
DPST1092 24T3 — Data Representation and Integers

https://www.cse.unsw.edu.au/~dp1092/24T3/

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 1 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/
https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (1)

What happens when we declare variables in C?

What is an integer? How is it stored?

What happens when we malloc some memory? What do we get back?

What are pointers? What do they store?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 2 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (2)

What happens when we declare variables in C?

’’’ c int x;

int y = 7; ’’’

When these lines are executed, what does it look like in the computer?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 3 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (3) Names

What happens when we declare variables in C?

’’’ c int x;

x = 7; ’’’

When these lines are executed, what does it look like in the computer?

A chunk of memory from our RAM (more about this later) gets allocated to our program, and is named x.

And then the number 7 is written into the memory named x

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 4 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (4) Types

What happens when we declare variables in C?

’’’ c int x;

x = 7;

//What if we try and set it to the wrong type?

long long y = 99; //(long long is just another datatype that stores REALLY big numbers)

x = y; ’’’

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 5 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (5) Types cont.

What happens when we declare variables in C?

’’’ c int x;

x = 7;

What if we try and set it to the wrong type?

long long y = 99; //(long long is just another datatype that stores REALLY big numbers)

x = y;

That’s right! It says you can’t. Different compilers will tell you different things but usually something like:

‘warning: conversion from ‘long long int’ to ‘int’ may change value [-Wconversion]’

Why did it gives us this warning?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 6 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (6) Types cont.

What happens when we declare variables in C?

’’’ c int x;

x = 7;

//What if we try and set it to the wrong type?

//long long y = 99; //(long long is just another datatype that stores REALLY big numbers)

x = y; ’’’

That’s right! It says you can’t. Different compilers will tell you different things but usually something like:

‘warning: conversion from ‘long long int’ to ‘int’ may change value [-Wconversion]’

Why did it gives us this warning?

It might not fit in the original integer.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 7 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (7) Location

What happens when we declare variables in C?

int x;

x = 7;

Now how do we actually use this memory? Suppose we want to print our value. Which of the following should we run?

a: printf(“%d”, x);

b: printf(“%d”, &x);

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 8 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (8) Location cont.

What happens when we declare variables in C?

int x;

x = 7;

Now how do we actually use this memory? Suppose we want to print our value. Which of the following should we run?

a: printf(“%d”, x); (Wrong)

b: printf(“%d”, &x); (Correct)

Why is the first one correct? Let’s look at the man pages.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 9 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (9) Location cont.

What happens when we declare variables in C?

int x;

x = 7;

Now how do we actually use this memory? Suppose we want to print our value. Which of the following should we run?

a: printf(“%d”, x); (Wrong)

b: printf(“%d”, &x); (Correct)

Why is the first one correct? Printf requires the memory address or ‘location’ of what you want to print.

That is what the ‘&’ does. You can think of it like a function, it takes in a name ‘x’ and then gives you the ‘location’ of x.

So &x will give you the location of x.

Printf then goes and prints the ‘value’ at that location.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 10 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (10) Declaration Recap

What happens when we declare variables in C?

int x = 7;

So when we declare a variable in C, we are given a chunk of memory that has:

a name, in this case ‘x’.

a value, in this case, 7.

a location, retrievable via ‘&x’

a type, which tells us…

▶ its size (you can get this in bytes using ‘sizeof’)
▶ what we can do with it (e.g. z = x + y works with integers since c knows + is trying to add them)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 11 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (11) Pointers & Malloc

What happens when we declare variables in C?

int x = 7;

So when we declare a variable in C, we are given a chunk of memory that has:

a name, in this case ‘x’.

a value, in this case, 7.

a location, retrievable via ‘&x’

a type, which tells us…

▶ its size (you can get this in bytes using ‘sizeof’)
▶ what we can do with it (e.g. z = x + y works with integers since c knows + is trying to add them)

Though not all the time will it have all these fields. Sometimes, there is no name. When might a variable not have a
name?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 12 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (12) Pointers & Malloc cont.

What happens when we declare variables in C?

int x = 7;

So when we declare a variable in C, we are given a chunk of memory that has:

a name, in this case ‘x’.

a value, in this case, 7.

a location, retrievable via ‘&x’

a type, which tells us…

▶ its size (you can get this in bytes using ‘sizeof’)
▶ what we can do with it (e.g. z = x + y works with integers since c knows + is trying to add them)

Though not all the time will a chunk of memory have all these fields. When might this occur?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 13 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (13) Pointers & Malloc cont.

