
DPST1092 24T3 — Files

https://www.cse.unsw.edu.au/~dp1092/24T3/

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 1 / 71

What are Files and Directories?

file systems manage persistent stored data e.g. on magnetic disk (HDD or SSD)

On Unix-like systems:
▶ a file is sequence (array) of zero or more bytes.
▶ no meaning for bytes associated with file

file metadata doesn’t record that it is e.g. ASCII, MP4, JPG, …
Unix-like files are just bytes

▶ a directory is an object containing zero or more files or directories.

file systems maintain metadata for files & directories, e.g. permissions

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 2 / 71

Unix-like Files & Directories

Unix-like filenames are sequences of 1 or more bytes.
▶ filenames can contain any byte except 0x00 and 0x2F
▶ 0x00 bytes (ASCII ‘\0’) used to terminate filenames
▶ 0x2F bytes (ASCII ‘/’) used to separate components of pathnames.
▶ maximum filename length, depends on file system, typically 255

Two filenames can not be used - they have a special meaning:

▶ . current directory

▶ .. parent directory

Some programs (shell, ls) treat filenames starting with . specially.

Unix-like directories are sets of files or directories

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 3 / 71

Unix/Linux File System

Unix/Linux file system is tree-like
Exception: if you follow symbolic links it is a graph.

▶ and you may infinitely loop attempting to traverse a file system
▶ but only if you follow symbolic links

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 4 / 71

Unix/Linux Pathnames

Files & directories accessed via pathnames, e.g: /home/z5555555/lab07/main.c

absolute pathnames start with a leading / and give full path from root
▶ e.g. /usr/include/stdio.h, /cs1521/public_html/

every process (running program) has a current working directory (CWD)
▶ this is an absolute pathname

shell command pwd prints current working directory

relative pathname do not start with a leading /
▶ e.g. ../../another/path/prog.c, ./a.out, main.c

relative pathnames appended to current working directory of process using them

Assume process current working directory is /home/z5555555/lab07/
▶ main.c translated to absolute path /home/z5555555/lab07/main.c
▶ ../a.out translated to absolute path /home/z5555555/lab07/../a.out
▶ which is equivalent to absolute path /home/z5555555/a.out

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 5 / 71

Everything is a File

Originally files only managed data stored on a magnetic disk.

Unix philosophy is: Everything is a File.

File system used to access:

▶ files

▶ directories (folders)

▶ storage devices (disks, SSD, …)

▶ peripherals (keyboard, mouse, USB, …)

▶ system information

▶ inter-process communication

▶ network

▶ …

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 6 / 71

File Permissions

Every file and directory in linux has read, write and execute permissions (access rights) for each of the following user
groups:

user: the file’s owner
group: the members of the file’s group
other: everyone else

read, write and execute have slightly different meanings for files vs directories:

read: For a normal file, read permission allows a user to view the contents of the file. For a directory, read
permission allows a user to view the names of the file in the directory eg use ls
write: For a normal file, write permission allows a user to modify and delete the file. For a directory, write
permission allows files within the directory to be created, deleted or renamed.
execute: For a normal file, execute permission allows a user to execute a file. For a directory it means a user may
enter the directory eg cd into it. It is also necessary to be able to access(read, write, execute) items in the
directory.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 7 / 71

File Permissions

Permissions are broken into 4 sections

You can see file permissions in linux by typing

$ ls -l

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 8 / 71

File Permissions

You can think of permissions as a set of bits, and then each 3 bits as an octal digit. eg

rwx r-x r-x
111 101 101
7 5 5

You can use the chmod command to set the permissions of a file or directory using the desired 3 digit octal code. eg.

$ chmod 700 f.txt

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 9 / 71

Default Permissions

The permissions given to newly created files and directories depend upon the default permissions and the current
umask.

The default permissions in octal for

files is 0666
directories is 0777

To find out your umask type

$ umask

The umask has the effect of disabling certain permissions

When you create a file or directory on linux, the actual permission given to it will be

(default permissions) & ~(umask)

For example, if your umask is 0027, then if you create a file it will have permissions

0666 & ~(0027) = 0666 & (0750) = 0650

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 10 / 71

File Metadata

Metadata for file system objects is stored in inodes, which hold

location of file contents in file systems
file type (regular file, directory, …)
file size in bytes
file ownership
file access permissions - who can read, write, execute the file
timestamps - times of file was created, last accessed, last updated

File system implementations often add complexity to improve performance

e.g. very small files might be stored in an inode itself

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 11 / 71

File Inodes

unix-like file systems effectively have a large array of inodes containg metadata

an inode’s index in this array is its inode-number (or i-number)

inode-number uniquely identify files within a filesystem
▶ just a zid uniquely identifies a student within UNSW

directories are effectively a list of (name, inode-number) pairs

ls -i prints inode-numbers

$ ls -i file.c
109988273 file.c
$

note there is usually more than one file systems mounted on a Unix-like system
▶ each file-systems has a separate set of inode-numbers
▶ files on different file-systems could have the same inode-number

