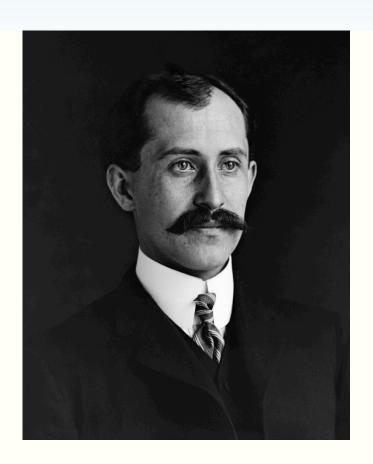
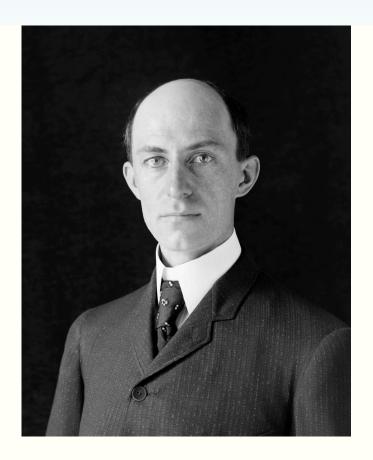
ENGG1811 Computing for Engineers

Week 7A: Simulation

Wright brothers





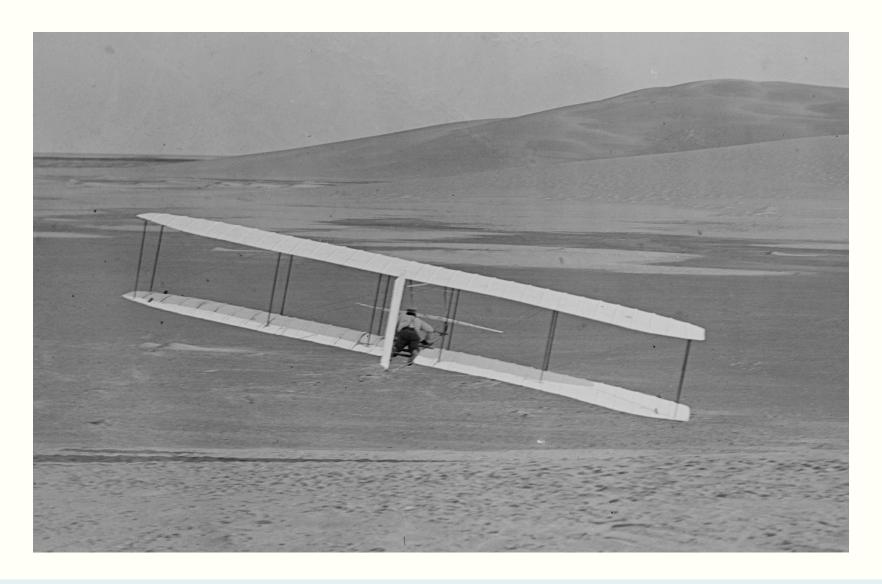
Invented and built the world's first powered airplane

Pictures from http://en.wikipedia.org/wiki/Wright_brothers

Crumpled gilder, Oct 1900

http://www.theatlantic.com/photo/2014/08/first-flight-with-the-wright-brothers/100796/

Glider (i.e. no power) (1902)



First powered flight (17 Dec 1903) (Added: Propeller, engine)

Classical engineering design iteration

1. Design

- This step may use calculations, physical laws, chemistry or biology, experimental data, intuition and guesses
- 2. Build
- 3. Test
- 4. If it doesn't work, go back to design (Step 1).

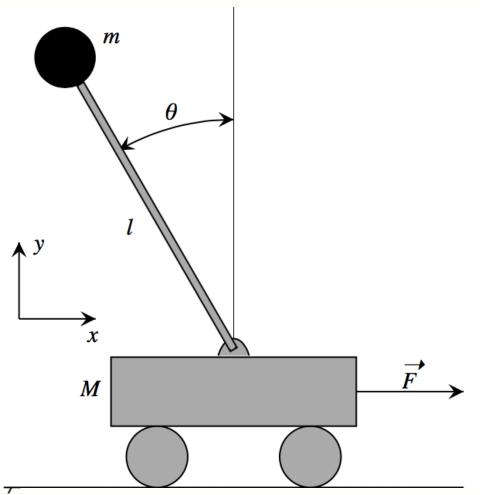
Engineering design iteration – with computers

- 1. Design on computers
 - a) Derive mathematical model of the design
 - b) Perform calculations, simulations or optimisation to understand or improve design
 - c) Reject designs with poor performance. If none of the designs is good, go back to (a) for a new design or (b) to try to optimise the design.
 - d) Choose one or more candidates for prototyping or building the actual design
- 2. Build
- 3. Test
- 4. If it doesn't work, go back to design (Step 1).

