
DPST1092 24T3 — Characters and Unicode

https://www.cse.unsw.edu.au/~dp1092/24T3/

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Characters and Unicode 1 / 11

Character Data

Character data has several possible representations (encodings)

The two most common:

ASCII (ISO 646)
▶ 7-bit values, using lower 7-bits of a byte (top bit always zero)
▶ can encode roman alphabet, digits, punctuation, control chars

UTF-8 (Unicode)
▶ 8-bit values, with ability to extend to multi-byte values
▶ can encode all human languages plus other symbols

e.g.:

√ ∑ ∀ ∃

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Characters and Unicode 2 / 11

ASCII Character Encoding

Uses values in the range 0x00 to 0x7F (0..127)

Characters partitioned into sequential groups

control characters (0..31) ... e.g. '\0', '\n'
punctuation chars (32..47,91..96,123..126)
digits (48..57) ... '0'..'9'
upper case alphabetic (65..90) ... 'A'..'Z'
lower case alphabetic (97..122) ... 'a'..'z'

Sequential nature of groups allows for things like (ch - '0') Eg.

See man 7 ascii

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Characters and Unicode 3 / 11



Unicode

Basically, a 32-bit representation of a wide range of symbols

around 140K symbols, covering 140 different languages

Using 32-bits for every symbol would be too expensive

e.g. standard roman alphabet + punctuation needs only 7-bits

More compact character encodings have been developed (e.g. UTF-8)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Characters and Unicode 4 / 11

UTF-8 Character Encoding

UTF-8 uses a variable-length encoding as follows

#bytes #bits Byte 1 Byte 2 Byte 3 Byte 4
1 7 0xxxxxxx - - -
2 11 110xxxxx 10xxxxxx - -
3 16 1110xxxx 10xxxxxx 10xxxxxx -
4 21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

The 127 1-byte codes are compatible with ASCII

The 2048 2-byte codes include most Latin-script alphabets

The 65536 3-byte codes include most Asian languages

The 2097152 4-byte codes include symbols and emojis and ...

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Characters and Unicode 5 / 11

ASCII Character Encoding

UTF-8 examples

ch unicode bits simple binary UTF-8 binary
$ U+0024 7 010 0100 00100100
¢ U+00A2 11 000 1010 0010 11000010 10100010
€ U+20AC 16 0010 0000 1010 1100 11100010 10000010 10101100

Unicode strings can be manipulated in C (e.g.” “ )

Like other C strings, they are terminated by a 0 byte (i.e. '\0')

Warning: Functions like strlen may not work as expected.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Characters and Unicode 6 / 11



Printing UTF-8 in a C program

printf("The unicode code point U+1F600 encodes in UTF-8\n");
printf("as 4 bytes: 0xF0 0x9F 0x98 0x80\n");
printf("We can output the 4 bytes like this: \xF0\x9F\x98\x80\n");
printf("Or like this: ");
putchar(0xF0);
putchar(0x9F);
putchar(0x98);
putchar(0x80);
putchar('\n');
source code for hello_unicode.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Characters and Unicode 7 / 11

Converting Unicode Codepoints to UTF-8
uint8_t encoding[5] = {0};
if (code_point < 0x80) {

encoding[0] = code_point;
} else if (code_point < 0x800) {

encoding[0] = 0xC0 | (code_point >> 6);
encoding[1] = 0x80 | (code_point & 0x3f);

} else if (code_point < 0x10000) {
encoding[0] = 0xE0 | (code_point >> 12);
encoding[1] = 0x80 | ((code_point >> 6) & 0x3f);
encoding[2] = 0x80 | (code_point & 0x3f);

} else if (code_point < 0x200000) {
encoding[0] = 0xF0 | (code_point >> 18);
encoding[1] = 0x80 | ((code_point >> 12) & 0x3f);
encoding[2] = 0x80 | ((code_point >> 6) & 0x3f);
encoding[3] = 0x80 | (code_point & 0x3f);

}
source code for utf8_encode.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Characters and Unicode 8 / 11

Converting Unicode Codepoints to UTF-8

printf("U+%x UTF-8: ", code_point);
for (uint8_t *s = encoding; *s != 0; s++) {

printf("0x%02x ", *s);
}
printf(" %s\n", encoding);

}
int main(void) {

print_utf8_encoding(0x42);
print_utf8_encoding(0x00A2);
print_utf8_encoding(0x10be);
print_utf8_encoding(0x1F600);

}
source code for utf8_encode.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Characters and Unicode 9 / 11



Exercise 1: UTF-8 Unicode Encoding

For each of the following symbols, with their Unicode value

show the bit-string that would be used to represent them

Symbols:

& U+00026
µ U+000B5

Given that has the code U+02665

Convert it into the bitstring that would represent it
Write a C program to print

beats

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Characters and Unicode 10 / 11

Summary of UTF-8 Properties

Compact, but not minimal encoding; encoding allows you to resync immediately if bytes lost from a stream.
ASCII is a subset of UTF-8 - complete backwards compatibility!
All other UTF-8 bytes > 127 (0x7f)

▶ no byte of multi-byte UTF-8 encoding is valid ASCII.
No byte of multi-byte UTF-8 encoding is 0

▶ can still use store UTF-8 in null-terminated strings.
0x2F (ASCII /) and 0x00 can not appear in multi-byte characters

▶ hence can use UTF-8 for Linux/Unix filenames
C programs can treat UTF-8 similarly to ASCII.
Beware: number of bytes in UTF-8 string != number of characters.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Characters and Unicode 11 / 11


