DPST1092 24T3 — MIPS Basics

https://www.cse.unsw.edu.au/~dp1092/24T3/

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 1/49

Computer Architecture

In 1092 we run a compiler and produce a executable file.
We run a compiler (dcc or gec)
@ an executable file hello is stored on the hard drive
@ We then run ./hello
What happens when you run this program? Where does it go?

How does it get executed? How does the CPU interact with hello?

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 2/49

Memory

Lets take this step by step
We have a hard drive

@ Hard drives are refered to as secondary storage

@ they usually have a large capacity

@ they are non volatile memory (doesnt get erased when you turn off computer)
We have RAM(which for us is primary memory)

@ primary memory

@ very fast, traditionally closer to the CPU

@ lower capacity

3/49

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics

RAM

A program needs to be ‘in memory’ in order for it to run
@ ‘memory’ typically refers to RAM
@ Communicating between the CPU and drives is too slow
Our executiable file contains information on how to set up memory
@ What instructions does the CPU need to follow?
@ What strings do we need loaded into memory?

Our file is stored in RAM as 1's and 0’s it is in machine code.

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 4] 49

Machine code and Assembly

0010000100001001
addi St1, S$to,

Figure 1: Encoding

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 5/49

Why Study Assembler?

Useful to know assembly language because ...
@ sometimes you are required to use it:
> e.g., low-level system operations, device drivers
@ improves your understanding of how compiled programs execute
» very helpful when debugging
» understand performance issues better
@ performance tweaking ... squeezing out last pico-second
» re-write that performance critical code in assembler!
Trivia:

@ there are games created in pure assembler

» e.g., RollerCoaster Tycoon

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 6/49

CPU Architecture Families Used in Game Consoles

Year Console Architecture Chip MHz
1995 PS1 MIPS R3000A 34
1996 N64 MIPS R4200 93
2000 PS2 MIPS Emotion Engine 300
2001 xbox x86 Celeron 733
2001 GameCube Power PPC750 486
2006 xbox360 Power Xenon (3 cores) 3200
2006 PS3 Power Cell BE (9 cores) 3200
2006 Wii Power PPC Broadway 730
2013 PS4 x86 AMD Jaguar (8 cores) 1800
2013 xbone x86 AMD Jaguar (8 cores) 2000
2017 Switch ARM NVidia TX1 1000
2020 PS5 x86 AMD Zen 2 (8 cores) 3500
2020 xboxs x86 AMD Zen 2 (8 cores) 3700

What A CPU Looks Like

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics

CPU Components

A typical modern CPU has: CPU RAM
@ a set of data registers (Data Control \ 0x0000
@ a set of control registers (including PC) Registers Registers 0x0004
@ a control unit (CU) r? Zg gxgggg
@ an arithmetic-logic unit (ALU) :2 o Load 0))((0010
@ a floating-point unit (FPU) 3 Lo
@ access to memory (RAM) 4 Store
@ a set of simple (or not so simple) instructions
» transfer data between memory and registers - ALU OxFFF4
» compute values using ALU/FPU \ i) 8)):"::"::"::3

» make tests and transfer control of execution
Figure 3: A Simple CPU

Different types of processors have different configurations of the above

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics

Fetch-Execute Cycle

@ typical CPU program execution pseudo-code:
START_ADDRESS;

uint32_t program_counter
while (1) {
uint32_t dinstruction

memory[program_counter] ;

// move to next instruction
program_counter++;

// branches and jumps instruction may change program_counter
execute(instruction, &program_counter);

Fetch-Execute Cycle

Executing an instruction involves: Example instruction encodings
@ determine what the operator is (not from a real machine):
° determ!ne !f/wh!ch register(s) are.mv?l_/ed ADD $t1 $t2 $t0
@ determine if/which memory location is involved
@ carry out the operation with the relevant operands F—28 bits— F—=8 bits— F—28 bits— F—8 bits—
@ store result, if any, in appropriate register /
memory location LOAD $s7 0x1004
F—=8 bits— 38 bits— | 16 bits |