Mathematical model can be derived from science (maths, physics, chemistry, biophysics) or data

Design challenge: Balancing an inverted pendulum

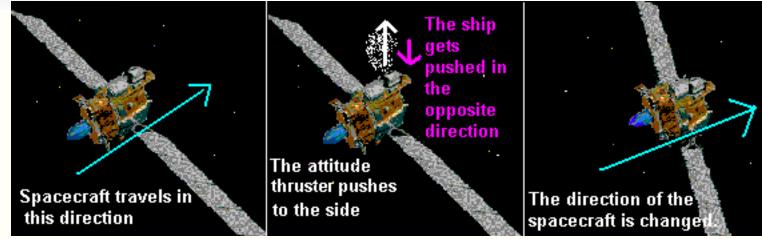
Can you balance a stick on your finger tip/palm



- An inverted pendulum is sitting on a cart.
- The aim of the design is to balance the inverted pendulum by applying an appropriate force on the cart.

Applications of inverted pendulum

- Segway
- Rocket/spaceship attitude control
 - i.e. orientation control



Picture http://www.segway.com/

This week

- Simulation
- Python components
 - Some new numpy functions
- Mathematical / physics / chemistry concepts
 - Mathematical modelling
 - Numerical approximation of derivatives
 - Ordinary differential equations

More on numpy

 Before looking at simulation, we will first go through a number of numpy functions which are related to our discussion this week

The file is in numpy_ex.py

Notation in the lecture notes

- We will be using both mathematical variables and Python variables in this lecture
- We may say the position of an object at time t is x(t)
 - For example, x(0.3) = 5 says that the object is at the position 5 at time 0.3
- We may store the position of the object in a numpy array

Notation

Real number with interpretation of time

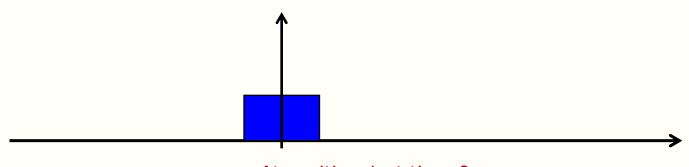
- Mathematical variable : x(0.4)
- Numpy array: position[5]

Zero or positive integers only An index to an array

- A simple way to remember:
 - Mathematical variables: ()
 - Numpy array: []

Simulation on paper – the setup

- An object is constrained to move along a straight line
- Time starts at 0 unit. The initial position of the object is x(0) = 1
- The velocity v(t) at time t is:
 - $v(t) = 2 \text{ if } 0 \le t < 0.4$
 - $v(t) = -4 \text{ if } 0.4 \le t < 0.8$
 - $v(t) = 1 \text{ if } 0.8 \le t$
- Determine the position of the object at t = 0.1,0.2, ..., 1



Calculating positions on paper

- Given:
 - Initial position x(0) = 1
 - Velocity in time interval [0,0.1] is 2
- Aim: Find the position at time 0.1 = x(0.1)
- x(0.1) = x(0) + 2 * 0.1 = 1.2
- How about position at time 0.2 = x(0.2)
 - Velocity in time interval [0.1,0.2] is 2
- x(0.2) = x(0.1) + 2 * 0.1 = 1.4

Quiz: Position at time 0.3

- Given
 - x(0.2) = 1.4
 - Velocity in time interval [0.2,0.3] is 2
- What is the position at time 0.3?
 - Equivalently: What is x(0.3)?

Python variable for time instances

- Our aim is to compute the position of the object at time instances 0, 0.1, 0.2, ..., 1
- We want to create a numpy array whose elements are:
 - [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
 - Python variable name for this numpy array: time_array
 - We can generate this array by using either arange() or linspace()

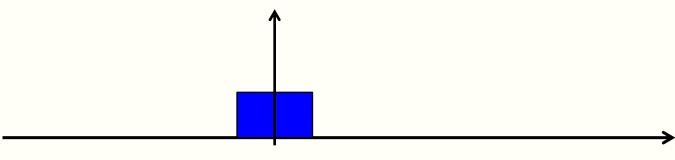
Python variable for positions

• time_array = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

- pos_array and time_array have the same shape
- Note:
 - pos_array[0] = position at time 0 = position at time time_array[0]
 - pos_array[1] = position at time 0.1 = position at time time_array[1]
- Generally:
 - pos_array[k] = position at time 0.1*k = position at time_array[k]

