
DPST1092 23T2 — Concurrency, Parallelism, Threads

https://www.cse.unsw.edu.au/~dp1092/23T2/

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 1 / 44

Concurrency + Parallelism

Concurrency vs Parallelism

Flynn’s taxonomy

Threads in C

What can go wrong?

Synchronisation with mutexes

What can still go wrong?

Atomics

Lifetimes + Thread barriers

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 2 / 44

Concurrency? Parallelism?
Concurrency:
multiple computations in overlapping time periods …
does not have to be simultaneous

Parallelism:
multiple computations executing simultaneously

Common classifications of types of parallelism (Flynn’s taxonomy):

SISD: Single Instruction, Single Data (“no parallelism”)
▶ e.g. our code in mipsy

SIMD: Single Instruction, Multiple Data (“vector processing”):
▶ multiple cores of a CPU executing (parts of) same instruction
▶ e.g., GPUs rendering pixels

MISD: Multiple Instruction, Single Data (“pipelining”):
▶ data flows through multiple instructions; very rare in the real world
▶ e.g., fault tolerance in space shuttles (task replication), sometimes A.I.

MIMD: Multiple Instruction, Multiple Data (“multiprocessing”)
▶ multiple cores of a CPU executing different instructions

Both parallelism and concurrency need to deal with synchronisation.
https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 3 / 44

Data Parallel Computing: Parallelism Across An Array
multiple, identical processors
each given one element of a data structure from main memory
each performing same computation on that element: SIMD
results copied back to data structure in main memory

But not totally independent: need to synchronise on completion
Graphics processing units (GPUs) provide this form of parallelism

▶ used to compute the same calculation for every pixel in an image quickly
▶ popularity of computer gaming has driven availablity of powerful hardware
▶ there are tools & libraries to run some general-purpose programs on GPUs
▶ if the algorithm fits this model, it might run 5-10x faster on a GPU
▶ e.g., GPUs used heavily for neural network training (deep learning)

beyond the scope of CP1521!
https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 4 / 44

Distributed Parallel Computing: Parallelism Across Many Computers
Parallelism can also occur between multiple computers!

Example: Map-Reduce is a popular programming model for

manipulating very large data sets
on a large network of computers — local or distributed

▶ spread across a rack, data center or even across continents

The map step filters data and distributes it to nodes

data distributed as (key, value) pairs
each node receives a set of pairs with common key

Nodes then perform calculation on received data items.

The reduce step computes the final result

by combining outputs (calculation results) from the nodes

There also needs a way to determine when all calculations completed.

(Beyond the scope of CP1521!)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 5 / 44

Parallelism Across Processes

One method for creating parallelism:
create multiple processes, each doing part of a job.

child executes concurrently with parent
runs in its own address space
inherits some state information from parent, e.g. open fd’s

Processes have some disadvantages:

process switching is expensive
each require a significant amount of state — memory usage
communication between processes potentially limited and/or slow

But one big advantage:

separate address spaces make processes more robust.

The web server providing the class website uses process-level parallelism

An android phone will have several hundred processes running.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 6 / 44

Threads: Parallelism within Processes

Threads allow us parallelism within a process.
Threads allow simultaneous execution.
Each thread has its own execution state
often called Thread control block (TCB).
Threads within a process share address space:

▶ threads share code: functions
▶ threads share global/static variables
▶ threads share heap: malloc

But a separate stack for each thread:
▶ local variables not shared

Threads in a process share file descriptors, signals.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 7 / 44

Threading with POSIX Threads (pthreads)

POSIX Threads is a widely-supported threading model.
supported in most Unix-like operating systems, and beyond

Describes an API/model for managing threads (and synchronisation).

#include <pthread.h>

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 8 / 44

pthread_create(3): create a new thread

int pthread_create (
pthread_t *thread,
const pthread_attr_t *attr,
void *(*thread_main)(void *),
void *arg);

Starts a new thread running the specified thread_main(arg).

Information about newly-created thread stored in thread.

Thread has attributes specified in attr (NULL if you want no special attributes).

