
ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W8 slide 1

Week 8 : numpy 2
• elementwise operations
• numpy (Broadcasting, Slicing, Boolean indexing)
• Mutable and immutable data types

ENGG1811 Computing for Engineers

Arithmetic operators

• You can use +, -, *, /, ** on two numpy arrays
– They perform elementwise operations
– See the next two slides for illustration

• The shapes of these arrays are required to be
compatible.

• We will first consider the case where both arrays
have the same shape
– Code in numpy_arith_1.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 2

Elementwise multiplication

array1 = np.array([[-3.2, 0, 0.5, 5.8],
[6, -4, 6.2, 7.1],
[3.8, 5, 2.7, 3.7]])

array2 = np.array([[-1.2, 2, -3.1, 0.0],
[4, -5, 3.5, 7.1],
[2.7, 2, 1.7, 3.4]])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 3

array_mul = array1 * array2 # NOT matrix multiplication

�array([[3.84, 0. , -1.55, 0.],
[24. , 20. , 21.7 , 50.41],
[10.26, 10. , 4.59, 12.58]])

Elementwise division

array1 = np.array([[-3.2, 0, 0.5, 5.8],
[6, -4, 6.2, 7.1],
[3.8, 5, 2.7, 3.7]])

array2 = np.array([[-1.2, 2, -3.1, 0.0],
[4, -5, 3.5, 7.1],
[2.7, 2, 1.7, 3.4]])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 4

array_div = array1 / array2

array([[2.667, 0. , -0.161, inf],
[1.5 , 0.8 , 1.771, 1.],
[1.407, 2.5 , 1.8, 1.088]])

Exercise: A simple survey
• You have conducted a survey.

– The survey has 3 questions.
– Each question has only two possible choices: Yes and No.
– Each respondent can answer any number of questions.

• The results are in the table below. You want to determine the
fraction of Yes votes for each question.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 5

Y N
Q1 21 15
Q2 34 23
Q3 17 31

• Define the following two numpy arrays

• Use these two arrays and numpy elementwise
computation to compute the fraction of Yes
votes. The expected answer is:

File:
numpy_arith_1_prelim.py

Exercise: A simple survey (Discussion)

• Lesson learnt: If you put the data in the right way,
then you can use elementwise computation to
simplify the code

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 6

Y N
Q1 21 15
Q2 34 23
Q3 17 31

�❌ [21,15],[34,23],[17,31]

Good way:

Bad way:

Need only one line of code!

More on numpy arithmetic operators

• You have seen that you can use the numpy arithmetic
operators on two arrays of the same shape

• You can also use the numpy arithmetic operators on two
arrays when
– One array is a scalar
– The other is a numpy array of any shape

• Let us look at the examples in numpy_arith_2.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 7

Elementwise division: an array and a scalar

array1 = np.array([[-3.2, 1, 0.5, 5.8],
[6, -4, 6.2, 7.1],
[3.8, 5, 2.7, 3.7]])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 8

array_div_1 = array1 / 2.0
array([[-1.6 , 0.5 , 0.25, 2.9],

[3. , -2. , 3.1 , 3.55],
[1.9 , 2.5 , 1.35, 1.85]])

array_div_2 = 2.0 / array1
�array([[-0.625, 2., 4., 0.345],

[0.333, -0.5, 0.322, 0.282],
[0.526, 0.4, 0.741, 0.541]])

Exercise

• If you drop an object from a height of h0 and if the air
resistance is small, then the height of the object at time t is

h0 – 0.5 * g * t2

where g is the acceleration due to gravity

• For given h0 and g, you want to compute the height of the
object at t = 0, 2, 4, 6, 8

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 9

Exercise: Hint

• Numpy array
– �time_array = np.array([0,2,4,6,8])

• The following hint for array [0,2,4]

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 10

[0 , 2 , 4]

[h0 – 0.5 * g * 02 , h0 – 0.5 * g * 22 , h0 – 0.5 * g * 42]

• Complete the exercise in numpy_arith_2_prelim.py

⇧ final result wanted
⇩ Work backwards.