Simulation on paper – the setup (repeat)

- An object is constrained to move along a straight line
- Time starts at 0 unit. The initial position of the object is x(0) = 1
- The velocity v(t) at time t is:
 - $v(t) = 2 \text{ if } 0 \le t < 0.4$
 - $v(t) = -4 \text{ if } 0.4 \le t < 0.8$
 - $v(t) = 1 \text{ if } 0.8 \le t$
- Determine the position of the object for t = 0.1,0.2, ..., 1



At position 1 at time 0

Simulation on paper

Index k	time_array[k]	Speed in the interval before t	Position pos_array[k]
0	0.0		pos_array[0] = 1
1	0.1	2	pos_array[1] = pos_array[0] + 2 * 0.1 = 1.2
2	0.2	2	pos_array[2] = pos_array[1] + 2 * 0.1 = 1.4
3	0.3	2	pos_array[3] = pos_array[2] + 2 * 0.1 = 1.6
4	0.4	2	pos_array[4] = pos_array[3] + 2 * 0.1 = 1.8
5	0.5	-4	pos_array[5] = pos_array[4] - 4 * 0.1 = 1.4
6	0.6	-4	pos_array[6] = pos_array[5] - 4 * 0.1 = 1.0
7	0.7	-4	pos_array[7] = pos_array[6] - 4 * 0.1 = 0.6
8	0.8	-4	pos_array[8] = pos_array[7] - 4 * 0.1 = 0.2
9	0.9	1	pos_array[9] = pos_array[8] + 1 * 0.1 = 0.3
10	1.0	1	pos_array[10] = pos_array[9] + 1 * 0.1 = 0.4

Let us complete the Python implementation in simulate_1d_prelim.m

simulate_1d.py (simulation loop only)

```
for k in range(1,len(time_array)):
      Find the velocity in the previous time interval
    # Find the previous time instance
    time before = time array[k-1]
    if time before < TIME LIMIT 1:</pre>
        velocity = VELOCITY 1
    elif time before < TIME LIMIT 2:</pre>
        velocity = VELOCITY 2
    else:
        velocity = VELOCITY 3
    # Update pos_array(k)
    pos_array[k] = pos_array[k-1] + velocity * dt
```

Quiz: How can we improve simulate_1d.py?

```
for k in range(1,len(time_array)):
    # Find the velocity in the previous time interval
    # Find the previous time instance
    time_before = time_array[k-1]
    if time_before < TIME_LIMIT_1:
        velocity = VELOCITY_1
    elif time_before < TIME_LIMIT_2:
        velocity = VELOCITY_2
    else:
        velocity = VELOCITY_3

# Update pos_array(k)
    pos_array[k] = pos_array[k-1] + velocity * dt</pre>
```

Quiz: How can you improve this code?

Hint: You may want to move this this section of code to a ???

Week 3's lecture (1)

Speed of an object in freefall

$$v(t) = \frac{gm}{d} \left(1 - e^{-\frac{d}{m}t} \right)$$

You created a list of time instances

39.5, 40]

In lecture project in Week 3 (2)

- You use for-loops to create a list of speeds
 - Time is 0. Use the speed formula. Speed = 0.
 - Time is 0.5. Use the speed formula. Speed = 4.692400935
 - Time is 1. Use the speed formula. Speed = 8.98399681455
 - Time is 40. Use the speed formula. Speed = 54.8885179036

Contrasting two methods to do simulation

By increment	By Formula
pos_array[k] = pos_array[k-1] + velocity * dt	
	$v(t) = \frac{gm}{d} \left(1 - e^{-\frac{d}{m}t} \right)$

Jump at time 0 Speed = 0

freefall

Parachute deployed after 6 seconds

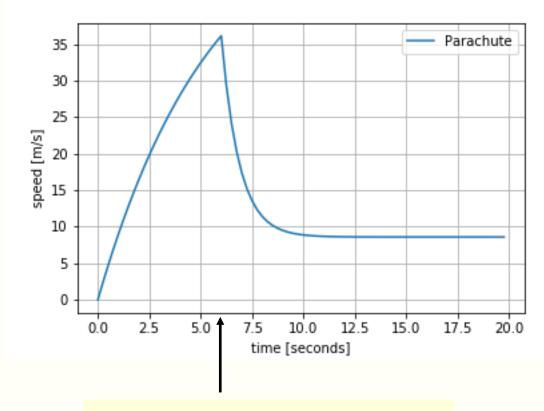
Retarded fall

Simulation by formula

 A parachutist jumps from the plane, we want to calculate their speed over time and plot the speed profile

The final product

- We will need two formulas
 - One before the parachute is deployed: freefall
 - One after the parachute is deployed