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 12 / 71

File Access: Behind the Scenes

Access to files by name proceeds (roughly) as…

open directory and scan for name

if not found, “No such file or directory”

if found as (name,inumber), access inode table inodes[inumber]

collect file metadata and…

▶ check file access permissions given current user/group
if don’t have required access, “Permission denied”

▶ collect information about file’s location and size
▶ update access timestamp

use data in inode to access file contents

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 13 / 71

Hard Links & Symbolic Links

File system links allow multiple paths to access the same file

Hard links
▶ multiple names referencing the same file (inode)
▶ the two entries must be on the same filesystem
▶ all hard links to a file have equal status
▶ file destroyed when last hard link removed
▶ can not create a (extra) hard link to directories

Symbolic links (symlinks)
▶ point to another path name
▶ acessing the symlink (by default) accesses the file being pointed to
▶ symbolic link can point to a directory
▶ symbolic link can point to a pathname on another filesystems
▶ symbolic links don’t have permissions (just a pointer)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 14 / 71

Hard Links & Symbolic Links

$ echo 'Hello Andrew' >hello
$ ln hello hola # create hard link
$ ln -s hello selamat # create symbolic link
$ ls -l hello hola selamat
-rw-r--r-- 2 andrewt 13 Oct 23 16:18 hello
-rw-r--r-- 2 andrewt 13 Oct 23 16:18 hola
lrwxrwxrwx 1 andrewt 5 Oct 23 16:20 selamat -> hello
$ cat hello
Hello Andrew
$ cat hola
Hello Andrew
$ cat selamat
Hello Andrew

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 15 / 71

stdio.h - C Standard Library I/O Functions

system calls provide operations to manipulate files.

libc provides a non-portable low-level API to manipulate files

stdio.h provides a portable higher-level API to manipulate files.

stdio.h is part of standard C library

available in every C implementation that can do I/O

stdio.h functions are portable, convenient & efficient

use stdio.h functions for file operations unless you have a good reason not to
▶ e.g .program with special I/O requirements like a database implementation

on Unix-like systems they will call open()/read()/write()/…
▶ but with buffering for efficiency

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 16 / 71

stdio.h - fopen()

FILE *fopen(const char *pathname, const char *mode)

fopen() is stdio.h equivalent to open()

mode is string of 1 or more characters including:
▶ r open text file for reading.
▶ w open text file for writing truncated to 0 zero length if it exists created if does not exist
▶ a open text file for writing writes append to it if it exists created if does not exist

fopen returns a FILE * pointer
▶ FILE is an opaque struct - we can not access fields
▶ FILE stores file descriptor
▶ FILE may also for efficiency store buffered data,

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 17 / 71

stdio.h - fclose()

int fclose(FILE *stream)

fclose() is stdio.h equivalent to close()

call fclose() as soon as finished with stream

number of streams open at any time is limited (to maybe 1024)

stdio functions for efficiency may delay calling write()
▶ only calls write() when it has enough data (perhaps 4096 bytes)
▶ also calls write() if needed when program exits or fclose()

so last data may not be written until fclose or program exit

▶ good practice to call fclose as soon as finished using stream

fflush(stream) forces any buffered data to be written

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 18 / 71

stdio.h - read and writing
int fgetc(FILE *stream) // read a byte
int fputc(int c, FILE *stream) // write a byte

char *fputs(char *s, FILE *stream) // write a string
char *fgets(char *s, int size, FILE *stream) // read a line

int fscanf(FILE *stream, const char *format, ...) // formatted input
int fprintf(FILE *stream, const char *format, ...) // formatted output

// read/write array of bytes (fgetc/fputc + loop often better)
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

fputs/fgets, fscanf/fprintf can not be used for binary data because may contain zero bytes
▶ can use text (ASCII/Unicode) but can not use to e.g. read a jpg

scanf/fscanf/sscanf often avoided in serious code
▶ but fine while learning to code

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 19 / 71

stdio.h - convenience functions for stdin/stdout

as we often read/write to stdin/stdout stdio.h provides convenience functions, we can use:

int getchar() // fgetc(stdin)
int putchar(int c) // fputc(c, stdin)

int puts(char *s) // fputs(s,stdout)

int scanf(char *format, ...) // fscanf(stdin, format, ...)
int printf(char *format, ...) // fprintf(stdout, format, ...)

char *gets(char *s); // NEVER USE - major security vulnerability
// string may overflow array