What happens when we declare variables in C?

int x = 7;

So when we declare a variable in C, we are given a chunk of memory that has:

a name, in this case ‘x’.

a value, in this case, 7.

a location, retrievable via ‘&x’

a type, which tells us…

▶ its size (you can get this in bytes using ‘sizeof’)
▶ what we can do with it (we will take about this now)

Though not all the time will a chunk of memory have all these fields. When might this occur?

Correct! When you do a ‘malloc’

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 14 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (14) Pointers & Malloc cont.

What do malloc’s do?

int *p;

p = malloc(sizeof(int));

What does the code above do?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 15 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (15) Pointers & Malloc cont.

What do malloc’s do?

int *p;

p = malloc(sizeof(int));

What does the code above do?

A malloc function takes in a size (in bytes) and then returns you the address or location of that memory chunk. So
here, p stores an address to the memory chunk we have just asked malloc to give us.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 16 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (16) Pointers & Malloc cont.

What do malloc’s do?

int *p;

p = malloc(sizeof(int));

What does the code above do?

A malloc function takes in a size (in bytes) and then returns you the address or location of that memory chunk. So
here, p stores an address to the memory chunk we have just asked malloc to give us.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 17 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (17) Pointers & Malloc cont.

What do malloc’s do?

int *p;

p = malloc(sizeof(int));

What does the code above do?

A malloc function takes in a size (in bytes) and then returns you the address or location of that memory chunk. So
here, p stores an address to the memory chunk we have just asked malloc to give us.

What is this declartion int p? Whenever we see a declaration with a star, like int x or char *y what does it mean?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 18 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (18) Pointers & Malloc cont.

What do malloc’s do?

int *p;

p = malloc(sizeof(int));

What does the code above do?

A malloc function takes in a size (in bytes) and then returns you the address or location of that memory chunk. So
here, p stores an address to the memory chunk we have just asked malloc to give us.

What is this declartion int p? Whenever we see a declaration with a star, like int x or char *y what does it mean?

It means that when I do ‘type* var’, ‘var’ is an address or location of a memory chunk holding that ‘type’.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 19 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (19) Pointers & Malloc cont.

What do malloc’s do?

int *p;

p = malloc(sizeof(int));

How do I actually use pointers? How do I store a number into the memory p points to?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 20 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (20) Pointers & Malloc cont.

What do malloc’s do?

int *p;

p = malloc(sizeof(int));

How do I actually use pointers? How do I store a number into the memory p points to?

*p = 10

Nice! What does this do? We can think of * as the opposite of &.

&x: Converts variable name to location

p: Converts variable location* to name

So we can assign to the variable in that location, the value 10.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 21 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (21) Pointers & Malloc cont.

What do malloc’s do?

int *p;

p = malloc(sizeof(int));

How do I actually use pointers? How do I store a number into the memory p points to?

*p = 10

Now what is the correct print statement to print 10?

a: printf(“%d”, p);

b: printf(“%d”, &p);

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 22 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (22) Pointers & Malloc cont.

What do malloc’s do?

int *p;

p = malloc(sizeof(int));

How do I actually use pointers? How do I store a number into the memory p points to?

*p = 10

Now what is the correct print statement to print 10?

a: printf(“%d”, p); (Correct)

b: printf(“%d”, &p); (Wrong)

Remember that printf requires an address. ‘p’ is already an address to the variable that is 10 and therefore, we only
need to give it p.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 23 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (22) Types 2.

So when we declare a variable in C, we are given a chunk of memory that has:

a name, in this case ‘x’.

a value, in this case, 7.

a location, retrievable via ‘&x’

a type, which tells us…

▶ its size (you can get this in bytes using ‘sizeof’)
▶ what we can do with it (What about this)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 24 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (23) Types 2 cont.

Suppose I have some code:

’int *x = malloc(sizeof(int));

int *y = malloc(sizeof(int));

*x = 5

*y = 10

z = x + y’

What is wrong with this code?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 25 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (24) Types 2 cont.

Suppose I have some code:

’int *x = malloc(sizeof(int));

int *y = malloc(sizeof(int));

*x = 5

*y = 10

z = x + y’

What is wrong with this code?