Figure 4: Fake Instructions

Assembly Language

Instructions are simply bit patterns

@ Could write machine code program just by specifying bit-patterns
e.g as a sequence of hex digits:

Ox3c041001 0x34840000 0x20020004 0Ox0000000c 0Ox20020000 O0x03e00008
» unreadable!
» difficult to maintain!
Solution: assembly language, a symbolic way of specifying machine code
@ write instructions using names rather than bit-strings
@ refer to registers using either numbers or names

@ allow names (labels) associated with memory addresses

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics

10/49

11749

12/ 49

MIPS Instructions

MIPS has several classes of instructions:

@ load and store ... transfer data between registers and memory
@ computational ... perform arithmetic/logical operations
@ jump and branch ... transfer control of program execution

@ coprocessor ... standard interface to various co-processors

» coprocessors implement floating-point operations
» wont be covered in DPST1092

@ special ... miscellaneous tasks (e.g. syscall)
HE)

MIPS Architecture: Registers

MIPS CPU has

@ 32 general purpose registers
> Every register that we will be dealing with is 32-bits

@ Registers are located on the actual CPU which makes them very fast
» We will be working with these registers

@ The PC register is a special 32-bit register
» used to keep track of which instruction needs to be executed next
» modified by branch and jump instructions

@ Hiand Lo store results of mult and div
> these are used when we have a result that doesnt fit a single register
» accessed by mthi and mflo instructions only

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 14 | 49

MIPS Architecture: Registers

Registers can be referred to as numbers ($0...$31), or by symbolic names ($zero...$ra)

Some registers have special uses:

register $0 ($zero) always has value 0, can not be changed

register $31 ($ra)is changed by jal and ja'lr instructions
registers $1 (Sat) reserved for mipsy to use in pseudo-instructions
FOR NOW: we are going to be using ($t0) - (t9), ($v0) and ($a0)

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 15/ 49

MIPS Architecture: Integer Registers

Number Names Conventional Usage

0 zero Constant 0

1 at Reserved for assembler

2,3 vO,v1 Expression evaluation and results of a function

4.7 a0..a3 Arguments 1-4

8.16 10..t7 Temporary (not preserved across function calls)

16..23 s0..s7 Saved temporary (preserved across function calls)

24,25 18,19 Temporary (not preserved across function calls)

26,27 ko,k1 Reserved for Kernel use

28 gp Global Pointer

29 sp Stack Pointer

30 fp Frame Pointer

31 ra Return Address (used by function call instructions)
15/

MIPS Architecture: Integer Registers ... Usage Convention

@ Except for registers zero and ra (0 and 31),
these uses are only programmer’s conventions

» no difference between registers 1..30 in the silicon

@ Some of these conventions are irrelevant when writing tiny assembly programs

» follow them anyway

> it's good practice

o for general use, keep to registers t0..t9, s0..s7

@ use other registers only for conventional purpose

» e.g. only, and always, use a0..a3 for arguments

@ never use registers at, k0,k1

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 17/ 49

System Calls

None of the instructions we have access to can interact with the outside world (eg. printing, scanning)

This is done for security reasons so users cannot interact with the Operating System
We ask the operating system to perform these tasks for us - this process is called a system call

The operating system can access privileged instructions on the CPU (eg. communicating to other devices)

mipsy simulates a very basic operating system

There are many types of system calls. MIPS has several that you will use.

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/

DPST1092 24T3 — MIPS Basics 18/ 49

System calls

These are some of the most popular system calls for MIPS.