// also NEVER USE %s with scanf - similarly major security vulnerability
scanf("%s", array);

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 20 / 71

stdio.h - I/O to strings

stdio.h provides useful functions which operate on strings

// sscanf like scanf, but input comes from char array **str**
int sscanf(const char *str, const char *format, ...);

// snprintf is like printf, but output goes to char array str
// handy for creating strings passed to other functions
// size contains size of str
int snprintf(char *str, size_t size, const char *format, ...);

// also sprintf - more convenient - but can overflow str
// major security vulnerability - DO NOT USE
int sprintf(char *str, const char *format, ...); // DO NOT USE

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 21 / 71

stdio.h - using fputc to output bytes

char bytes[] = "Hello, stdio!\n"; // 15 bytes
// write 14 bytes so we don't write (terminating) 0 byte
for (int i = 0; i < (sizeof bytes) - 1; i++) {

fputc(bytes[i], stdout);
}
// or as we know bytes is 0-terminated
for (int i = 0; bytes[i] != '\0'; i++) {

fputc(bytes[i], stdout);
}
// or if you prefer pointers
for (char *p = &bytes[0]; *p != '\0'; p++) {

fputc(*p, stdout);
}
source code for hello_stdio.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 22 / 71

stdio.h - using fputs, fwrite & fprintf to output bytes

char bytes[] = "Hello, stdio!\n"; // 15 bytes

// fputs relies on bytes being 0-terminated
fputs(bytes, stdout);
// write 14 1 byte items
fwrite(bytes, 1, (sizeof bytes) - 1, stdout);
// %s relies on bytes being 0-terminated
fprintf(stdout, "%s", bytes);
// %s relies on bytes being 0-terminated
printf("%s", bytes);
source code for hello_stdio.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 23 / 71

stdio.h - creating a file
// create file "hello.txt" containing 1 line: Hello, Zac!
// if the file already exists it will truncate the data
// in the file, (bascially overwriting it)
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[]) {

FILE *output_stream = fopen("hello.txt", "w");
if (output_stream == NULL) {

perror("hello.txt");
return 1;

}
fprintf(output_stream, "Hello, Zac!\n");
// fclose will flush data to file, best to close file ASAP
// optional here as fclose occurs automatically on exit
fclose(output_stream);
return 0;

}
source code for create_file_fopen.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 24 / 71

stdio.h - reading a file
//Opens a file named "hello.txt" and reads each byte from the file
//and prints it to stdout
//The program closes the file at the end
#include <stdio.h>
#include <stdlib.h>
#include <error.h>
#include <errno.h>
int main(void){

FILE *in = fopen("hello.txt", "r");
if (in == NULL) {

perror("hello.txt");
return 1;

}
int ch;
while ((ch = fgetc(in)) != EOF)

fputc(ch,stdout); //Could just use putchar(ch);
fclose(in);
return 0;

}
source code for read_file_fopen1.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 25 / 71

stdio.h - other operations

int fseek(FILE *stream, long offset, int whence);

fseek() is stdio equivalent to lseek(), just like lseek():

offset is in units of bytes, and can be negative

whence can be one of …
▶ SEEK_SET — set file position to offset from start of file
▶ SEEK_CUR — set file position to offset from current position
▶ SEEK_END — set file position to offset from end of file

for example:

fseek(stream, 42, SEEK_SET); // move to after 42nd byte in file
fseek(stream, 58, SEEK_CUR); // 58 bytes forward from current position
fseek(stream, -7, SEEK_CUR); // 7 bytes backward from current position
fseek(stream, -1, SEEK_END); // move to before last byte in file

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 26 / 71

Using fseek to read the last byte then the first byte of a file

FILE *input_stream = fopen(argv[1], "r");
// move to a position 1 byte from end of file
// then read 1 byte
fseek(input_stream, -1, SEEK_END);
printf("last byte of the file is 0x%02x\n", fgetc(input_stream));
// move to a position 0 bytes from start of file
// then read 1 byte
fseek(input_stream, 0, SEEK_SET);
printf("first byte of the file is 0x%02x\n", fgetc(input_stream));
source code for fseek.c

NOTE: important error checking is missing above

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 27 / 71

Using fseek to read bytes in the middle of a file

// move to a position 41 bytes from start of file
// then read 1 byte
fseek(input_stream, 41, SEEK_SET);
printf("42nd byte of the file is 0x%02x\n", fgetc(input_stream));
// move to a position 58 bytes from current position
// then read 1 byte
fseek(input_stream, 58, SEEK_CUR);
printf("100th byte of the file is 0x%02x\n", fgetc(input_stream));
source code for fseek.c

