can have two types of faults, which we
call faultl and fault2

e Every pair of (p,q) measured is given a label,
which can be

— Normal
— Faultl
- Fault2
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Fault classification — the data

X y Label
51 3.5 Normal
4.9 3.0 Normal
50 3.3 Normal
7.0 3.2 Fault1
57 2.8 Fault1
6.3 3.3 Fault2
6.2 3.4 Fault2
59 3.0 Fault2

ENGG1811
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50 sets of
measurements

50 sets of
measurements

50 sets of
measurements
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What is learning?

e We learn by memorisation and generalisation

1 2 3 4

http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall07/L1_intro.pdf
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What is learning?

e We learn by memorisation and generalisation

http://www.cs.ubc.ca/~murphyk/Teaching/CS340-Fall07/L1_intro.pdf
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Examples of generalisation

e We are extremely good at generalisation

e When you were a child

— You were shown a few pictures of giraffe
— You can recognise an)/_g.ir_af.fe —

~

-~ -
~————_—

world

e In ENGG1811
- We showed you examples on how to write code

— - S
- - .

-~ -
e o = =
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Two steps of supervised learning

e When you were a child

- You were shown a few pictures of giraffe/tiger/lion/...
— You can recognise any giraffe/tiger/lion/...

e Two steps of supervised learning
— Training by examples
- Generalisation

e Generalisation is the ability to make reasonable guesses

when you are given situations that you haven't
encountered during training
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What are the attributes of good learning
algorithms?
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Measuring the ability to generalise

e We divide the data into two disjoint sections. We call
them training data and test data respectively

e Example: For our data set

- We have 50 sets of measurements for normal, faultl
and fault2

— We use 40 sets in each class for training, the rest for
testing
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Example: Training and Testing data

X y Label
51 3.5 Normal
4.9 3.0 Normal
Normal
50 3.3 Normal
7.0 3.2 Fault1
57 2.8 Fault1
6.3 3.3 Fault2
6.2 3.4 Fault2
59 3.0 Fault2

ENGG1811
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40 sets of
measurements
for training

10 sets of
measurements
For testing

40 sets
(training)

10 sets
(testing)

40 sets
(training)

10 sets
(testing)
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Using training data

e We do not feed all the measurements to the machine
learning algorithm
- We feed only the training data

— The machine learning algorithms do not know what the
test data are

e The machine learning algorithm calculates a model
based on the training data
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Using test data

y

Normal/Fault

1 test sample

5.9

3.0

Fault2

from fault2

We know what the correct answer is.T

e An exam for the model calculated by machine learning

- We give (Xx,y) of the test data to the model and see what
the model gives

5.9_
3.0

Model

—

ENGG1811
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If the model
answers “fault2”,
then it's correct;

otherwise wrong.
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Python file:
SVM - Testing data classify_3classes.py

e Purple - Normal; Blue - Faultl; Green - Fault2
e Markers for testing data only

SVM classification

® normal
m fault 1
¢ fault 2
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Pythc_)n file:
Decision tree - Testing data  classify_3classes.py

e Purple - Normal; Blue — Fault 1; Green - Fault2
e Markers for testing data only

Tree classification

® normal
m fault 1
¢ fault 2

8
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Confusion matrix
e We present results in the form of confusion matrix:

Vv Correct answers from testing data W

->
Normal Fault1 Fault2

Prediction
Normal [N
il Fault1 ]

model Fault2 —
> /

#wrong answers #right answers
Expecting: Normal Expecting: Fault2
But model says Fault2 Model also says Fault2
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SVM - Working
out the confusion

matrix

Note: There are 3
overlapping data

points here

->
Prediction
->

ENGG1811

SVM classification

® normal
m fault 1l
¢ fault 2

Vv Correct classes V¥

Normal Fault1 Fault2
0

Normal
Fault1

Fault? L.
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Python file:
Quiz classify_3classes.py

e A better model gives more correct (or fewer wrong)
answers for the test data

e Which model is better?

SVM

Decision
tree

ENGG1811

Normal Fault1 Fault2

Normal [ | 0
Faultt 0 RO o
Fault2 4 L.

Normal Fault1 Fault2
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Why is it difficult to tell fault1 from fault2

The regions of faultl and fault2 overlap. The boundary
between them is not clear.

scatter plot
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What can we do to improve classification
results?

9
O Normal
O  Faultl
8l ¢ Fault2 [
7L _
6 i
a5 —
41 i
S,
SIS
3+ %%%09; &
oL i
1 | I I I | |
1 2 3 4 5 6 7 8
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The need to rotate training and test data

X y Normal/Fault
5.1 3.5 Normal
4.9 3.0 Normal
Normal
KN IR NAarmal

A

v
7@

A4

e Why should we choose these particular ten

measurements as test data?