= h0 - [0.5 * g * 02 , 0.5 * g * 22 ,, 0.5 * g * 42]

Until you use [0,2,4]

Mathematical functions

• The numpy mathematical functions are documented here:
– https://docs.scipy.org/doc/numpy/reference/routines.math.ht

ml
• Example: sin, cos, asin, log, exp, sqrt, absolute

• Notes:
– You need to append the library name, say you import numpy

as np, then np.cos etc.
– They are different to those in the math library
– They are elementwise operation. The output is an array of

the same size as input and the operation is applied to each
element (illustrated on the next slide)

• Code in numpy_math_func.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 11

Elementwise operation
array2 = np.array([[-1.2, 2. , -3.1, 4.5],

[4. , -5. , 3.5, 7.1],

[2.7, 9. , 1.7, 3.4]])

array2_sin = np.sin(array2)

array([[-0.93203909, 0.90929743, -0.04158066, -0.97753012],

[-0.7568025 , 0.95892427, -0.35078323, 0.72896904],

[0.42737988, 0.41211849, 0.99166481, -0.2555411]])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 12

sin(1.7)

sin(4.5)

sin(2.7)

Recap: numpy

• numpy has a lot of useful functions for data analysis
– E.g., mean(), sum() etc.

• Many numpy functions allow you to do computation
without using loops
– Reason: numpy functions are implemented with speed in

mind so they are often faster than the equivalent Python
code that you can write to do the same task

– The maxim: Use numpy function as much as possible

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 13

Key topics

• Broadcasting

• Slicing

• Boolean indexing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 14

Broadcasting rules
• You have seen that you can use numpy elementwise

arithmetic operators +, -, *, / and ** for
– Two arrays of the same shape
– An array and a scalar

• In general, numpy arithmetic operators can be used on
two arrays as long as their shapes are compatible
– Informal view: Next slide
– Formally, compatibility is defined according to the numpy

broadcasting rules

• The broadcasting rules were modified from:
– https://jakevdp.github.io/PythonDataScienceHandbook/02.05

-computation-on-arrays-broadcasting.html
• You may wish to read the examples in this document to

further understand the broadcasting rulesENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 15

Broadcast: informal view

Source: https://scipy-lectures.org/intro/numpy/operations.html#broadcasting

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 16

Broadcasting Rule 1
• Rule 1: If the two arrays differ in their number of

dimensions, the shape of the one with fewer dimensions
is padded with ones on its leading (left) side.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 17

• Dimension of b1 is 1
• After Rule 1, the shape of

b1 goes from (3,) to
(1,3)

• Dimension of a1 is 2
– a1.ndim shows the

dimension

Broadcasting Rule 2
• Rule 2: If the shape of the two arrays does not match in

any dimension, the axes whose shape is equal to 1 are
stretched to match the shape of the other array.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 18

• Shape of a1 is (2,3)
• Shape of b1 after Rule 1 is

(1,3)
• Axis 0 of b1 is 1, it is

stretched to 2 to match a1

• After Rule 2, the shape of
b1 becomes (2,3)

Broadcasting Rule 3
• Rule 3: If the two arrays have the same shape, then they

are compatible; otherwise they are not.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 19

• Example:
• Shape of a1 is (2,3)
• Shape of b1 after Rule 2

is (2,3)

• Identical shape, hence
compatible

Operating on broadcast compatible arrays (1)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 20

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]] Broadcast

b1 to shape
(2,3)

b1 is
[10, 20, 30]

The result of a1 + b1 is

[[10, 20, 30],
[10, 20, 30]]

[[11.1, 22.2, 33.3],
[13.1, 23.2, 33.3]]

+

See numpy_broadcast.py

10 20 30

3.1 3.2 3.3

Informal view

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 21

1.1 1.2 1.3

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

b1 is
[10, 20, 30]

Broadcast rule 1 makes b1 goes from
(3,) to (1,3). Intuitively, for the
purpose of broadcasting, a 1-d array
should be thought of a 2-d array with
one row

10 20 30+

3.1 3.2 3.3

1.1 1.2 1.3 10 20 30+=

Operating on broadcast compatible arrays (2)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 22

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

Broadcast c1
to shape (2,3)

c1 is
10

The result of a1 + c1 is

[[10, 10, 10],
[10, 10, 10]]

[[11.1, 12.2, 13.3],
[13.1, 13.2, 13.3]]

+

See numpy_broadcast.py

Broadcasting rules

• You can generalise the example in the previous
slide to show that a scalar is compatible to numpy
array of any shape

• Broadcast rules are general and they cover the
two special cases we mentioned earlier
– Two arrays of identical shape
– A scalar and an array of any shape