NOTE: important error checking is missing above

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 28 / 71

Using fseek to change a random file bit

FILE *f = fopen(argv[1], "r+"); // open for reading and writing
fseek(f, 0, SEEK_END); // move to end of file
long n_bytes = ftell(f); // get number of bytes in file
srandom(time(NULL)); // initialize random number

// generator with current time
long target_byte = random() % n_bytes; // pick a random byte
fseek(f, target_byte, SEEK_SET); // move to byte
int byte = fgetc(f); // read byte
int bit = random() % 8; // pick a random bit
int new_byte = byte ^ (1 << bit); // flip the bit
fseek(f, -1, SEEK_CUR); // move back to same position
fputc(new_byte, f); // write the byte
fclose(f);
source code for fuzz.c

random changes to search for errors/vulnerabilities called fuzzing

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 29 / 71

Operating system - What Does it Do.

Operating system sits between the user and the hardware.

Operating system effectively provides a virtual machine to each user.

This virtual machine is much simpler than a real machine

▶ much easier for user to write code
▶ difficult (bug-prone) code implemented by operating system

The virtual machine interface can stay the same across different hardware.

▶ much easier for user to write portable code which works on different hardware

Operating systems can coordinate/share access to resources between users.

Operating systems can provide privileges/security.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 30 / 71

Operating System - What Does it Need from Hardware.

needs hardware to provide a privileged mode
▶ code running in privileged mode can access all hardware and memory
▶ code running in privileged mode has unlimited access to memory

needs hardware to provide a non-privileged mode which:
▶ code running in non-privileged mode can not access hardware directly
▶ code running in non-privileged mode has limited access to memory
▶ provides mechanism to make requests to operating system

operating system (kernel) code runs in privileged mode

operating system runs user code in non-privileged mode

▶ with memory access restrictions so user code can only memory allocated to it

user code can make requests to operating system called system calls
▶ a system call transfers execution to operating system code in privileged mode
▶ at completion of request operating system (usually) returns execution back to user code in non-privileged mode

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 31 / 71

System Call - What is It

system call allow programs to request hardware operations

system call transfers execution to OS code in privileged mode
▶ includes arguments specifying details of request being made
▶ OS checks operation is valid & permitted
▶ OS carries out operation
▶ transfers execution back to user code in non-privileged mode

different operating system have different system calls
▶ e.g Linux system calls very different Windows system calls

Linux provides 400+ system calls

examples of operations that might be provided by system call:
▶ read or write bytes to a file
▶ request more memory
▶ create a process (run a program)
▶ terminate a process
▶ send information via a network

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 32 / 71

System Calls in mipsy

mipsy provides a virtual machine which can execute MIPS programs

mipsy also provides a tiny operating system

small number of mipsy system calls for I/O and memory allocation

access is via the syscall instruction
▶ MIPS programs running on real hardware also use syscall
▶ on Linux syscall, passes execution to operating system code
▶ Linux operating system code carries out request specified in $v0 and $a0

mipsy system calls are designed for students writing tiny MIPS programs without library functions
▶ e.g system call 1 - print an integer, system call 5 read an integer

system calls on real operating systems are more general
▶ e.g. system call might be read n bytes, write n bytes
▶ users don’t normally access system calls directly
▶ users call library functions e.g. printf & fgets which make system calls (often via other functions)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 33 / 71

Experimenting with Linux System Calls

like mipsy every Linux system call has a number, e.g write bytes to a file is system call 2
Linux provides 400+ system calls

$ cat /usr/include/x86_64-linux-gnu/asm/unistd_64.h
...
#define __NR_read 0
#define __NR_write 1
#define __NR_open 2
#define __NR_close 3
#define __NR_stat 4
...
#define __NR_pidfd_getfd 438
#define __NR_faccessat2 439
#define __NR_process_madvise 440

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 34 / 71

System Calls to Manipulate files

Some important Unix system calls:

0 — read — read some bytes from a file descriptor

1 — write— write some bytes to a file descriptor

2 — open — open a file system object, returning a file descriptor

3 — close — stop using a file descriptor

4 — stat — get file system metadata for a pathname

8 — lseek — move file descriptor to a specified offset within a file

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 35 / 71

System Calls to Manipulate files

System calls manipulate files as a stream of bytes accessed via a file descriptor

file descriptors are small integers
really index to a per-process array maintained by operating system

On Unix-like systems: a file is sequence (array) of zero or more bytes.

no meaning for bytes associated with file - file metadata doesn’t record that it is e.g. ASCII, MP4, JPG, … -
Unix-like files are just bytes