Correct, you can’t add pointers together! Your compiler will warn you because ‘+’ is not defined on pointers.
Therefore, the type of a variable will also inform you of the operations you can do on it.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 26 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (25) Interlude

Let’s have a quick break to allow you to absorb that.

Come up and ask any questions you have.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 27 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (26) Exercises

Suppose I have the following code:

int x = 7;

int *p = malloc(sizeof(int));

*p = 15

#printf(“%d”, &x); #What happens?

#printf(“%d”, p); #What happens?

#how do I set x using the value p points to.

#how do I set the variable p points to with x.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 28 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (27) Exercises

Suppose I have the following code:

int x = 7;

int *p = malloc(sizeof(int));

*p = 15

#printf(“%d”, &x); #What happens? (7)

#printf(“%d”, p); #What happens? (15)

#how do I set x using the value p points to. (x = *p)

#how do I set the variable p points to with x. (*p = x)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 29 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (28) Exercises

Suppose I have the following code:

int x = 7;

int *p = malloc(sizeof(int));

*p = 15

p = &x

*p = 15

#printf(“%d”, &x); #What happens?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 30 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (29) Exercises

Suppose I have the following code:

int x = 7;

int *p = malloc(sizeof(int));

*p = 15

p = &x

*p = 15

#printf(“%d”, &x); #What happens? (15)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 31 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (30) Exercises

Suppose I have the following code:

int x = 7;

int *p = malloc(sizeof(int));

*p = 15

p = &x

p = 15

#printf(“%d”, &x); #What happens?

#printf(“%d”, *p); #What happens?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 32 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (31) Exercises

Suppose I have the following code:

int x = 7;

int *p = malloc(sizeof(int));

*p = 15

p = &x

p = 15

#printf(“%d”, &x); #What happens? (7)

#printf(“%d”, *p); #What happens? (Whatever value is at address 15, some random trash left there)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 33 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (32) Scope

A C program sees data as a collection of variables

Variables are examples of computational objects

Each computational object has

a location in memory (obtainable via &)

a value (ultimately just a bit-string)

a name (unless created by malloc())

a type, which determines …

▶ its size (in units of whole bytes, sizeof)
▶ how to interpret its value; what operations apply

a scope (where it’s visible within the program)

a lifetime (during which part of program execution it exists)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 34 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (32) Scope

Suppose we have the code if (some condition) { int x = 10; } printf(“%d”, &x);

Is this allowed?

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 35 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Revision (33) Scope

Suppose we have the code if (some condition) { int x = 10; } printf(“%d”, &x);

Is this allowed? No! C has concepts of scopes. If x is declared in the if statement, then we cannot access it outside.
Scopes are complex, but hopefully the compiler will tell you when you are breaking rules and you’ll get a feel for it
with time.

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 36 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Memory: The C View of Data

A C program sees data as a collection of variables

Variables are examples of computational objects

Each computational object has

a location in memory (obtainable via &)

a value (ultimately just a bit-string)

a name (unless created by malloc())

a type, which determines …

▶ its size (in units of whole bytes, sizeof)
▶ how to interpret its value; what operations apply

a scope (where it’s visible within the program)

a lifetime (during which part of program execution it exists)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 37 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Computer Systems

Component view of typical modern computer system

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 38 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


C: Runtime memory Usage

Run-time memory usage depends on language processor.

Memory regions during C program execution …

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 39 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


C: Runtime Stack Usage
Example of runtime stack during call to h()

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 40 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


The Physical View of Data

Memory = indexed array of bytes

Indexes are “memory addresses” (a.k.a. pointers)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 41 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Properties of physical memory

called main memory (or RAM, or primary storage, …)
indexes are “memory addresses” (a.k.a. pointers)
data can be fetched in chunks of 1,2,4,8 bytes
cost of fetching any byte is same (ns)
usually volatile
when addressing objects in memory …

▶ any byte address can be used to fetch 1-byte object
▶ byte address for N-byte object must be divisible by N

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 42 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Unsigned integers

The unsigned int data type

commonly 32 bits, storing values in the range 0 .. 232-1

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 43 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Decimal Representation

Can interpret decimal number 4705 as:
4 × 103 + 7 × 102 + 0 × 101 + 5 × 100

The base or radix is 10 … digits 0 – 9

Place values:

… 1000 100 10 1
… 103 102 101 100

Write number as 470510

▶ Note use of subscript to denote base

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 44 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Representation in Other Bases

base 10 is an arbitrary choice

can use any base

e.g. could use base 7

Place values:

… 343 49 7 1
… 73 72 71 70

Write number as 12167 and interpret as:
1 × 73 + 2 × 72 + 1 × 71 + 6 × 70 == 45410

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 45 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Binary Representation

Modern computing uses binary numbers

▶ because digital devices can easily produce high or low level voltages which can represent 1 or 0.