Service Svo Arguments Returns
printf("%d") 1 intin $a0

fputs 4 string in $a0@

scanf ("%d") 5 none intin $vO
fgets 8 line in $a0, length in $al

exit(0) 10 none

printf("%c") 1 charin $a0@

scanf ("%c") 12 none charin $v0O

Figure 5: Systems calls

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 19/ 49

System calls (How to use them)
Using system calls varies depending on what you want to do.

e We specify which system call we want in Sv@
o eg.print_int issyscall 1:

1i Svo,
e We specify arguments (if any)
1i Sa0,

e We transfer execution to the operating system
o The OS will fulfil our request if it looks sane

syscall

e Some syscalls may return a value - check syscall table

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 20/ 49

MIPS Architecture

MIPS is a well-known and simple architecture
@ historically used everywhere from supercomputers to game consoles
@ still popular in some embedded fields: e.g., modems/routers, TVs
@ but being out-competed by ARM and, more recently, RISC-V
DPST1092 uses the MIPS32 version of the MIPS family.

DPST1092 uses simulators, not real MIPS hardware:

@ mipsy .. command-line-based emulator written by Zac
» source code: https://github.com/insou22/mipsy

@ mipsy-web ... web (WASM) GUI-based version of mipsy written by Shrey
» https://cgi.cse.unsw.edu.au/~cs1521/mipsy/

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 21/ 49

MIPS vs mipsy

MIPS is a machine architecture, including instruction set
mipsy is an simulator for the MIPS instruction set

@ reads text files containing instruction + directives

@ converts to machine code and loads into “memory”

@ provides some debugging capabilities

» single-step, breakpoints, view registers/memory, ...

@ provides mechanism to interact with operating system (syscall)
Also provides extra instructions, mapped to MIPS core set:

@ provide convenient/mnemonic ways to do common operations

> eg.move $s0, SvOratherthanaddu $s0, $vO, $0

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 22/ 49
Using Mipsy

How to to execute MIPS code without a MIPS

@ 1092 mipsy
» command line tool on CSE systems
» load programs using command line arguments
> interact using stdin/stdout via terminal
@ mipsy_web
» https://cgi.cse.unsw.edu.au/~cs1521/mipsy/
» runs in web browser, load programs with a button
» visual environment for debugging
@ spim, xspim, qtspim
» older widely used MIPS simulator
» beware: missing some pseudo-instructions used in 1521 for function calls

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 23/49

Our First MIPS program

C MIPS
int main(void) { # print a string in MIPS assembly
printf("I love MIPS\n"); main:
return 0; # ... pass address of string as argu
} la $a0, string
... 4 1s printf "%s" syscall numbe
1i $vo, 4
syscall
1i $Sve, 0 # return 0
jr Sra
.data
string:

.asciiz "I love MIPS\n"

source code for i_love_mips.s

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 24 [49

MIPS Assembly Language

MIPS assembly language programs contain

@ assembly language instructions

@ labels ... appended with :

@ comments ... introduced by #

@ directives ... symbol beginning with .

@ constant definitions, equivalent of #tdefine in C, e.g:
MAX_NUMBERS = 1000
Programmers need to specify

@ data objects that live in the data region

@ instruction sequences that live in the code/text region

Each instruction or directive appears on its own line.

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 25/49

A simple MIPS Computation

main:
w $t0, x # $tO = x
addi $to, $to, 4 # StO = x + 4
14 $t1, 2 # $tl = 2
mul $tO, $tO, $tl # S$tO = (x+4) * 2
sw $to, vy # y = (x+4) x 2
1i $vO, 0 # return 0
jr $ra
.data

x: .word 3 # int x = 3;
y: .space 4 # int y;

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 26/ 49

Data and Addresses

All operations refer to data, either

@ in a register

@ in memory

@ a constant which is embedded in the instruction itself
Computation operations refer to registers or constants.

Only load/store instructions refer to memory.

