
DPST1092 24T3 — MIPS Basics

https://www.cse.unsw.edu.au/~dp1092/24T3/

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 1 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/
https://www.cse.unsw.edu.au/~dp1092/24T3/

Computer Architecture

In 1092 we run a compiler and produce a executable file.

We run a compiler (dcc or gcc)

an executable file hello is stored on the hard drive

We then run ./hello

What happens when you run this program? Where does it go?

How does it get executed? How does the CPU interact with hello?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 2 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Memory

Lets take this step by step

We have a hard drive

Hard drives are refered to as secondary storage

they usually have a large capacity

they are non volatile memory (doesnt get erased when you turn off computer)

We have RAM(which for us is primary memory)

primary memory

very fast, traditionally closer to the CPU

lower capacity

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 3 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

RAM

A program needs to be ‘in memory’ in order for it to run

‘memory’ typically refers to RAM

Communicating between the CPU and drives is too slow

Our executiable file contains information on how to set up memory

What instructions does the CPU need to follow?

What strings do we need loaded into memory?

Our file is stored in RAM as 1’s and 0’s it is in machine code.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 4 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Machine code and Assembly

Figure 1: Encoding

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 5 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Why Study Assembler?

Useful to know assembly language because …

sometimes you are required to use it:

▶ e.g., low-level system operations, device drivers

improves your understanding of how compiled programs execute

▶ very helpful when debugging

▶ understand performance issues better

performance tweaking … squeezing out last pico-second

▶ re-write that performance critical code in assembler!

Trivia:

there are games created in pure assembler

▶ e.g., RollerCoaster Tycoon

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 6 / 49

https://en.wikipedia.org/wiki/RollerCoaster_Tycoon_(video_game)
https://www.cse.unsw.edu.au/~dp1092/24T3/

CPU Architecture Families Used in Game Consoles

Year Console Architecture Chip MHz

1995 PS1 MIPS R3000A 34
1996 N64 MIPS R4200 93
2000 PS2 MIPS Emotion Engine 300
2001 xbox x86 Celeron 733
2001 GameCube Power PPC750 486
2006 xbox360 Power Xenon (3 cores) 3200
2006 PS3 Power Cell BE (9 cores) 3200
2006 Wii Power PPC Broadway 730
2013 PS4 x86 AMD Jaguar (8 cores) 1800
2013 xbone x86 AMD Jaguar (8 cores) 2000
2017 Switch ARM NVidia TX1 1000
2020 PS5 x86 AMD Zen 2 (8 cores) 3500
2020 xboxs x86 AMD Zen 2 (8 cores) 3700

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 7 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

What A CPU Looks Like

Figure 2: MIPS R4600

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 8 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

CPU Components

A typical modern CPU has:
a set of data registers
a set of control registers (including PC)
a control unit (CU)
an arithmetic-logic unit (ALU)
a floating-point unit (FPU)
access to memory (RAM)
a set of simple (or not so simple) instructions

▶ transfer data between memory and registers
▶ compute values using ALU/FPU
▶ make tests and transfer control of execution

Figure 3: A Simple CPU

Different types of processors have different configurations of the above

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 9 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Fetch-Execute Cycle

typical CPU program execution pseudo-code:

uint32_t program_counter = START_ADDRESS;
while (1) {

uint32_t instruction = memory[program_counter];

// move to next instruction
program_counter++;

// branches and jumps instruction may change program_counter
execute(instruction, &program_counter);

}

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 10 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Fetch-Execute Cycle

Executing an instruction involves:
determine what the operator is
determine if/which register(s) are involved
determine if/which memory location is involved
carry out the operation with the relevant operands
store result, if any, in appropriate register /
memory location

Example instruction encodings
(not from a real machine):

Figure 4: Fake Instructions

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 11 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Assembly Language

Instructions are simply bit patterns

Could write machine code program just by specifying bit-patterns
e.g as a sequence of hex digits:

0x3c041001 0x34840000 0x20020004 0x0000000c 0x20020000 0x03e00008

▶ unreadable!

▶ difficult to maintain!