The base or radix is 2
Digits 0 and 1

Place values:

⋯ 8 4 2 1
⋯ 23 22 21 20

Write number as 10112 and interpret as:
1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 == 1110

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 46 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Converting between Binary and Decimal

Example: Convert 11012 to Decimal:

Example: Convert 29 to Binary:

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 47 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Hexadecimal Representation

Binary numbers hard for humans to read — too many digits!

Conversion to decimal awkward and hides bit values

Solution: write numbers in hexadecimal!

The base or radix is 16 … digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Place values:

… 4096 256 16 1
… 163 162 161 160

Write number as 3𝐴𝐹116 and interpret as:
3 × 163 + 10 × 162 + 15 × 161 + 1 × 160 == 1508910

in C, 0x prefix denotes hexadecimal, e.g. 0x3AF1

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 48 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Octal & Binary C constants

Octal (based 8) representation used to be popular for binary numbers

Similar advantages to hexadecimal

in C a leading 0 denotes octal, e.g. 07563

standard C doesn’t have a way to write binary constants

some C compilers let you write 0b

▶ OK to use 0b in experimental code but don’t use in important code

printf("%u", 0x2A); // prints 42
printf("%u", 052); // prints 42
printf("%u", 0b101010); // might compile and print 42

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 49 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Binary Constants

In hexadecimal, each digit represents 4 bits

0100 1000 1111 1010 1011 1100 1001 0111
0x 4 8 F A B C 9 7

In octal, each digit represents 3 bits

01 001 000 111 110 101 011 110 010 010 111
0 1 1 0 7 6 5 3 6 2 2 7

In binary, each digit represents 1 bit

0b01001000111110101011110010010111

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 50 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Converting between Binary and Hexadecimal

Example: Convert 10111110001010012 to Hex:

Example: Convert 1𝐶𝐸𝐷16 to Binary:

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 51 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Signed integers

The int data type

commonly 32 bits, storing values in the range -231 .. 231-1

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 52 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Representing Negative Integers

modern computers almost always use two’s complement to represent integers

positive integers and zero represented in obvious way

negative integers represented in clever way to make arithmetic in silicon fast/simpler

for an n-bit binary number the representation of −𝑏 is 2𝑛 − 𝑏

e.g. in 8-bit two’s complement −5 is represented as 28 − 5 == 111110112

To form −𝑏 from 𝑏 you can also negate all then bits and then add 1

e.g in 8-bit two’s complement

▶ 5 is represented as 00000101
▶ If we negate all bits we get 11111010
▶ If we then add 1 we get 11111011 which represents -5

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 53 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Code example: printing all 8 bit twos complement bit patterns

Some simple code to examine all 8 bit twos complement bit patterns.

for (int i = -128; i < 128; i++) {
printf("%4d ", i);
print_bits(i, 8);
printf("\n");

}
source code for 8_bit_twos_complement.c

$ dcc 8_bit_twos_complement.c print_bits.c -o 8_bit_twos_complement
source code for print_bits.c source code for print_bits.h

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 54 / 62

https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/data_representation_integers/code/8_bit_twos_complement.c
https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/data_representation_integers/code/print_bits.c
https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/data_representation_integers/code/print_bits.h
https://www.cse.unsw.edu.au/~dp1092/24T3/


Code example: printing all 8 bit twos complement bit patterns

$ ./8_bit_twos_complement
-128 10000000
-127 10000001
-126 10000010
...
-3 11111101
-2 11111110
-1 11111111
0 00000000
1 00000001
2 00000010
3 00000011

...
125 01111101
126 01111110
127 01111111

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 55 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Code example: printing bits of int

int a = 0;
printf("Enter an int: ");
scanf("%d", &a);
// sizeof returns number of bytes, a byte has 8 bits
int n_bits = 8 * sizeof a;
print_bits(a, n_bits);
printf("\n");
source code for print_bits_of_int.c