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 36 / 71

Using system calls

The C function syscall allows you to make a Linux system call without writing assembler

syscall itself is written partly/entirely in assembler - e.g.:
https://code.woboq.org/userspace/glibc/sysdeps/unix/sysv/linux/x86_64/syscall.S.html

syscall is not normally used by programmers in regular C code

▶ most system calls have their own C wrapper functions, these wrapper function are safer & more convenient
▶ e.g. the write system call has a wrapper C function called write

we only use syscall to experiment & learn

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 37 / 71

Using system calls to copy a file #1 - opening files
// cp <file1> <file2> with syscalls and no error handling
int main(int argc, char *argv[]) {

// system call number 2 is open, takes 3 arguments:
// 1) address of zero-terminated string containing file pathname
// 2) bitmap indicating whether to write, read, ... file
// O_WRONLY | O_CREAT == 0x41 == write to file, creating if necessary
// 3) permissions if file will be newly created
// 0644 == readable to everyone, writeable by owner
long read_file_descriptor = syscall(2, argv[1], O_RDONLY, 0);
long write_file_descriptor = syscall(2, argv[2], O_WRONLY | O_CREAT | O_TRUNC, 0644);

source code for cp_syscalls.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 38 / 71

Using system calls to copy a file #2 - copying the bytes
while (1) {

// system call number 0 is read - takes 3 arguments:
// 1) file descriptor
// 2) memory address to put bytes read
// 3) maximum number of bytes read
// returns number of bytes actually read
char bytes[4096];
long bytes_read = syscall(0, read_file_descriptor, bytes, 4096);
if (bytes_read <= 0) {

break;
}
// system call number 1 is write - takes 3 arguments:
// 1) file descriptor
// 2) memory address to take bytes from
// 3) number of bytes to written
// returns number of bytes actually written
syscall(1, write_file_descriptor, bytes, bytes_read);

}
source code for cp_syscalls.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 39 / 71

C Library Wrappers for System Calls

On Unix-like systems there are C library functions corresponding to each system call,
▶ e.g. open, read, write, close
▶ the syscall function is not used in normal coding

These functions are not portable
▶ C used on many non-Unix operating systems with different system calls

POSIX standardizes a few of these functions
▶ some non-Unix systems provide implementations of these functions

but better to use functions from standard C library, available everywhere
▶ e.g fopen, fgets, fputc from stdio.h
▶ on Unix-like systems these will call open, read, write
▶ on other platforms, will call other low-level functions

but sometimes we need to use lower level non-portable functions
▶ e.g. a database implementation need more control over I/O operations

documented in Unix Programmers Manual section 2 (e.g. man 2 open)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 40 / 71

Extra Types for File System Operations

Unix-like (POSIX) systems add some extra file-system-related C types in these include files:

#include <sys/types.h>
#include <sys/stat.h>

off_t — offsets within files
▶ typically int64_t - signed to allow backward references

size_t — number of bytes in some object
▶ typically uint64_t - unsigned since objects can’t have negative size

ssize_t — sizes of read/written bytes
▶ typically uint64_t - similar to size_t, but signed to allow for error values

struct stat — file system object metadata
▶ stores information about file, not its contents
▶ requires other types: ino_t, dev_t, time_t, uid_t, …

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 41 / 71

C library wrapper for open system call

int open(char *pathname, int flags)

open file at pathname, according to flags

flags is a bit-mask defined in <fcntl.h>
▶ O_RDONLY — open for reading
▶ O_WRONLY — open for writing
▶ O_APPEND — append on each write
▶ O_RDWR — open object for reading and writing
▶ O_CREAT — create file if doesn’t exist
▶ O_TRUNC — truncate to size 0

flags can be combined e.g. (O_WRONLY|O_CREAT)

if successful, return file descriptor (small non-negative int)

if unsuccessful, return -1 and set errno to value indicating reason

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 42 / 71

errno - why did that system call fail?

C library has an interesting way of returning error information

functions typically return -1 to indicate error

and set errno to integer value indicating reason for error

these integer values are #define-d in errno.h

see man errno for more infomation

convenient function perror() looks at errno and prints message with reason

or strerror() converts errno integer value to string describing reason for error

errno looks like an int global variable

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 43 / 71

C library wrapper for read system call

ssize_t read(int fd, void *buf, size_t count)

read (up to) count bytes from fd into buf
▶ buf should point to array of at least count bytes
▶ read does (can) not check buf points to enough space

if successful, number of bytes actually read is returned

0 returned, if no more bytes to read

-1 returned if error and errno set to reason

associated with a file descriptor is a current position in file

next call to read() will return next bytes from file

repeated calls to reads will yield entire contents of file

can also modify this current position with lseek()

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 44 / 71

C library wrapper for write system call

ssize_t write(int fd, const void *buf, size_t count)

attempt to write count bytes from buf into

stream identified by file descriptor fd

if successful, number of bytes actually written is returned

if unsuccessful, returns -1 and set errno

does (can) not check buf points to count bytes of data

associated with a file descriptor is a current position in file

next call to write will follow bytes already written

file often created by repeated calls to write

can also modify this current position with lseek

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 45 / 71

Hello write!