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 23

Exercise 1

a1 = np.array([[1.1, 2.2, 3.3],[3.1, 3.2, 3.3]])
d1 = np.array([[100], [200]])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 24

Predict what a1 + d1 should be without running the
code in numpy_broadcast.py

We will run the cell in numpy_broadcast.py later so you
can check your prediction

• Given

2003.1 3.2 3.3

Informal view

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 25

1.1 1.2 1.3

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

d1 is
np.array([[100], [200]])

100+

2003.1 3.2 3.3

1.1 1.2 1.3 100+
200

100

200

100=

Compatible arrays

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 26

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

Rule 2:
Stretching

d1 is np.array([[100], [200]])
Its shape is (2,1)

Shape (2,1)

Step 1: No
change

Shape (2,3)

Shape (2,3)

[[100, 100, 100],
[200, 200, 200]]

Compatible

Exercise 2

a1 = np.array([[1.1, 2.2, 3.3],[3.1, 3.2, 3.3]])
e1 = np.array([100, 200])

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 27

Are the arrays a1 and e1 compatible?

We will run the cell in numpy_broadcast.py later so you
can check your prediction

• Given

3.1 3.2 3.3

Informal view

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 28

1.1 1.2 1.3

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

e1 is
np.array([100, 200])

100 200+

Incompatible arrays

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 29

a1 is
[[1.1, 2.2, 3.3],
[3.1, 3.2, 3.3]]

Rule 2:
Stretching

e1 has shape (2,)

Shape (1,2)

See numpy_broadcast.py

Rule 1: Padding
on the left

Shape (2,3)

Shape (2,2)

Broadcast – round up

• There is one additional example in the last cell of
numpy_broadcast.py

• There is an exercise in numpy_broadcast_prelim.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 30

Key topics

• Broadcasting

• Slicing

• Boolean indexing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 31

numpy slicing

• Slicing is a very useful method to select a portion of data
- E.g. You have a 2-dimension array where each column

contains the data for a day of the week. You may want to
study the data over the weekdays. This means you need a
way to extract 5 columns of the data

• You have learn about slicing a list
– You can use the list slicing methods on numpy array too

• numpy has some additional methods to select elements

• Examples in:
– numpy_slicing_1.py for one dimensional arrays
– numpy_slicing_2.py for two dimensional arrays

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 32

1-D array: select specific elements

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 33

numpy_slicing_1.py

index
0 1 2 3 4 5 6

2-D array: Slicing out a rectangular block (1)

numpy_slicing_2.py

2-D array: Slicing out a rectangular block (2)

You can use :: notation too
E.g. Try c[1::2,0::2]

numpy_slicing_2.py

2-D array: Slicing with np.ix_
Column index
2 3 6

Row index

1

3

From column: 3 6 2

From row:
1
3

[[c[1,3], c[1,6], c[1,2]] ,
[c[3,3], c[3,6], c[3,2]]] numpy_slicing_2.py

Put specific elements in a 1-D array

[c[3,-2], c[2,2], c[0,3]]

numpy_slicing_2.py

Exercise: Counting heart beats
• In the lab in Week 5, you counted the number of heart

beats by counting the number of times the voltage
crosses the 3V threshold and is increasing

• How can you do this in numpy without using for?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 38

Template is in
numpy_heart_prelim.py

Exercise: Counting heart beats (Hint)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 39

Exercise: Counting heart beats (Hint)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 26

Voltage data
[1.72, 1.84, 1.68, 2.52, 4.68, 3.37, ...

Use slicing to get 2 arrays:

[1.72, 1.84, 1.68, 2.52, 4.68, 3.37, ...

[1.84, 1.68, 2.52, 4.68, 3.37, 2.39, ...

[False, False, False, True, False, False,...

Less
than 3?

Bigger
than 3?

Voltage data
[1.72, 1.84, 1.68, 2.52, 4.68, 3.37, ...

Use slicing to get 2 arrays:

[1.72, 1.84, 1.68, 2.52, 4.68, 3.37, ...

[1.84, 1.68, 2.52, 4.68, 3.37, 2.39, ...

[False, False, False, True, False, False,...

Is it less
than 3?

Is it bigger
than 3?

