
ENGG1811 © UNSW, CRICOS Provider No: 00098G1 slide 1

Week 9A: Algorithms

ENGG1811 Computing for Engineers

An engineering challenge

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 2

http://www.zdnet.com/sydneys-harbour-bridge-gets-sensor-tech-7000000296/
http://www.engineeringchallenges.org/cms/8996/9136.aspx

Maintenance and monitoring aging infrastructure
is a grand research challenge

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 3

http://www.zdnet.com/sydneys-harbour-bridge-gets-sensor-tech-7000000296/

Limitations of computation

• Your computer can do almost 100 billion
multiplications in one second

• Tiny computers can do far less
– Need efficient or new algorithms

• In any case, we want efficient algorithms

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 4

This week

• Efficiency in algorithms

• Python programming
– while
– More numpy functions

• Computer science concepts
– Efficient algorithms/computational complexity

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 5

Algorithms
• A sequence of instructions for the computation

• Two important criteria
– Correctness
– Efficiency

• Example: An algorithm for multiplying 2 integers
– Correctness means the algorithm returns the correct

answer all the time
– Efficiency: How many multiplications the algorithm can do

in a given amount of time

• An efficient algorithm takes a shorter time to arrive at
the correct outcome

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 6

Challenge: Locate a name in a sorted list of
names

• You are given:
– A list of names arranged in alphabetical order
– Names are indexed with 0, 1, 2 etc. in their order

• Rules
– You are not allowed to see the list
– You can choose an index and query what the name at that

index is
• The challenge:

– Given a name, what is the minimum number of indices that
you need to query to locate that name?

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 7

0. Abraham
1. Adam
2. Eve
3. Sarah

Example: Simple Scan

0. Henry
1. John
2. Michael
3. Peter
4. Tinker
5. Wendy

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 8

• Example:
– There is a list with 6 names on the left
– Given Peter is one of the names, you

want to find which index it is at
• A simple algorithm is to scan the name

one by one from the beginning until
you have found the name

• Quiz: If the name that you want to locate has the index
k, how many queries do you need to locate the name
using simple scan? k+1

• Which type of loop will you use to implement a simple
scan? while / for with break

Other possible algorithms

• Make a guess of where the name is
and then start from there
– Example: 6 names on the left. The

name to locate is Yvonne. Since this
name is near the end of the alphabet
so we scan from the last name.

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 9

0. Ava
1. Yvonne
2. Zac
3. Zoe
4. Zorina
5. Zwi • Comment: This algorithm assumes

that names are distributed in the
usual way but sometimes you can get
an unusual data set

• What will be an efficient algorithms?

Towards a general principle
• Consider this game:

– I think of a living person in this world
– To win this game, you need to guess who this person is in as

few questions as possible
• Consider two sets of questions below, which one will you

ask and why?

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 10

• Is the person from Zambia?
• Is the person from Fiji?
• Is the person a current

student of UNSW?

• Is the person a he or she?
• Is the person from Asia?
• Is the person from South

America?

Question set 1 Question set 2

• Narrow down the possibilities as quickly as possible

• How can you use this principle to locate a name
quickly in a sorted list?

Name search using binary search

• The purpose of the query is to narrow down the
possibilities as much as possible
– Idea: Eliminate half of the possibilities with each query

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 11

• Binary search:
– Initialization: Query the name in the middle of the list
– Eliminate nearly half of the possibilities with each

additional query
– Stop when the name is found

Binary search example: Problem set up

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 12

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

• Given a list of 10
names arranged in
alphabetical order

• Aim: Use binary
search to locate the
name Peter

Binary search example (1)

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 13

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

• To eliminate half of
the possibilities,
pick the name in
the middle

• Middle of 0 and 9 =
(0+9)/2 = 4.5

• Let us round up
• Initialisation: Query

5

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

Binary search example (2)

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 14

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

• Where should we
look next?

• Can forget indices
0-5

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

Binary search example (3)

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 15

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

• Search between 6-9
• Middle of 6 and 9

= (6+9)/2 = 7.5
• Let us round up
• Query index 8

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

Binary search example (4)

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 16

1. Ava
2. Ben
3. Campbell
4. Jessica
5. John
6. Liam
7. Logan
8. Peter
9. Sammy
10.Timothy

• Which section can we
forget now?

1. Ava
2. Ben
3. Campbell
4. Jessica
5. John
6. Liam
7. Logan
8. Peter
9. Sammy
10.Timothy

Binary search example (5)

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 17

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

• Can forget 8-9
• Quiz: What is the

next index to query?
– (6+7)/2 = 6.5
– Round up to 7
– Query index 7

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

Binary search: A detail

• Note that when we select the mid-point, we have
chosen to round up

• We can also choose to round down
• As long as one consistent rounding method is used

throughout the algorithm, that’s fine

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 18

Algorithmic complexity (+ ALP)

• Computer scientists are very interested
in how the complexity of algorithms
– Roughly speaking, higher complexity

translates to a longer running time on the
same computer

• Computer scientists like to derive
efficient algorithms

• For the name search example earlier:
– Binary search needs 3 queries
– Simple scan needs 8 queries

• The difference does not appear to be a
lot for this example, but let us increase
the size of the list

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 19

0. Ava
1. Ben
2. Campbell
3. Jessica
4. John
5. Liam
6. Logan
7. Peter
8. Sammy
9. Timothy

?