// hello world implemented with libc
#include <unistd.h>
int main(void) {

char bytes[13] = "Hello, Zac!\n";
// write takes 3 arguments:
// 1) file descriptor, 1 == stdout
// 2) memory address of first byte to write
// 3) number of bytes to write
write(1, bytes, 12); // prints Hello, Zac! on stdout
return 0;

}
source code for hello_libc.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 46 / 71

Using libc system call wrappers to copy a file
// cp <file1> <file2> implemented with libc and no error handling
int main(int argc, char *argv[]) {

// open takes 3 arguments:
// 1) address of zero-terminated string containing pathname of file to open
// 2) bitmap indicating whether to write, read, ... file
// 3) permissions if file will be newly created
// 0644 == readable to everyone, writeable by owner
int read_file_descriptor = open(argv[1], O_RDONLY);
int write_file_descriptor = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, 0644);

source code for cp_libc.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 47 / 71

Using libc system call wrappers to copy a file
while (1) {

// read takes 3 arguments:
// 1) file descriptor
// 2) memory address to put bytes read
// 3) maximum number of bytes read
// returns number of bytes actually read
char bytes[4096];
ssize_t bytes_read = read(read_file_descriptor, bytes, 4096);
if (bytes_read <= 0) {

break;
}
// write takes 3 arguments:
// 1) file descriptor
// 2) memory address to take bytes from
// 3) number of bytes to written
// returns number of bytes actually written
write(write_file_descriptor, bytes, bytes_read);

}
// good practice to close file descriptions as soon as finished using them
// not necessary needed here as program about to exit
close(read_file_descriptor);
close(write_file_descriptor);
source code for cp_libc.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 48 / 71

C library wrapper for close system call

int close(int fd)

release open file descriptor fd
if successful, return 0
if unsuccessful, return -1 and set errno

▶ could be unsuccessful if fd is not an open file descriptor
▶ e.g. if fd has already been closed

number of file descriptors may be limited (maybe to 1024)
▶ limited number of file open at any time, so use close()

An aside: removing a file e.g. via rm

removes the file’s entry from a directory

but the file (inode and data) persist until
▶ all references to the file (inode) from other directories are removed
▶ all processes accessing the file close() their file descriptor

after this, the operating system reclaims the space used by the files

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 49 / 71

C library wrapper for lseek system call

off_t lseek(int fd, off_t offset, int whence)

change the current position in stream indicated by fd
offset is in units of bytes, and can be negative
whence can be one of …

▶ SEEK_SET — set file position to offset from start of file
▶ SEEK_CUR — set file position to offset from current position
▶ SEEK_END — set file position to offset from end of file

seeking beyond end of file leaves a gap which reads as 0’s
seeking back beyond start of file sets position to start of file
for example:

lseek(fd, 42, SEEK_SET); // move to after 42nd byte in file
lseek(fd, 58, SEEK_CUR); // 58 bytes forward from current position
lseek(fd, -7, SEEK_CUR); // 7 bytes backward from current position
lseek(fd, -1, SEEK_END); // move to before last byte in file

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 50 / 71

stdio.h - using fgetc to copy a file
FILE *input_stream = fopen(argv[1], "r");
if (input_stream == NULL) {

perror(argv[1]); // prints why the open failed
return 1;

}
FILE *output_stream = fopen(argv[2], "w");
if (output_stream == NULL) {

perror(argv[2]);
return 1;

}
int c; // not char!
while ((c = fgetc(input_stream)) != EOF) {

fputc(c, output_stream);
}
fclose(input_stream); // optional here as fclose occurs
fclose(output_stream); // automatically on exit
source code for cp_fgetc.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 51 / 71

Copying One Byte Per Time with System Calls
// copy bytes one at a time from pathname passed as
// command-line argument 1 to pathname given as argument 2
int read_file_descriptor = open(argv[1], O_RDONLY);
int write_file_descriptor = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, 0644);
while (1) {

char bytes[1];
ssize_t bytes_read = read(read_file_descriptor, bytes, 1);
if (bytes_read <= 0) {

break;
}
write(write_file_descriptor, bytes, 1);

}
source code for cp_libc_one_byte.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 52 / 71