The syntax for constant value is C-like:

1 3 -1 -2 12345 0x1 OxFFFFFFFF 0b10101010 0123
lla str--ing" lal lbl lll l\nl I\OI

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 27/ 49

Describing MIPS Assembly Operations

Registers are denoted:

R, destination register where result goes
R, source register #1 where data comes from
R, source register #2 where data comes from

For example:
add $R, 3R, SR, - R, =R, + R,

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 28/49

Integer Arithmetic Instructions

assembly meaning bit pattern

addr,, r,,r, Tg=T *T, 000000ssssstttttdddddo0000100000
subr,, v, T, Tg=Ty-T; 000000ssssstttttddddd00000100010
mulr,r,r, T4=T *T; 011100ssssstttttdddddo0000000010
remr,r,r; T,=74 %7, pseudo-instruction
div TarTsr Tt Tqg=Ts / Tt pseudo-instruction
addir,r,I r,=r,+1I 001000ssssstttttIIIIIIIIIIIIIIII

@ integer arithmetic is 2's-complement
@ also: addu, subu, mulu, addiu - equivalent instructions which do not stop execution on overflow.
@ no subi instruction - use addi with negative constant
@ mipsy will translate add and sub of a constant to add1i
> eg. mipsy translates add $t7, $t4, 42toaddi $t7, $t4, 42
» for readability use add1i, e.g. addi $t7, $t4, 42

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 29/49

Integer Arithmetic Instructions - Example

addi $tO, Szero, 6 # StO = 6
addi $t5, $to, 2 # St5 = 8
mul $t4, $tO, $t5 # St4 = 48
add $t4, $t4, St5 # St4 = 56
addi $t6, $t4, -12 # St6 = 42

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 30/ 49

Extra Integer Arithmetic Instructions (little used in DPST1092)

assembly meaning bit pattern
divr,r, hi=r, %71, 000000ssSSStLttt0000000000011010
lo=r,/T1,

multr,r, hi=(r,*r,)»32

Lo = (r, * r,) & OXfFfffff
mflor, ry=lo
mfhir, ry =hi

000000sssSSttttt0O00000000011000

0000000000000000dddddeEOEEEOO1016
0000000000000000dddddeOOEEEOO1001

@ mult provides multiply with 64-bit result
» mul instruction provides only 32-bit result (can overflow)

@ mipsy translates remr, 7, 7, to div r,,r, plusmfhi r,

@ mipsy translates div r, 7, 7, todiv r,,r, plusmflor,

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics

Bit Manipulation Instructions

assembly meaning bit pattern

andr,,r,r, T =T, &7y 000000ssssstttttdddddo0pOe100100
or T, T, Ty Tg=T L1y 000000ssssstttttdddddoopee100101
XOr Ty, T, T, Tg=T Ty 000000ssssstttttdddddo0eee100110
norr,r,r, Tg=~(r,lr,) ©000000ssssstttttdddddo0000100111
andir,r,I 7r,=r &I 001100ssssstttttIIITIIIIIIIIIIIII
orir,r,1I ry=r L1 001101ssssstttttIIIIIIIIIIIIIIII
xorir,r,I r,=r, "I 001110ssssstttttIIIIIIIIIIIIIIII
notr, 7, Tg=~Tg pseudo-instruction

@ mipsy translates not r;, r, tonor rg, r, $0

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics

Shift Instructions

assembly

meaning

bit pattern

sWlvry,r,r
srlvr,r,r
sravr,, T, T
sllr,r, 1
srlir,r, 1
srarg g, 1

Tg=Te «T
Tg=Ty»7r
Tg=Ty»r
rg=r«1
rg=r;»1
rg=r»1

S

s

s

000000ssssstttttdddddooOEEE00166
000000ssssstttttdddddooeeeEE0116
000000ssssstttttdddddooeeEEEe111
00000000000tttttdddddIIIIIO00000
00000000000tttttdddddIIIIIO00010
00000000000tttttdddddIIIIIOE0011

@ srl and srlv shift zeros into most-significant bit

» this matches shift in C of unsigned value
@ sraand srav propagate most-significant bit
» this ensure shifting a negative number divides by 2
@ slav and sla don't exist as arithmetic and logical left shifts are the same
@ mipsy provides rol and ror pseudo-instructions which rotate bits
» real instructions on some MIPS versions

» no simple C equivalent

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics

31/49

32/49

33/49

Shift Arithmatic vs Logic

Arithmatic shift is used when are dealing with a signed number.
@ 1f 11010100 (-42 in 2s compliment) is shifted 2 bytes to the right
@ We get 11110101 which is -11 in 2s compliment. (this is division by 2"n)
@ When right shift it pads left most bits (MSB) with 1
@ When left shift it pads right most bits (LSB) with 1

Logic shifts just simply pad both sides with 0s.