Demo
• I took all the first names of the all students enrolled in

ENGG1811 in 16s2
• Remove all duplicates and sort the names
• There are 484 unique names
• A Python program

– Will randomly pick 10 names
– Uses simple scan and binary search to locate those 10

names
– The function will also report the number of queries made by

each method
• There are a number of points that I’d like you to think

about when you watch the demo (next slide)
• Note: We haven’t given you the source code for this

demo because you will be writing Python programs on
simple scan and binary search in your lab next week

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 20

A number of questions

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 21

• Is binary search always better?
• What is the largest number of queries required by

– simple scan
– binary search

Number of queries required by binary search

• Each query reduces the number of possibilities by half

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 22

queries Remaining # possibilities after the query
1 484 * (1/2)
2
3

484 * (1/2) * (1/2)

484 * (1/2) * (1/2) * (1/2)

• After n queries, # possibilities = 484 * (1/2)n

• Finished when only one possibility left

484 * (1/2)n ≤ 1 è n ≥ log2(484) è n ≥ 9

• Maximum queries needed = 9

Worst case complexity

• A way to measure the efficiency of an algorithm is to
look at its worst case complexity

• For the problem of locating a name in a sorted list of
n names
– Worst case complexity = maximum number of queries

ever needed to locate the name
– Worst case complexity for

• Simple scan is n
• Binary search log2(n)

• Computer scientists also use other ways to measure
complexity, such as average complexity

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 23

Which is more efficient?

Binary: query one name
and eliminate half of the
names at a time

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 24

“Quad”-nary: query three
names and eliminate 3
quarters of the names at a
time

✗

✗

✗

✗

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 25

round / ceil / floor

• Python has 3 functions for rounding
– round(x): round to the nearest integer of x

• Note: round(x) is not part of math library
– math.ceil(x): round to the nearest integer bigger than

or equal to x
– math.floor(x): : round to the nearest integer smaller

than or equal to x

round(1.4) # = 1
round(1.5) # = 2

math.ceil(1.4) # 2
math.ceil(1.5) # 2
math.ceil(1) # 1

math.floor(1.4) # = 1
math.floor(1.5) # = 1

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 26

numpy.random.randint()

• Python numpy function numpy.random.randint()
generates random intergers

• For example: The following command generates a
random integer in the interval [0,10), i.e. 10 not
included

np.random.randint(0,10)

• See the manual page for more examples

Finding roots

• It’s easy to find the roots of polynomial equations
using numpy

• Example: To find the roots of the polynomial equation
4x3 + 12 x2– 64 x + 16

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 27

import numpy as np
poly_roots = np.roots([4, 12, -64, 16])

• For the purpose of learning algorithms, we look at
how to use bisection method to find roots in Python

Polynomial 4x3 + 12 x2– 64 x + 16

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 28

Another application of bisection method

• Bisection method can be used to find the root of a
continuous function f(x)

• Assuming you know two numbers x1 and x2 such that
f(x1) < 0 and f(x2) > 0 then there is a root of f(x) = 0
between x1 and x2

• We don’t know where the root is, we find the mid-point
of x1 and x2 , and eliminate half of the interval

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 29

2
21 xxxmid

+
= x1

x2

xmid

f

Bisection method: updating, case 1 (+ALP)

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 30

x

f (x)

x1
x2

xmid

• Compute xmid = (x1+x2)/2
• If f(xmid) < 0, then replace x1 by xmid

Bisection method: updating, case 2

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 31

x

f (x)

x1
x2xmid

• Compute xmid = (x1+x2)/2
• If f(xmid) > 0, then replace x2 by xmid

Stopping criterion

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 32

x

f (x)

x1
x2

• Stop when x1 and x2 are close enough
• Stop if abs(x1 – x2) <= TOL where

TOL is a pre-defined tolerance
– abs is short for absolute value

• Question: What is the loop-guard for
the while statement?

while abs(x1 – x2) > TOL:
continue to iterate

A) abs(x1 – x2) <= TOL
B) abs(x1 – x2) > TOL

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 33

Bisection
Pseudocode:
choose x1 and x2 such that f(x1) < 0 and f(x2) > 0
while abs(x1-x2) > TOL

xmid = (x1 + x2) / 2
if f(xmid) < 0

x1 = xmid
else

x2 = xmid

Python implementation

• A Python implementation is in
find_root_by_bisection_prelim.m

• We will complete it in the lecture

• It uses the numpy function polyval() to calculate the
value of the polynomial y(x) at a given value of x
• Example: Want to calculate the value of y(x) = 4x3

+ 12 x2– 64 x + 16 at x = 2
• You can use

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 34

import numpy as np
value_at_x = np.polyval([4, 12, -64, 16],2)

Comments on

• The program has a limitation
– The script assumes that f(x1) < 0 and f(x2) > 0

but it is possible to write code so that it can
work for either of the following:
• f(x1) < 0 and f(x2) > 0
• f(x1) > 0 and f(x2) < 0

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 35

Comments on root finding

• Using bisection method to find a root requires you
to specify two points which bound the root

• There are algorithms which require you to specify
one starting point and find the “closest” root.
These algorithms require advance calculus to
understand. You will learn them later years

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 36

Summary
• Algorithms play a very important role in computer science.

Two key issues: Correctness and efficiency
• Algorithms are behind many great computing innovations

– Computers, Internet, Face and speech recognition etc.
• Algorithms are everywhere in engineering too. Examples:

– Autopilot, satellite navigation, traffic control, automation of
mining, chemical and food production, power grid, robotics,
control of combustion engines and many others

– You may wish to watch the following two videos produced
especially for ENGG1811 on application of algorithms in
transport (1st video) and human hip tissue map (2nd video)

• https://youtu.be/CR-bwYiT-IM
• https://youtu.be/ZV3_ckI_4xw

• Next frontiers for algorithms: Reverse engineering the
brain, personalised education, algorithms of living cells etc.

ENGG1811 © UNSW, CRICOS Provider No: 00098G slide 37