Solution: assembly language, a symbolic way of specifying machine code

write instructions using names rather than bit-strings

refer to registers using either numbers or names

allow names (labels) associated with memory addresses

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 12 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

MIPS Instructions

MIPS has several classes of instructions:

load and store … transfer data between registers and memory

computational … perform arithmetic/logical operations

jump and branch … transfer control of program execution

coprocessor … standard interface to various co-processors

▶ coprocessors implement floating-point operations
▶ wont be covered in DPST1092

special … miscellaneous tasks (e.g. syscall)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 13 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

MIPS Architecture: Registers

MIPS CPU has

32 general purpose registers
▶ Every register that we will be dealing with is 32-bits

Registers are located on the actual CPU which makes them very fast
▶ We will be working with these registers

The PC register is a special 32-bit register
▶ used to keep track of which instruction needs to be executed next
▶ modified by branch and jump instructions

Hi and Lo store results of mult and div
▶ these are used when we have a result that doesnt fit a single register
▶ accessed by mthi and mflo instructions only

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 14 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

MIPS Architecture: Registers

Registers can be referred to as numbers ($0…$31), or by symbolic names ($zero…$ra)

Some registers have special uses:

register $0 ($zero) always has value 0, can not be changed
register $31 ($ra) is changed by jal and jalr instructions
registers $1 ($at) reserved for mipsy to use in pseudo-instructions
FOR NOW: we are going to be using ($t0) - (t9), ($v0) and ($a0)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 15 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

MIPS Architecture: Integer Registers

Number Names Conventional Usage

0 zero Constant 0
1 at Reserved for assembler
2,3 v0,v1 Expression evaluation and results of a function
4..7 a0..a3 Arguments 1-4
8..16 t0..t7 Temporary (not preserved across function calls)
16..23 s0..s7 Saved temporary (preserved across function calls)
24,25 t8,t9 Temporary (not preserved across function calls)
26,27 k0,k1 Reserved for Kernel use
28 gp Global Pointer
29 sp Stack Pointer
30 fp Frame Pointer
31 ra Return Address (used by function call instructions)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 16 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

MIPS Architecture: Integer Registers … Usage Convention

Except for registers zero and ra (0 and 31),
these uses are only programmer’s conventions

▶ no difference between registers 1..30 in the silicon

Some of these conventions are irrelevant when writing tiny assembly programs

▶ follow them anyway

▶ it’s good practice

for general use, keep to registers t0..t9, s0..s7

use other registers only for conventional purpose

▶ e.g. only, and always, use a0..a3 for arguments

never use registers at, k0,k1

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 17 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

System Calls

None of the instructions we have access to can interact with the outside world (eg. printing, scanning)

This is done for security reasons so users cannot interact with the Operating System
We ask the operating system to perform these tasks for us - this process is called a system call

The operating system can access privileged instructions on the CPU (eg. communicating to other devices)

mipsy simulates a very basic operating system

There are many types of system calls. MIPS has several that you will use.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 18 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

System calls

These are some of the most popular system calls for MIPS.

Figure 5: Systems calls

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 19 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

System calls (How to use them)
Using system calls varies depending on what you want to do.

Figure 6: Fake Instructions

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 20 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

MIPS Architecture

MIPS is a well-known and simple architecture

historically used everywhere from supercomputers to game consoles

still popular in some embedded fields: e.g., modems/routers, TVs

but being out-competed by ARM and, more recently, RISC-V

DPST1092 uses the MIPS32 version of the MIPS family.

DPST1092 uses simulators, not real MIPS hardware:

mipsy … command-line-based emulator written by Zac
▶ source code: https://github.com/insou22/mipsy

mipsy-web … web (WASM) GUI-based version of mipsy written by Shrey
▶ https://cgi.cse.unsw.edu.au/~cs1521/mipsy/

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 21 / 49

https://github.com/insou22/mipsy
https://cgi.cse.unsw.edu.au/~cs1521/mipsy/
https://www.cse.unsw.edu.au/~dp1092/24T3/