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 34/ 49

Miscellaneous Instructions

assembly meaning bit pattern

1i R, value R, = value psuedo-instruction

la R, label R, = label psuedo-instruction

move Rd' Rs Rd = RS psuedo-instruction

s\tR, R, R, R;=R,<R, 000000ssssstttttddddd00000101010
sWti R, R,,I R,=R,<I 001010ssssstttttIIIIIIIIIIIIIIIT
wilRk,I R, =1%65536 ©00111100000tttttIIIIIIIIIIIIIIII
syscall system call 00000000000000000000000000001100

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 35/49

Example Use of Miscellaneous Instructions

14 $t4, 42 # St4 = 42

14 $t0, Ox2a # StO = 42 (hexadecimail @aA is 42 decimal)
11 st3, 'x! # St3 = 42 (ASCII for * is 42)

la $t5, start # St5 = address corresponding to label start
move $t6, $t5 # St6 = St5

slt $t1, $t3, s$4 # Stl = 0 (St3 and S$t3 contain 42)

slti $t7, $t3, 56 # St7 = 1 (St3 contains 42)

lui $t8, 1 # $t8 = 65536

addi $t8, $t8, 34464 # St8 = 100000

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 36/ 49

Important System Calls

We often rely on system services to do things for us.
syscalll lets us make system calls for these services.

mipsy provides a set of system calls for 1/0 and memory allocation.
$v0 specifies which system call —

Service Svo Arguments Returns
printf("%d") 1 intin $a0
fputs 4 string in $a0@
scanf ("%d") 5 none intin $vO
fgets 8 line in $a0, length in $al
exit(0) 10 none
printf("%c" 1 charin $a0
scanf ("%c") 12 none charin $v0
37149

A simple system call Example

C MIPS
int main(void) { # A simple example that prints out an in
printf("%d", 42); main:
return 0; i Svo, 1 # printf("%d", 4
} i $a0, 42
syscall
i $vo, 0 # set return va
jr Sra # return from m

source code for print_42.s

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 38/49

Exercise: Add two numbers 1

Write MIPS assembler that behaves like

int main(void) {
int x = 3;
printf("%d\n", x+5);
return 0;

}
Hints:

@ li loads a constant into a register

@ the number stored in $v0 determines what kind of system call it is
@ syscall 1 prints the number located in register $a0

@ syscall 11 prints the character located in register $a0

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 39/49

Exercise: Add two numbers 2

Write MIPS assembler that behaves like

int x = 3;

int main(void) {
printf("%d\n", x+5);
return 0;

}

Hints:

@ word allocates 4 bytes in memory and initialises it
@ you will need to load the value of X from RAM into a register to do the addition using lw

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 40/ 49

Exercise: Add two numbers interactively

Write MIPS assembler that behaves like

int main(void) {
int x, y;
printf("First number: ");
scanf ("%d", &x);
printf("Second number: ");
scanf ("%d", &y);
printf("%d\n", x+y);
return 0;

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 41/ 49

Exercise: Find the average

Modify the code from the previous example so it implements the following:

int main(void) {
int x, vy;
printf("First number: ");
scanf ("%d", &x);
printf("Second number: ");
scanf ("%d", &y);
printf("%d\n", (x+y)/2);
return 0;