Returns 0 if OK, -1 otherwise and sets errno

analogous to posix_spawn(3)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 9 / 44

pthread_join(3): wait for, and join with, a terminated thread

int pthread_join (pthread_t thread, void **retval);

waits until thread terminates

▶ if thread already exited, does not wait

thread return/exit value placed in *retval

if main returns, or exit(3) called, all threads terminated

▶ program typically needs to wait for all threads before exiting

analogous to waitpid(3)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 10 / 44

pthread_exit(3): terminate calling thread

void pthread_exit (void *retval);

terminates the execution of the current thread (and frees its resources)

retval returned — see pthread_join(3)

analagous to exit(3)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 11 / 44

Example: two_threads.c — creating two threads #1

#include <pthread.h>
#include <stdio.h>
// This function is called to start thread execution.
// It can be given any pointer as an argument.
void *run_thread(void *argument) {

int *p = argument;
for (int i = 0; i < 10; i++) {

printf("Hello this is thread #%d: i=%d\n", *p, i);
}
// A thread finishes when either the thread's start function
// returns, or the thread calls `pthread_exit(3)'.
// A thread can return a pointer of any type --- that pointer
// can be fetched via `pthread_join(3)'
return NULL;

}
source code for two_threads.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 12 / 44

Example: two_threads.c — creating two threads #2

int main(void) {
// Create two threads running the same task, but different inputs.
pthread_t thread_id1;
int thread_number1 = 1;
pthread_create(&thread_id1, NULL, run_thread, &thread_number1);
pthread_t thread_id2;
int thread_number2 = 2;
pthread_create(&thread_id2, NULL, run_thread, &thread_number2);
// Wait for the 2 threads to finish.
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
return 0;

}
source code for two_threads.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 13 / 44

Example: n_threads.c — creating many threads

int n_threads = strtol(argv[1], NULL, 0);
assert(0 < n_threads && n_threads < 100);
pthread_t thread_id[n_threads];
int argument[n_threads];
for (int i = 0; i < n_threads; i++) {

argument[i] = i;
pthread_create(&thread_id[i], NULL, run_thread, &argument[i]);

}
// Wait for the threads to finish
for (int i = 0; i < n_threads; i++) {

pthread_join(thread_id[i], NULL);
}
return 0;

}
source code for n_threads.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 14 / 44

Example: thread_sum.c — dividing a task between threads (i)

struct job {
long start, finish;
double sum;

};
void *run_thread(void *argument) {

struct job *j = argument;
long start = j->start;
long finish = j->finish;
double sum = 0;
for (long i = start; i < finish; i++) {

sum += i;
}
j->sum = sum;

source code for thread_sum.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 15 / 44

Example: thread_sum.c — dividing a task between threads (ii)

printf("Creating %d threads to sum the first %lu integers\n"
"Each thread will sum %lu integers\n",
n_threads, integers_to_sum, integers_per_thread);

pthread_t thread_id[n_threads];
struct job jobs[n_threads];
for (int i = 0; i < n_threads; i++) {

jobs[i].start = i * integers_per_thread;
jobs[i].finish = jobs[i].start + integers_per_thread;
if (jobs[i].finish > integers_to_sum) {

jobs[i].finish = integers_to_sum;
}
// create a thread which will sum integers_per_thread integers
pthread_create(&thread_id[i], NULL, run_thread, &jobs[i]);

}
source code for thread_sum.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 16 / 44

Example: thread_sum.c — dividing a task between threads (iii)

double overall_sum = 0;
for (int i = 0; i < n_threads; i++) {

pthread_join(thread_id[i], NULL);
overall_sum += jobs[i].sum;

}
printf("\nCombined sum of integers 0 to %lu is %.0f\n", integers_to_sum,

overall_sum);
return 0;
source code for thread_sum.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 17 / 44

Example: two_threads_broken.c — shared mutable state gonna hurt you

int main(void) {
pthread_t thread_id1;
int thread_number = 1;
pthread_create(&thread_id1, NULL, run_thread, &thread_number);
thread_number = 2;
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, run_thread, &thread_number);
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
return 0;

}
source code for two_threads_broken.c

variable thread_number will probably change in main, before thread 1 starts executing…
⟹ thread 1 will probably print Hello this is thread 2 … ?!