MIPS vs mipsy

MIPS is a machine architecture, including instruction set

mipsy is an simulator for the MIPS instruction set

reads text files containing instruction + directives

converts to machine code and loads into “memory”

provides some debugging capabilities

▶ single-step, breakpoints, view registers/memory, …

provides mechanism to interact with operating system (syscall)

Also provides extra instructions, mapped to MIPS core set:

provide convenient/mnemonic ways to do common operations

▶ e.g. move $s0, $v0 rather than addu $s0, $v0, $0

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 22 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Using Mipsy

How to to execute MIPS code without a MIPS

1092 mipsy
▶ command line tool on CSE systems
▶ load programs using command line arguments
▶ interact using stdin/stdout via terminal

mipsy_web
▶ https://cgi.cse.unsw.edu.au/~cs1521/mipsy/
▶ runs in web browser, load programs with a button
▶ visual environment for debugging

spim, xspim, qtspim
▶ older widely used MIPS simulator
▶ beware: missing some pseudo-instructions used in 1521 for function calls

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 23 / 49

https://cgi.cse.unsw.edu.au/~cs1521/mipsy/
https://www.cse.unsw.edu.au/~dp1092/24T3/

Our First MIPS program

C

int main(void) {
printf("I love MIPS\n");
return 0;

}

MIPS

print a string in MIPS assembly
main:

... pass address of string as argument
la $a0, string
... 4 is printf "%s" syscall number
li $v0, 4
syscall
li $v0, 0 # return 0
jr $ra
.data

string:
.asciiz "I love MIPS\n"

source code for i_love_mips.s

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 24 / 49

https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/mips_basics/code/i_love_mips.s
https://www.cse.unsw.edu.au/~dp1092/24T3/

MIPS Assembly Language

MIPS assembly language programs contain

assembly language instructions

labels … appended with :

comments … introduced by #

directives … symbol beginning with .

constant definitions, equivalent of #define in C, e.g:

MAX_NUMBERS = 1000

Programmers need to specify

data objects that live in the data region

instruction sequences that live in the code/text region

Each instruction or directive appears on its own line.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 25 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

A simple MIPS Computation

main:
lw $t0, x # $t0 = x
addi $t0, $t0, 4 # $t0 = x + 4
li $t1, 2 # $t1 = 2
mul $t0, $t0, $t1 # $t0 = (x+4) * 2
sw $t0, y # y = (x+4) * 2
li $v0, 0 # return 0
jr $ra

.data
x: .word 3 # int x = 3;
y: .space 4 # int y;

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 26 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Data and Addresses

All operations refer to data, either

in a register

in memory

a constant which is embedded in the instruction itself

Computation operations refer to registers or constants.

Only load/store instructions refer to memory.

The syntax for constant value is C-like:

1 3 -1 -2 12345 0x1 0xFFFFFFFF 0b10101010 0123
"a string" 'a' 'b' '1' '\n' '\0'

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 27 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Describing MIPS Assembly Operations

Registers are denoted:

𝑅𝑑 destination register where result goes
𝑅𝑠 source register #1 where data comes from
𝑅𝑡 source register #2 where data comes from

For example:
add $𝑅𝑑, $𝑅𝑠, $𝑅𝑡 ⟹ 𝑅𝑑 ∶= 𝑅𝑠 + 𝑅𝑡

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 28 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Integer Arithmetic Instructions

assembly meaning bit pattern

add 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 + 𝑟𝑡 000000ssssstttttddddd00000100000
sub 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 - 𝑟𝑡 000000ssssstttttddddd00000100010
mul 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 * 𝑟𝑡 011100ssssstttttddddd00000000010
rem 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 % 𝑟𝑡 pseudo-instruction

div 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 / 𝑟𝑡 pseudo-instruction

addi 𝑟𝑡, 𝑟𝑠, I 𝑟𝑡 = 𝑟𝑠 + I 001000ssssstttttIIIIIIIIIIIIIIII

integer arithmetic is 2’s-complement
also: addu, subu, mulu, addiu - equivalent instructions which do not stop execution on overflow.
no subi instruction - use addi with negative constant
mipsy will translate add and sub of a constant to addi