Time at which the parachute is deployed

Before the parachute is deployed

Notation:

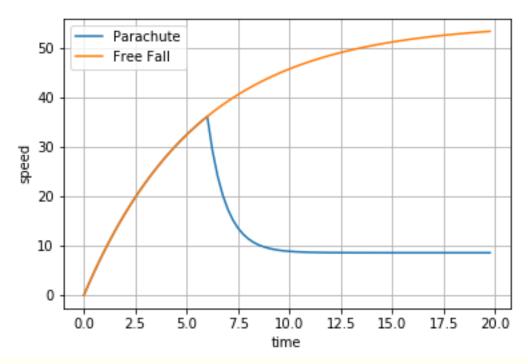
- *m* is the mass of the parachutist
- -g is acceleration due to gravity (m s⁻²)
- $-c_{air}$ is the drag coefficient in air (in kg s⁻¹)
- t_c is the time the parachute is deployed
- The velocity of the parachutist before the parachute is deployed is given by the formula:

If t < t_{\rm C}
$$v(t) = \frac{gm}{c_{\rm air}} \left(1 - e^{-\frac{c_{\rm air}}{m}t}\right)$$

Some intuition

ENGG1811

$$v(t) = \frac{gm}{c_{\text{air}}} \left(1 - e^{-\frac{c_{\text{air}}}{m}t} \right)$$



The exponential factor decays in magnitude, so the speed asymptotically approaches $g\ m/\ c_{air}$

For a free-falling 70kg parachutist with c_{air} = 12.5, this **terminal speed** is ~55 m s⁻² (200km/hr)

After the parachute is deployed

- ullet t_c is the time at which the parachute is deployed
- A larger drag goefficient c_{dp}

If
$$t \ge t_C$$

$$v_{p0} = rac{gm}{c_{
m air}} \left(1 - e^{-rac{c_{
m air}}{m}t_c}
ight)$$
 Speed at the moment parachute is deployed

$$v(t) = v_{p0}e^{-\frac{c_{dp}}{m}(t-t_c)} + \frac{gm}{c_{dp}}(1 - e^{-\frac{c_{dp}}{m}(t-t_c)})$$

Parachutist simulation

- We can write a function that, given all parameters, calculates the velocity at any time t
- The algorithm, expressed in *pseudocode*, is

```
for t in time_array
   if t < tc # still in free-fall
      Calculate the freefall velocity formula
   else
      Calculate velocity at time of deployment
      Calculate velocity parachute velocity formula</pre>
```

Code in para_speed_by_formula.py and para_formula_lib.py

Comparing object moving in 1D and parachutist

By increment	By Formula
pos_array[k] = pos_array[k-1] + velocity * dt	• If $0 \le t \le 0.4$, $x(t) = 1+2t$ • If $0.4 \le t \le 0.8$, $x(t) = 1.8$ - t • If $t \ge 0.8$, $x(t) = 0.2 + t$
?	$v(t) = rac{gm}{d} \left(1 - e^{-rac{d}{m}t} ight)$ plus others.

An inconvenient truth

- Solving problems by deriving a formula
 - Mathematically elegant; exact solution
 - Formulas may provide insight
 - Convenient to use: simply perform substitution

Most advanced engineering problems do not have an **exact** solution in the form of a formula

You can solve these problems numerically and approximately by computers and programming

Non-formula solution to the parachutist problem

 The velocity of the parachutist obeys the following ordinary differential equations (ODE)

$$\frac{dv(t)}{dt} = g - \frac{c(t)}{m}v(t)$$

- v(t) = velocity at time t
- c(t) = drag coefficient at time t
- We will look at how you can solve this equation numerically and approximately.

Approximating derivatives

• From the definition of derivatives, we know

$$\frac{dv(t)}{dt} = \lim_{\Delta \to 0} \frac{v(t + \Delta) - v(t)}{\Delta}$$

If Δ is small enough, then

$$\frac{dv(t)}{dt} \approx \frac{v(t+\Delta) - v(t)}{\Delta}$$

Approximating derivatives – numerical illustration

- $f(x) = x^3$
- Derivative of $f(x) = f'(x) = 3 x^2$
- At x = 2, f'(2) = 12
- Let us compute the approximate derivative for different values of Δ

$$\frac{(2+\Delta)^3-2^3}{\Delta}$$

Code: approximate_derivative.py

Solving ODE numerically (1)