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 42 [49

Exercise: Bit operations

Write the following code:

int main(void) {
unsigned int x = 42;
X = x > 1;
printf("%d\n",x);
X = X << 2;
printf("%d\n",x);

return 0;
https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 43/ 49

MIPS Programming

Writing correct assembler directly is hard.
Recommended strategy:

@ writetest & debug a solution in C

@ map down to “simplified” C

@ test “simplified” C and ensure correct

@ translate simplified C statements to MIPS instructions

Simplified C

@ does not have complex expressions
@ does have one-operator expressions

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 44 49

Adding Three Numbers — C to Simplified C

(o Simplified C

int main(void) { int main(void) {
int w = 3; int w, x, y, Z;
int x = 17; w = 3;
int y = 25; x = 17;
printf("%d\n", w + x + y); y = 25;
return 0; Z =W + X;

zZ =z *Yy;
printf("%d", z);
printf("%c", '\n');
return 0;

source code for add.c

}

source code for add.simple.c

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 45/ 49

Adding Two Numbers — Simple C to MIPS

Simplified C MIPS
int w, x, y, z; # add 3, 17 and 25 then print the result
w = 3; main:
x = 17; # w in StO, x in StO
y = 25; # y in S$St2, z in St3
Z = w + X; 11 $to, 3 #w = 3;
zZ =z +y,; 11 $t1, 17 # x = 17;
printf("%d", z); 11 $t2, 25 # y = 25;
printf("%c", '"\n'); add s$t3, tO, Stl1 # z = w + x
add $t3, $t3, $t2 # z = z + y
move $a@, S$t3 # printf("%d", z);
11 $vo, 1
syscall
i $ad, '\n' # printf("%c", '\n');
11 SvO, 11
syscall
1i $vo, 0 # return 0
jr Sra
source code for add.s
| twps/fwwwcseunswedua/-dp10%2/2413) L DPSTOR2B_MpsBasis 46149

MIPS Instructions

Instructions are simply bit patterns. MIPS instructions are 32-bits long, and specify ... - an operation (e.g. load, store,
add, branch, ...) - zero or more operands (e.g. registers, memory addresses, constants, ...)

Some possible instruction formats

oPcoODE| R1 R2 R3 R4 |(OPCODE R-type

6 bits— F5 bits1 F5 bitsd F5 bits1 F5 bitsd 6 bits—

Memory Address
opcoDE| R1 | R2 I-type
Constant Value
6 bits— F5 bits1 F5 bitsH | 16 bits i
Memory Address
oPcOoDE| R1 J-type
Constant Value
6 bits— 5 bitsd | 21 bits i
als
Encoding MIPS Instructions as 32 bit Numbers
Assembler Encoding
add $a3, $t0, S$zero
add s$d, $s, St 000000 sssss ttttt ddddd 00000 100000
add $7, $8, $0 000000 01000 00000 00111 0OOEO 100000
Ox01003820 (decimal 1003820)
sub al, Sat, $vi
sub $d, $s, $t 000000 sssss ttttt ddddd 00000 100010
sub $5, $1, $3 000000 00001 00011 00101 00OEO 100010
Ox00232822 (decimal 2304034)
addi $ve, $vo, 1
addi d, Ss, C 001000 sssss ddddd CcCcCcCccccceeececccc
addi $2, $2, 1 001000 00010 00010 0OOOOOOOOEOEO001

0x20420001 (decimal 541196289)

all instructions are variants of a small number of bit patterns
... register numbers always in same place

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 48 [49

Pseudo-instructions

Pseudo-instructions are not real MIPS instructions, but are provided by mipsy for our convenience

Pseudo-Instructions Real Instructions

move $al, $vO addu $al, $0, $vO

19 $t5, 42 addi $t5, $0, 42

i $sl, Oxdeadbeef Tui $sl, Oxdead
ori $sl, $sl, Oxbeef

la $t3, label lui $t3, label[31..16]
ori $t3, $t3, label[15..0]

https:/ /www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — MIPS Basics 49/ 49