▶ e.g. mipsy translates add $t7, $t4, 42 to addi $t7, $t4, 42
▶ for readability use addi, e.g. addi $t7, $t4, 42

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 29 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Integer Arithmetic Instructions - Example

addi $t0, $zero, 6 # $t0 = 6
addi $t5, $t0, 2 # $t5 = 8
mul $t4, $t0, $t5 # $t4 = 48
add $t4, $t4, $t5 # $t4 = 56
addi $t6, $t4, -12 # $t6 = 42

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 30 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Extra Integer Arithmetic Instructions (little used in DPST1092)

assembly meaning bit pattern

div 𝑟𝑠,𝑟𝑡 hi = 𝑟𝑠 % 𝑟𝑡; 000000sssssttttt0000000000011010
lo = 𝑟𝑠 / 𝑟𝑡

mult 𝑟𝑠,𝑟𝑡 hi = (𝑟𝑠 * 𝑟𝑡) » 32 000000sssssttttt0000000000011000
lo = (𝑟𝑠 * 𝑟𝑡) & 0xffffffff

mflo 𝑟𝑑 𝑟𝑑 = lo 0000000000000000ddddd000000001010
mfhi 𝑟𝑑 𝑟𝑑 = hi 0000000000000000ddddd000000001001

mult provides multiply with 64-bit result
▶ mul instruction provides only 32-bit result (can overflow)

mipsy translates rem 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 to div 𝑟𝑠,𝑟𝑡 plus mfhi 𝑟𝑑
mipsy translates div 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 to div 𝑟𝑠,𝑟𝑡 plus mflo 𝑟𝑑

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 31 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Bit Manipulation Instructions

assembly meaning bit pattern

and 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 & 𝑟𝑡 000000ssssstttttddddd00000100100
or 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 l 𝑟𝑡 000000ssssstttttddddd00000100101
xor 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = 𝑟𝑠 ^ 𝑟𝑡 000000ssssstttttddddd00000100110
nor 𝑟𝑑, 𝑟𝑠, 𝑟𝑡 𝑟𝑑 = ~ (𝑟𝑠 | 𝑟𝑡) 000000ssssstttttddddd00000100111
andi 𝑟𝑡, 𝑟𝑠, I 𝑟𝑡 = 𝑟𝑠 & I 001100ssssstttttIIIIIIIIIIIIIIII
ori 𝑟𝑡, 𝑟𝑠, I 𝑟𝑡 = 𝑟𝑠 l I 001101ssssstttttIIIIIIIIIIIIIIII
xori 𝑟𝑡, 𝑟𝑠, I 𝑟𝑡 = 𝑟𝑠 ^ I 001110ssssstttttIIIIIIIIIIIIIIII
not 𝑟𝑑, 𝑟𝑠 𝑟𝑑 = ~ 𝑟𝑠 pseudo-instruction

mipsy translates not 𝑟𝑑, 𝑟𝑠 to nor 𝑟𝑑, 𝑟𝑠, $0

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 32 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Shift Instructions

assembly meaning bit pattern

sllv 𝑟𝑑, 𝑟𝑡, 𝑟𝑠 𝑟𝑑 = 𝑟𝑡 « 𝑟𝑠 000000ssssstttttddddd00000000100
srlv 𝑟𝑑, 𝑟𝑡, 𝑟𝑠 𝑟𝑑 = 𝑟𝑡 » 𝑟𝑠 000000ssssstttttddddd00000000110
srav 𝑟𝑑, 𝑟𝑡, 𝑟𝑠 𝑟𝑑 = 𝑟𝑡 » 𝑟𝑠 000000ssssstttttddddd00000000111
sll 𝑟𝑑, 𝑟𝑡, I 𝑟𝑑 = 𝑟𝑡 « I 00000000000tttttdddddIIIII000000
srl 𝑟𝑑, 𝑟𝑡, I 𝑟𝑑 = 𝑟𝑡 » I 00000000000tttttdddddIIIII000010
sra 𝑟𝑑, 𝑟𝑡, I 𝑟𝑑 = 𝑟𝑡 » I 00000000000tttttdddddIIIII000011

srl and srlv shift zeros into most-significant bit
▶ this matches shift in C of unsigned value

sra and srav propagate most-significant bit
▶ this ensure shifting a negative number divides by 2

slav and sla don’t exist as arithmetic and logical left shifts are the same
mipsy provides rol and ror pseudo-instructions which rotate bits

▶ real instructions on some MIPS versions
▶ no simple C equivalent

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 33 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Shift Arithmatic vs Logic

Arithmatic shift is used when are dealing with a signed number.