Need numpy.logical_and()

1.72 < 3 and 1.84 > 3

1.84 < 3 and 1.68 > 3

Key topics

• Broadcasting

• Slicing

• Boolean indexing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 40

Boolean indexing

• This indexing method uses Boolean expressions to
select elements in an array

• Useful for data analysis

• Example:
– numpy_boolean_indexing_1.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 41

Boolean indexing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 42

array1 [0.3, 0.4, 1.4, 1.7, 0.1]
boo_array1 [False, True, True, False, True]

array1[boo_array1] [0.4, 1.4, 0.1]
Note: array1 and boo_array1 have the same shape

This example is in
numpy_boolean_indexing_1.py

array1 [0.3, 0.4, 1.4, 1.7, 0.1]
boo_array2 [True, False, False, False, True]

array1[boo_array2] [0.3, 0.1]

If True, then the entry is selected.
Identical shape requirement.

Boolean indexing
(Quiz 1)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 43

array1 [0.3, 0.4, 1.4, 1.7, 0.1]
array1 >= 1 [False, False, True, True, False]

Think about what the following would give before
trying it out
array1[array1 >= 1] array([1.4, 1.7])

This quiz is in
numpy_boolean_indexing_1.py

Boolean indexing
(Quiz 2)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 44

array1 [0.3, 0.4, 1.4, 1.7, 0.1]
array1 >= 1 [False, False, True, True, False]

array2 [1.1, 0.1, 0.8, 0.3, 1.5]

Think about what the following would give before
trying it out
array2[array1 >= 1] array([0.8, 0.3])

This quiz is in
numpy_boolean_indexing_1.py

Boolean indexing
(Quiz 3)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 45

temp_array contains temperature measurements

[24.5, 31.5, 27.4, 34.1, 33.2, 28.9, 27.9, 34.8]

This quiz is in
numpy_boolean_indexing_1.py

week_array [1, 2, 3, 4, 5, 6, 7, 8]
Temperature in Week 1 is 24.5
Temperature in Week 2 is 31.5

Use Boolean indexing to find the week numbers that have
temperature >= 30
Expect: [2, 4, 5, 8]

week_array[temp_array >= 30]

Boolean indexing (Further examples)

• numpy_boolean_indexing_2.py for 1 dimensional
arrays

• This introduces Boolean operators:
– &, |, ~ (for AND, OR and NOT respectively)

• Using assignment with Boolean indexing

• numpy_boolean_indexing_3.py for 2 dimensional
arrays
– There is also a quiz
– Quiz answer:

days[np.mean(temp_array, axis=0) >= 0.7]

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 46

Forum exercise

• This is a forum exercise which puts together what you
have learnt today

• Consider the following array which contains some
sensor measurements

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 47

• Each row contain the readings from a sensor
• Each column contains the readings at a specific time
• (To be continued on the next page)

Forum exercise (cont’d)

• You want to compute the average at each time from
the five sensor readings

• If you use all the data, you would use
– numpy.mean(, axis = 0)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 48

• However, you have reasons to believe the sensor readings
which are >= 1 are due to faulty sensors and you want to
exclude them when you compute the average

• (To be continued on the next page)

Forum exercise (cont’d)

• The array on yellow background shows the final result that you
want

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 49

[0.38, 0.425, 0.72, 0.38, 0.78, 0.75, 0.82, 0.46, 0.1, 0.65]

Average all
5 readings

Average
of 0.8
and 0.7

Average
of 0.0,
0.1 and
0.2

Forum exercise (Hint)

• Hint: For each column, sum only entries that are less 1
• I used 5 lines of code to do that (no loops)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 50

[0.38, 0.425, 0.72, 0.38, 0.78, 0.75, 0.82, 0.46, 0.1, 0.65]

Average all
5 readings

Average
of 0.8
and 0.7

Average
of 0.0,
0.1 and
0.2

ENGG1811 © UNSW, CRICOS Provider No: 00098G1 W8 slide 51

Mutable and immutable data types

You can modify part of a list

• You can modify the elements in a list by assigning
new values to them

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 52

String as a sequence of characters

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 53

But you can’t modify part of a string

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 54

← Error

← You can’t change part of a
string but you can assign an
entirely new string

Tuples
• A tuple is a sequence of elements enclosed in ()
• For example, the numpy where () function returns a tuple, the

shape of a numpy function is given in a tuple
• Tuples are in many ways similar to lists
• But you can’t modify tuples