I/O Performance & Buffering - Copying One Byte Per Time

$ clang -O3 cp_libc_one_byte.c -o cp_libc_one_byte
$ dd bs=1M count=10 </dev/urandom >random_file
10485760 bytes (10 MB, 10 MiB) copied, 0.183075 s, 57.3 MB/s
$ time ./cp_libc_one_byte random_file random_file_copy
real 0m5.262s
user 0m0.432s
sys 0m4.826s

much slower than previous version which copies 4096 bytes at a time

$ clang -O3 cp_libc.c -o cp_libc
$ time ./cp_libc random_file random_file_copy
real 0m0.008s
user 0m0.001s
sys 0m0.007s

main reason - system calls are expensive

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 53 / 71

I/O Performance & Buffering - stdio Copying 1 Byte Per Time

$ clang -O3 cp_fgetc.c -o cp_fgetc
$ time ./cp_fgetc random_file random_file_copy
real 0m0.059s
user 0m0.042s
sys 0m0.009s

at the user level copies 1 byte at time using fgetc/fputc

much faster that coping 1 byte at time using read/write

little slower than coping 4096 bytes at time using read/write

how?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 54 / 71

I/O Performance & Buffering - stdio buffering

assume stdio buffering size (BUFSIZ) is 4096 (typical)

first fgetc() calls requests 4096 bytes via read()
▶ returns 1 byte stores remaining 4095 bytes in an array, the input buffer

next 4095 fgetc() calls return a byte from (input buffer) and do not to call read()

4097th fgetc() call requests 4096 bytes via read()

returns 1 byte, stores remaining 4095 bytes in the (input buffer)

and so on

first 4095 fputc() calls put bytes in an array, the (output buffer)
4096th fputc() calls write() for all 4096 bytes in the output buffer
and so on
output buffer* emptied by exit or main returning
program can explicitly force empty of output buffer with fflush() call

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 55 / 71

C library wrapper for stat system call
int stat(const char *pathname, struct stat *statbuf)

returns metadata associated with pathname in statbuf

metadata returned includes:

▶ inode number
▶ type (file, directory, symbolic link, device)
▶ size of file in bytes (if it is a file)
▶ permissions (read, write, execute)
▶ times of last access/modification/status-change

returns -1 and sets errno if metadata not accessible

int fstat(int fd, struct stat *statbuf)

same as stat() but gets data via an open file descriptor

int lstat(const char *pathname, struct stat *statbuf)`

same as stat() but doesn’t follow symbolic links

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 56 / 71

definition of struct stat

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* Inode number */
mode_t st_mode; /* File type and mode */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device ID (if special file) */
off_t st_size; /* Total size, in bytes */
blksize_t st_blksize; /* Block size for filesystem I/O */
blkcnt_t st_blocks; /* Number of 512B blocks allocated */
struct timespec st_atim; /* Time of last access */
struct timespec st_mtim; /* Time of last modification */
struct timespec st_ctim; /* Time of last status change */

};

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 57 / 71

st_mode field of struct stat

st_mode is a bitwise-or of these values (& others):

S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFBLK 0060000 block device
S_IFDIR 0040000 directory
S_IFCHR 0020000 character device
S_IFIFO 0010000 FIFO
S_IRUSR 0000400 owner has read permission
S_IWUSR 0000200 owner has write permission
S_IXUSR 0000100 owner has execute permission
S_IRGRP 0000040 group has read permission
S_IWGRP 0000020 group has write permission
S_IXGRP 0000010 group has execute permission
S_IROTH 0000004 others have read permission
S_IWOTH 0000002 others have write permission
S_IXOTH 0000001 others have execute permission

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 58 / 71

Using stat

struct stat s;
if (stat(pathname, &s) != 0) {

perror(pathname);
exit(1);

}
printf("ino = %10ld # Inode number\n", s.st_ino);
printf("mode = %10o # File mode \n", s.st_mode);
printf("nlink =%10ld # Link count \n", (long)s.st_nlink);
printf("uid = %10u # Owner uid\n", s.st_uid);
printf("gid = %10u # Group gid\n", s.st_gid);
printf("size = %10ld # File size (bytes)\n", (long)s.st_size);
printf("mtime =%10ld # Modification time (seconds since 1/1/70)\n",

(long)s.st_mtime);
source code for stat.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 59 / 71

mkdir
int mkdir(const char *pathname, mode_t mode)

create a new directory called pathname with permissions mode

if pathname is e.g. a/b/c/d

▶ all of the directories a, b and c must exist

▶ directory c must be writeable to the caller

▶ directory d must not already exist

the new directory contains two initial entries

▶ . is a reference to itself

▶ .. is a reference to its parent directory

returns 0 if successful, returns -1 and sets errno otherwise

for example:

mkdir("newDir", 0755);

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 60 / 71

Example of using mkdir to create directories

#include <stdio.h>
#include <sys/stat.h>
// create the directories specified as command-line arguments
int main(int argc, char *argv[]) {

for (int arg = 1; arg < argc; arg++) {
if (mkdir(argv[arg], 0755) != 0) {

perror(argv[arg]); // prints why the mkdir failed
return 1;