If 11010100 (-42 in 2s compliment) is shifted 2 bytes to the right

We get 11110101 which is -11 in 2s compliment. (this is division by 2^n)

When right shift it pads left most bits (MSB) with 1

When left shift it pads right most bits (LSB) with 1

Logic shifts just simply pad both sides with 0s.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 34 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Miscellaneous Instructions

assembly meaning bit pattern

li 𝑅𝑑, value 𝑅𝑑 = value psuedo-instruction

la 𝑅𝑑, label 𝑅𝑑 = label psuedo-instruction

move 𝑅𝑑, 𝑅𝑠 𝑅𝑑 = 𝑅𝑠 psuedo-instruction

slt 𝑅𝑑, 𝑅𝑠, 𝑅𝑡 𝑅𝑑 = 𝑅𝑠 < 𝑅𝑡 000000ssssstttttddddd00000101010
slti 𝑅𝑡, 𝑅𝑠, I 𝑅𝑡 = 𝑅𝑠 < I 001010ssssstttttIIIIIIIIIIIIIIII
lui 𝑅𝑡, I 𝑅𝑡 = I * 65536 00111100000tttttIIIIIIIIIIIIIIII
syscall system call 00000000000000000000000000001100

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 35 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Example Use of Miscellaneous Instructions

li $t4, 42 # $t4 = 42
li $t0, 0x2a # $t0 = 42 (hexadecimail @aA is 42 decimal)
li $t3, '*' # $t3 = 42 (ASCII for * is 42)
la $t5, start # $t5 = address corresponding to label start
move $t6, $t5 # $t6 = $t5
slt $t1, $t3, $4 # $t1 = 0 ($t3 and $t3 contain 42)
slti $t7, $t3, 56 # $t7 = 1 ($t3 contains 42)
lui $t8, 1 # $t8 = 65536
addi $t8, $t8, 34464 # $t8 = 100000

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 36 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Important System Calls

We often rely on system services to do things for us.
syscall lets us make system calls for these services.

mipsy provides a set of system calls for I/O and memory allocation.
$v0 specifies which system call —

Service $v0 Arguments Returns

printf("%d") 1 int in $a0
fputs 4 string in $a0
scanf("%d") 5 none int in $v0
fgets 8 line in $a0, length in $a1
exit(0) 10 none
printf("%c") 11 char in $a0
scanf("%c") 12 none char in $v0

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 37 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

A simple system call Example

C

int main(void) {
printf("%d", 42);
return 0;

}

MIPS

A simple example that prints out an int
main:

li $v0, 1 # printf("%d",42);
li $a0, 42
syscall
li $v0, 0 # set return value for main to be 0
jr $ra # return from main to (__start)

source code for print_42.s

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 38 / 49

https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/mips_basics/code/print_42.s
https://www.cse.unsw.edu.au/~dp1092/24T3/

Exercise: Add two numbers 1

Write MIPS assembler that behaves like

int main(void) {
int x = 3;
printf("%d\n", x+5);
return 0;

}

Hints:

li loads a constant into a register
the number stored in $v0 determines what kind of system call it is
syscall 1 prints the number located in register $a0
syscall 11 prints the character located in register $a0

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 39 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Exercise: Add two numbers 2

Write MIPS assembler that behaves like

int x = 3;
int main(void) {

printf("%d\n", x+5);
return 0;

}

Hints:

word allocates 4 bytes in memory and initialises it
you will need to load the value of X from RAM into a register to do the addition using lw

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 40 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Exercise: Add two numbers interactively

Write MIPS assembler that behaves like

int main(void) {
int x, y;
printf("First number: ");
scanf("%d", &x);
printf("Second number: ");
scanf("%d", &y);
printf("%d\n", x+y);
return 0;