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 55

Mutable and immutable data types

• The data types in Python are divided into 2 kinds
– Mutable
– Immutable

• Lists, numpy arrays (and dictionaries) are mutable
– You can change the individual elements

• Strings are immutable
– So are int, float, bool, tuples

• Note: dictionaries is a datatype in Python
– E.g. We won’t be covering dictionaries in this course

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 56

Simplified mental picture on variables
[From Week 1]

• Variables are stored in computer memory
• A variable has a name and a value
• A mental picture is:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4 slide 57

A program manipulates variables to achieve its goal

y 5
Variable name Value of variable

Note: This is a simplified view. We will introduce the
more accurate view later in the course.

How Python really stores variables

Variable x is associated with
an identifier

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 58

x 4728505688

4728505688

float

5.5

• In order to understand mutability, we need to understand
how Python stores variables

The identifier is associated with the
data type and a value.
For a list, a sequence of values

Indirect association

Variable x is
associated with
an identifier

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 59

x 4728505688

4728505688

float

5.5

The most important concept
that you need to know is that a
variable name is associated
with its value via an identifier

The identifier is associated with the
data type and a value.
For a list, a sequence of values

Copying a mutable type

• We will look at and run the code in mut_1.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 60

list1 4728419656

4728419656

list

…
list2 4728419656

Note: You will not get the same id shown above when you
run the program. The essence is whether list1 or list2 have
the same or different id not

Lessons learnt

• The key lessons learnt from mut_1.py are
– There are two different ways to copy lists

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 61

list2 = list1

list4 = list3[:]

Note: Both variable names are
associated with the SAME list

Note: The variable names are
associated with different list

You can visualise the code on Python tutor.
See the screenshot from Python tutor on the next page.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 62

Modifying list using functions

• We say in Week 2 that the scope of the variables in a
function is local. This is true for immutable objects.

• For mutable data type, you can modify them by using
functions

• Let us look at the examples in mut_2.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 63

How functions interact with parameters

• There are two ways that functions treat the parameters
– Functions that do not modify the parameters

• Pass by value
– Functions that do modify the parameters

• Pass by reference

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 64

Pass by value
• In the example below, the values 4 and 2 are passed to the

function
• The function does not modify the variables a and b
• Separate memory spaces for the variables within the function

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 65

def my_power(x,n):
y = x ** n
return y

a = 4; b = 2
z = my_power(a, b)

print('y = ' ,y)
print('z = ' ,z)

x ← 4
n ← 2

Memory
space

Memory space of the
function extend

Pass by reference

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 66

def extend(input_list):
input_list.append(-1)

list0 = [5, 11, 12, 13]
extend(list0)

list0 4728419656 4728419656

list

…

Input_list 4728419656

When the function extend is called,
this identifier is passed to the
function. With the identifier, the
function can locate the list. The
identifier refers to the list, hence
the name pass by reference.

↓ From mut_2.py

Memory requirement: passing list by reference

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 67

def extend(input_list):
input_list.append(-1)

list0 = [5, 11, 12, 13]
extend(list0)

← Need memory to store
list0 only

Memory requirement: passing list by value

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 68

def extend(input_list):
input_list.append(-1)

list0 = [5, 11, 12, 13]
extend(list0[:])

Need memory to store list0 and
memory for a copy of list0 in the
function.

Double the memory requirement

The list is now
passed by
value.

Why mutable data types?

• Allow pass by reference
– Lower memory requirement. Saves time to locate vacant

memory and to duplicate the list.
– Beneficial if the list is long
– More data is collected than in the past, so large data sets

become more prevalent

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 69

numpy arrays

• numpy arrays are mutable

• If you want to copy the contents of an array into
another without associating them, you need to use the
numpy function copy()
– See mut_3.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 70

Summary

• Numpy elementwise operations allow you to do
computation with arrays without using for-loops
– Loops generally require more lines of code

• numpy topics covered
– Broadcasting
– Element selection with

• Slicing
• The :: notation
• Boolean indexing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 71

Summary

• Immutable: int, float, bool, str, tuple
• Mutable: list, numpy array

• Different ways copy mutable types

• Pass by value, pass by reference

• Passing by reference for list, numpy arrays
– Beware that the function can modify the list/array
– Memory requirement

ENGG1811 © UNSW, CRICOS Provider No: 00098G W8 slide 72