-

40 sets of
measurements
for training

————~

- ~y
10 sets of >
measurements

- e -m =

e In fact, there is no particular reason to do that

e We should rotate training and test data

ENGG1811
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— Section 1 (Rows 1-10), Section 2 (Rows 11-20),
(Rows 41-50)

N-fold validation

For example, 5-fold validation
Divide the data into 5 sections

Perform 5 rounds of training and testing

Round Training Test
1 Sections 2,3,4,5 Section 1
2 Sections 1,3,4,5 Section 2
3 Sections 1,2,4,5 Section 3
4 Sections 1,2,3,5 Section 4
5 Sections 1,2,3,4 Section 5
X y Normal/Fault
5.1 3.5 Normal
4.9 3.0 Normal

EN

.... Section 5
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Features

For good classification results, we need to find
characteristics or features that can help us to
distinguish between different classes

e A key lesson from machine learning: You need

ENGG1811

informative features to get good classification
results

How can you get informative features?

- Domain knowledge of the problem
— Trial and error

© UNSW, CRICOS Provider No: 00098G
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Feature selection

e Feature selection

— Give the machine learning algorithms a lot of features and
let algorithms rank the features for you

e Feature learning

- Some modern day machine learning algorithms can learn
the features from data
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There Is a lot more to machine learning ...

e Unfortunately we won't have time to talk about it

e [ believe machine learning is a useful tool for all
engineering disciplines

Annual Review of Chemical and

Leo Chiang, Bo Lu, and Ivan Castillo Biomolecular Engineering 2017.
8:63-85

The Dow Chemical Company, Freeport, Texas 77541; email: hchiang@dow.com

This article highlights recent big data advancements in
five industries, including chemicals, energy,

semiconductors, pharmaceuticals and food.
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Artificial Intelligence &
Sequential Decision Problems
(CIV6540 - Machine Learning for Civil Engineers)

Professor: James-A. Goulet

Département des génies civil, géologique et des mines
@ Polytechnique Montréal

Potential applications of Al in civil engineering

Anomaly detection

Input data: Real-time monitoring of a
structure behavior

Al role: Decides in real-time whether or
not to alert an engineer

http://www.polymtl.ca/cgm/jagoulet/Site/Goulet_web_page_TEACHING.html
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Machine learning is everywhere

e Machine learning is everywhere. You have probably used
machine learning without knowing it e.g. automatic face
detection and recognition

http://support.apple.com/kb/ht4416
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Computer defeated Grand Master

TR

On May 12th, 1997, the | @&
best chess player in the
world, Gary Kasparov,
lost a six-game chess
match to a computer
named “Deep Blue 2”

The press called this
“humanity’s endgame”
and a “bloody nose for
humanls]’

What was so significant 9 i | R m
about this event? e s - A

World chmp%n Kasparov rides an emotional roller-coaster — Piclures: AP (main), Reuters

Being able to program a computer to defeat a Grand Master level
chess player had been a long-standing goal of the science of
artificial intelligence - and it was achieved 1.7 decades ago.
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Computers understand natural languages

TECHNOLOGY

Computer Thumps 'Jeopardy' Minds

In the end, humans were no match for the machines. In a nationally televised
competition, the Watson computer system built by International Business Machines
Corp. handily defeated two former "Jeopardy" champions.

Watson took an early lead and
maintained it throughout the last game

» I Wednesday until the final clue. All three
j *°2°° I *1.0% | contestants correctly guessed the final
| l _ l clue: Who is Bram Stoker?

So Watson came away the winner with a
final three-day tally of $77,147.

How did Watson fare on Jeopardy Monday night? Contestant Ken Jennings came in

TS Sacparty om e Mesne i dgisv  5800nd With $24,000 and Brad Rutter

discuss Watson's performance on Jeopardy and the came in third with $21 ,600.

future of the supercomputer.

http://online.wsj.com/articles/SB10001424052748704171004576148974172060658
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The hardest game of all: Go

Artificial Intelligence

Google's DeepMind wins historic
Go contest 4-1

DeepMind’s AlphaGo artificial intelligence has won the final
match of the Go series against world champion Lee Sedol.

http://www.wired.co.uk/article/alphago-deepmind-google-wins-lee-sedol
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Computer can drive cars

e Google driverless cars.

e http://googleblog.blogspot.com.au/2014/05/just-press-go-designing-self-
driving.html
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Are computers that smart?
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Summary

e Computers have changed the way how engineers work

e There are plenty of unsolved engineering challenges
and computers can help in many of them

e Two key skills in this course

- Programming
— Algorithms

e Plus your domain knowledge + ingenuity
- You will have plenty to offer the world
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