}

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 41 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Exercise: Find the average

Modify the code from the previous example so it implements the following:

int main(void) {
int x, y;
printf("First number: ");
scanf("%d", &x);
printf("Second number: ");
scanf("%d", &y);
printf("%d\n", (x+y)/2);
return 0;

}

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 42 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Exercise: Bit operations

Write the following code:

int main(void) {
unsigned int x = 42;
x = x >> 1;
printf("%d\n",x);
x = x << 2;
printf("%d\n",x);
return 0;

}

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 43 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

MIPS Programming

Writing correct assembler directly is hard.

Recommended strategy:

write,test & debug a solution in C
map down to “simplified” C
test “simplified” C and ensure correct
translate simplified C statements to MIPS instructions

Simplified C

does not have complex expressions
does have one-operator expressions

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 44 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Adding Three Numbers — C to Simplified C

C

int main(void) {
int w = 3;
int x = 17;
int y = 25;
printf("%d\n", w + x + y);
return 0;

}
source code for add.c

Simplified C

int main(void) {
int w, x, y, z;
w = 3;
x = 17;
y = 25;
z = w + x;
z = z + y;
printf("%d", z);
printf("%c", '\n');
return 0;

}
source code for add.simple.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 45 / 49

https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/mips_basics/code/add.c
https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/mips_basics/code/add.simple.c
https://www.cse.unsw.edu.au/~dp1092/24T3/

Adding Two Numbers — Simple C to MIPS
Simplified C

int w, x, y, z;
w = 3;
x = 17;
y = 25;
z = w + x;
z = z + y;
printf("%d", z);
printf("%c", '\n');

MIPS

add 3, 17 and 25 then print the result
main:

w in $t0, x in $t0
y in $t2, z in $t3
li $t0, 3 # w = 3;
li $t1, 17 # x = 17;
li $t2, 25 # y = 25;
add $t3, $t0, $t1 # z = w + x
add $t3, $t3, $t2 # z = z + y
move $a0, $t3 # printf("%d", z);
li $v0, 1
syscall
li $a0, '\n' # printf("%c", '\n');
li $v0, 11
syscall
li $v0, 0 # return 0
jr $ra

source code for add.s

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 46 / 49

https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/mips_basics/code/add.s
https://www.cse.unsw.edu.au/~dp1092/24T3/

MIPS Instructions
Instructions are simply bit patterns. MIPS instructions are 32-bits long, and specify … - an operation (e.g. load, store,
add, branch, …) - zero or more operands (e.g. registers, memory addresses, constants, …)

Some possible instruction formats

Figure 7: MIPS Instructions

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 47 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Encoding MIPS Instructions as 32 bit Numbers

Assembler Encoding

add $a3, $t0, $zero
add $d, $s, $t 000000 sssss ttttt ddddd 00000 100000
add $7, $8, $0 000000 01000 00000 00111 00000 100000

0x01003820 (decimal 1003820)
sub $a1, $at, $v1
sub $d, $s, $t 000000 sssss ttttt ddddd 00000 100010
sub $5, $1, $3 000000 00001 00011 00101 00000 100010

0x00232822 (decimal 2304034)
addi $v0, $v0, 1
addi $d, $s, C 001000 sssss ddddd CCCCCCCCCCCCCCCC
addi $2, $2, 1 001000 00010 00010 0000000000000001

0x20420001 (decimal 541196289)

all instructions are variants of a small number of bit patterns
… register numbers always in same place

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 48 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

Pseudo-instructions

Pseudo-instructions are not real MIPS instructions, but are provided by mipsy for our convenience
Pseudo-Instructions

move $a1, $v0

li $t5, 42

li $s1, 0xdeadbeef

la $t3, label

Real Instructions

addu $a1, $0, $v0

addi $t5, $0, 42

lui $s1, 0xdead
ori $s1, $s1, 0xbeef

lui $t3, label[31..16]
ori $t3, $t3, label[15..0]

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 49 / 49

https://www.cse.unsw.edu.au/~dp1092/24T3/