}
}
return 0;

}
source code for mkdir.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 61 / 71

Other useful Linux (POSIX) functions

chmod(char *pathname, mode_t mode) // change permission of file/...

unlink(char *pathname) // remove a file/directory/...

rename(char *oldpath, char *newpath) // rename a file/directory

chdir(char *path) // change current working directory

getcwd(char *buf, size_t size) // get current working directory

link(char *oldpath, char *newpath) // create hard link to a file

symlink(char *target, char *linkpath) // create a symbolic link

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 62 / 71

changing file permissions

// first argument is mode in octal
mode_t mode = strtol(argv[1], &end, 8);
// check first argument was a valid octal number
if (argv[1][0] == '\0' || end[0] != '\0') {

fprintf(stderr, "%s: invalid mode: %s\n", argv[0], argv[1]);
return 1;

}
for (int arg = 2; arg < argc; arg++) {

if (chmod(argv[arg], mode) != 0) {
perror(argv[arg]); // prints why the chmod failed
return 1;

}
}
source code for chmod.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 63 / 71

removing files

// remove the specified files
int main(int argc, char *argv[]) {

for (int arg = 1; arg < argc; arg++) {
if (unlink(argv[arg]) != 0) {

perror(argv[arg]); // prints why the unlink failed
return 1;

}
}
return 0;

}
source code for rm.c

$ dcc rm.c
$./a.out rm.c
$ ls -l rm.c
ls: cannot access 'rm.c': No such file or directory

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 64 / 71

renaming a file
// rename the specified file
int main(int argc, char *argv[]) {

if (argc != 3) {
fprintf(stderr, "Usage: %s <old-filename> <new-filename>\n",

argv[0]);
return 1;

}
char *old_filename = argv[1];
char *new_filename = argv[2];
if (rename(old_filename, new_filename) != 0) {

fprintf(stderr, "%s rename %s %s:", argv[0], old_filename,
new_filename);

perror("");
return 1;

}
return 0;

}
source code for rename.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 65 / 71

cd-ing up one directory at a time
// use repeated chdir("..") to climb to root of the file system
char pathname[PATH_MAX];
while (1) {

if (getcwd(pathname, sizeof pathname) == NULL) {
perror("getcwd");
return 1;

}
printf("getcwd() returned %s\n", pathname);
if (strcmp(pathname, "/") == 0) {

return 0;
}
if (chdir("..") != 0) {

perror("chdir");
return 1;

}
}
source code for getcwd.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 66 / 71

making a 1000-deep directory (advanced)
for (int i = 0; i < 1000;i++) {

char dirname[256];
snprintf(dirname, sizeof dirname, "d%d", i);
if (mkdir(dirname, 0755) != 0) {

perror(dirname);
return 1;

}
if (chdir(dirname) != 0) {

perror(dirname);
return 1;

}
char pathname[1000000];
if (getcwd(pathname, sizeof pathname) == NULL) {

perror("getcwd");
return 1;

}
printf("\nCurrent directory now: %s\n", pathname);

}
source code for nest_directories.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 67 / 71

creating 1000 hard links to a file - creating the file (advanced)

int main(int argc, char *argv[]) {
char pathname[256] = "hello.txt";
// create a target file
FILE *f1;
if ((f1 = fopen(pathname, "w")) == NULL) {

perror(pathname);
return 1;

}
fprintf(f1, "Hello Andrew!\n");
fclose(f1);

source code for many_links.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 68 / 71

creating 1000 hard links to a file -checking the file (advanced)

for (int i = 0; i < 1000; i++) {
printf("Verifying '%s' contains: ", pathname);
FILE *f2;
if ((f2 = fopen(pathname, "r")) == NULL) {

perror(pathname);
return 1;

}
int c;
while ((c = fgetc(f2)) != EOF) {

fputc(c, stdout);
}
fclose(f2);

source code for many_links.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 69 / 71

creating 1000 hard links to a file (creating a link)

char new_pathname[256];
snprintf(new_pathname, sizeof new_pathname,

"hello_%d.txt", i);
printf("Creating a link %s -> %s\n",

new_pathname, pathname);
if (link(pathname, new_pathname) != 0) {

perror(pathname);
return 1;

}
}
return 0;

}
source code for many_links.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 70 / 71

POSIX functions to access directory contents

#include <sys/types.h>
#include <dirent.h>

// open a directory stream for directory name
DIR *opendir(const char *name);

// return a pointer to next directory entry
struct dirent *readdir(DIR *dirp);

// close a directory stream
int closedir(DIR *dirp);

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Files 71 / 71