$ dcc print_bits_of_int.c print_bits.c -o print_bits_of_int
$ ./print_bits_of_int
Enter an int: 42
00000000000000000000000000101010
$ ./print_bits_of_int
Enter an int: -42
11111111111111111111111111010110

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 56 / 62

https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/data_representation_integers/code/print_bits_of_int.c
https://www.cse.unsw.edu.au/~dp1092/24T3/


Code example: printing bits of int

$ ./print_bits_of_int
Enter an int: 0
00000000000000000000000000000000
$ ./print_bits_of_int
Enter an int: 1
00000000000000000000000000000001
$ ./print_bits_of_int
Enter an int: -1
11111111111111111111111111111111
$ ./print_bits_of_int
Enter an int: 2147483647
01111111111111111111111111111111
$ ./print_bits_of_int
Enter an int: -2147483648
10000000000000000000000000000000
$

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 57 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Bits in Bytes in Words

Many hardware operations works with bytes: 1 byte == 8 bits

C’s sizeof gives you number of bytes used for variable or type

sizeof variable - returns number of bytes to store variable

sizeof (type) - returns number of bytes to store type

On CSE servers, C types have these sizes

▶ char = 1 byte = 8 bits, 42 is 00101010
▶ short = 2 bytes = 16 bits, 42 is 0000000000101010
▶ int = 4 bytes = 32 bits, 42 is 00000000000000000000000000101010
▶ double = 8 bytes = 64 bits, 42 = ?

above are common sizes but not universal on a small embedded CPU
sizeof (int) might be 2 (bytes)

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 58 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Code example: integer_types.c - exploring integer types
We can use sizeof and limits.h to explore the range of values
which can be represented by standard C integer types on our machine…

$ dcc integer_types.c -o integer_types
$ ./integer_types

Type Bytes Bits
char 1 8

signed char 1 8
unsigned char 1 8

short 2 16
unsigned short 2 16

int 4 32
unsigned int 4 32

long 8 64
unsigned long 8 64

long long 8 64
unsigned long long 8 64

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 59 / 62

https://www.cse.unsw.edu.au/~dp1092/24T3/


Code example: integer_types.c - exploring integer types

Type Min Max
char -128 127

signed char -128 127
unsigned char 0 255

short -32768 32767
unsigned short 0 65535

int -2147483648 2147483647
unsigned int 0 4294967295

long -9223372036854775808 9223372036854775807
unsigned long 0 18446744073709551615

long long -9223372036854775808 9223372036854775807
unsigned long long 0 18446744073709551615
source code for integer_types.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 60 / 62

https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/data_representation_integers/code/integer_types.c
https://www.cse.unsw.edu.au/~dp1092/24T3/


stdint.h - integer types with guaranteed sizes

#include <stdint.h>

to get below integer types (and more) with guaranteed sizes

we will use these heavily in CP1521

// range of values for type
// minimum maximum

int8_t i1; // -128 127
uint8_t i2; // 0 255
int16_t i3; // -32768 32767
uint16_t i4; // 0 65535
int32_t i5; // -2147483648 2147483647
uint32_t i6; // 0 4294967295
int64_t i7; // -9223372036854775808 9223372036854775807
uint64_t i8; // 0 18446744073709551615
source code for stdint.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 61 / 62

https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/data_representation_integers/code/stdint.c
https://www.cse.unsw.edu.au/~dp1092/24T3/


Code example: char_bug.c

Common C bug:

char c; // c should be declared int (int16_t would work, int is better)
while ((c = getchar()) != EOF) {

putchar(c);
}

Typically stdio.h contains:

#define EOF -1

most platforms: char is signed (-128..127)
▶ loop will incorrectly exit for a byte containing 0xFF

rare platforms: char is unsigned (0..255)
▶ loop will never exit

source code for char_bug.c

https://www.cse.unsw.edu.au/~dp1092/24T3/ DPST1092 24T3 — Data Representation and Integers 62 / 62

https://cgi.cse.unsw.edu.au/~dp1092/24T3//topic/data_representation_integers/code/char_bug.c
https://www.cse.unsw.edu.au/~dp1092/24T3/