1) Starting from the ODE

$$\frac{dv(t)}{dt} = g - \frac{c(t)}{m}v(t)$$

2) Replace the derivative by its approximation

$$\frac{dv(t)}{dt} \approx \frac{v(t+\Delta) - v(t)}{\Delta}$$

We obtain:

$$\frac{v(t+\Delta)-v(t)}{\Delta}\approx g-\frac{c(t)}{m}v(t)$$

Solving ODE numerically (2)

Previous step:

$$\frac{v(t+\Delta)-v(t)}{\Delta}\approx g-\frac{c(t)}{m}v(t)$$

3) Make $v(t + \Delta)$ the subject:

$$v(t + \Delta) \approx v(t) + (g - \frac{c(t)}{m}v(t))\Delta$$

Solving ODE numerically (3)

Previous step:

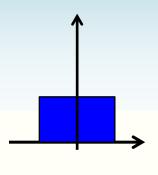
$$v(t + \Delta) \approx v(t) + (g - \frac{c(t)}{m}v(t))\Delta$$

New speed

Old speed

- For simulation, let us assume speed is stored in the array speed_array
- Identify

$$v(t+\Delta)$$
 with speed_array[k]



The analogy ...

$$x(0.3) = x(0.2) + 2 * 0.1 = 1.6$$

Position after 0.1 time units

Position at time 0.2

$$pos_array[4] = pos_array[3] + 2 * 0.1 = 1.6$$

Previous element in the vector

Python code: approx ODE versus formula

- A Python function to solve the ODE numerically for the parachutist problem
 - Solution in the function: para_ODE_lib.py
- Note
 - Formula is exact
 - Numerical solution to ODE is an approximation
- Python script para_speed_by_ODE.py compares the formula against the approximate numerical solution
- We will vary the value of Δ , we expect
 - Small Δ, small difference between the two methods
 - And vice versa

Where did the ODE come from?

ODE we used. Multiply both sides by m.

$$\frac{dv(t)}{dt} = g - \frac{c(t)}{m}v(t)$$

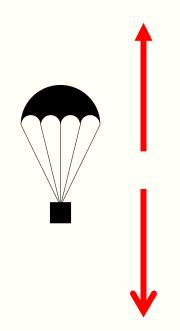
Let us look at what this means.

$$m\frac{dv(t)}{dt} = mg - c(t)v(t)$$

ODEs describe physical laws

$$m\frac{dv(t)}{dt} = mg - c(t)v(t)$$

mass x acceleration = Net downward force on the parachutist



Newton's second law

c(t) v(t) = drag force

m g = gravitational pull

The big picture

Physical law gives the ODE

$$m\frac{dv(t)}{dt} = mg - c(t)v(t)$$

- Computers and algorithms allow you to obtain numerical and approximate solution
- That's why you need to learn maths, physics, chemistry, your own disciplinary knowledge and COMPUTING!

Solving ODEs

- The method we use for solving ODE is known as Euler's forward method
- Meaning of forward and backward:

Forward:
$$\frac{dv(t)}{dt} \approx \frac{v(t+\Delta)-v(t)}{\Delta}$$

Backward:
$$\frac{dv(t)}{dt} \approx \frac{v(t) - v(t - \Delta)}{\Delta}$$

- Euler's forward method is simpler to explain but not the best. This is so you can focus on learning programming
- You will learn better methods in later years

The extended parachutist problem

- What if you want to determine the height of the parachutist too?
- Let h(t) = height of the parachutist at time t
- How can you compute $h(t + \Delta)$ from h(t)?

$$h(t+\Delta) \approx h(t) - v(t)\Delta$$
 New height Old height

 You can formally derive this from the following ODE which says: derivative of height = downward speed

$$\frac{dh(t)}{dt} = -v(t)$$

Python implementation

Essentially, two updates in the for loop

$$v(t + \Delta) \approx v(t) + (g - \frac{c(t)}{m}v(t))\Delta$$

$$h(t + \Delta) \approx h(t) - v(t)\Delta$$

- Python function: para_ODE_ext_lib.py
- Python script: para_speed_height_by_ODE.py
 - The script also illustrates how to plot with two different scales for the y-axis

para_ODE_ext_lib.py

```
def para_speed_height_ODE(time_array, mass, speed0,
               height0, drag_air, time_deploy, drag_para):
    height_array = np.zeros_like(time_array)
    height_array[0] = height0
    # simulation loop
    for k in range(1,len(time_array)):
        height_array[k] = height_array[k-1] - \
                          speed array[k-1] * dt
```

Summary

- We have introduced the basics of simulation, which is a key tool in modern engineering and science
 - A formula solution is rare for modern day complex engineering problems
 - Numerical solution, approximation solution and simulation are important methods
- The basic method to do simulation is to set up an iteration step which can be obtained from ordinary differential equations