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 18 / 44

Example: bank_account_broken.c — unsafe access to global variables (i)

int bank_account = 0;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {
// execution may switch threads in middle of assignment
// between load of variable value
// and store of new variable value
// changes other thread makes to variable will be lost
nanosleep(&(struct timespec){ .tv_nsec = 1 }, NULL);
// RECALL: shorthand for `bank_account = bank_account + 1`
bank_account++;

}
return NULL;

}
source code for bank_account_broken.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 19 / 44

Example: bank_account_broken.c — unsafe access to global variables (ii)

int main(void) {
// create two threads performing the same task
pthread_t thread_id1;
pthread_create(&thread_id1, NULL, add_100000, NULL);
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, add_100000, NULL);
// wait for the 2 threads to finish
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
// will probably be much less than $200000
printf("Andrew's bank account has $%d\n", bank_account);
return 0;

}
source code for bank_account_broken.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 20 / 44

Global Variables and Race Conditions

Incrementing a global variable is not an atomic operation.

(atomic, from Greek — “indivisible”)

int bank_account;

void *thread(void *a) {
// ...
bank_account++;
// ...

}

la $t0, bank_account
lw $t1, ($t0)
addi $t1, $t1, 1
sw $t1, ($t0)
.data
bank_account: .word 0

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 21 / 44

Global Variables and Race Condition

If, initially, bank_account = 42, and two threads increment simultaneously…

la $t0, bank_account
{| bank_account = 42 |}
lw $t1, ($t0)
{| $t1 = 42 |}
addi $t1, $t1, 1
{| $t1 = 43 |}
sw $t1, ($t0)
{| bank_account = 43 |}

la $t0, bank_account
{| bank_account = 42 |}
lw $t1, ($t0)
{| $t1 = 42 |}
addi $t1, $t1, 1
{| $t1 = 43 |}
sw $t1, ($t0)
{| bank_account = 43 |}

Oops! We lost an increment.

Threads do not share registers or stack (local variables)…
but they do share global variables.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 22 / 44

Global Variable: Race Condition

If, initially, bank_account = 100, and two threads change it simultaneously…

la $t0, bank_account
{| bank_account = 100 |}
lw $t1, ($t0)
{| $t1 = 100 |}
addi $t1, $t1, 100
{| $t1 = 200 |}
sw $t1, ($t0)
{| bank_account = ...? |}

la $t0, bank_account
{| bank_account = 100 |}
lw $t1, ($t0)
{| $t1 = 100 |}
addi $t1, $t1, -50
{| $t1 = 50 |}
sw $t1, ($t0)
{| bank_account = 50 or 200 |}

This is a critical section.

We don’t want two processes in the critical section — we must establish mutual exclusion.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 23 / 44

pthread_mutex_lock(3), pthread_mutex_unlock(3): Mutual Exclusion

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_unlock (pthread_mutex_t *mutex);

We associate a mutex with the resource we want to protect.
▶ in the case the resources is access to a global variable

For a particular mutex, only one thread can be running between _lock and _unlock
Other threads attempting to pthread_mutex_lock will block (wait) until the first thread executes
pthread_mutex_unlock

For example:

pthread_mutex_lock (&bank_account_lock);
andrews_bank_account += 1000000;
pthread_mutex_unlock (&bank_account_lock);

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 24 / 44

Example: bank_account_mutex.c — guard a global with a mutex

int bank_account = 0;
pthread_mutex_t bank_account_lock = PTHREAD_MUTEX_INITIALIZER;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {
pthread_mutex_lock(&bank_account_lock);
// only one thread can execute this section of code at any time
bank_account = bank_account + 1;
pthread_mutex_unlock(&bank_account_lock);

}
return NULL;

}
source code for bank_account_mutex.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 25 / 44

Mutex the world!

Mutexes solve all our data race problems!

Why not just protect everything with a mutex?

Python does! The global interpreter lock (GIL).

▶ Hard to exploit parallelism within Python

mutexes are slow

and other things can go wrong?

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 26 / 44

Concurrent Programming is Complex

Concurrency is really complex with many issues beyond this course:

Data races thread behaviour depends on unpredictable ordering;
can produce difficult bugs or security vulnerabilities

Deadlock threads stopped because they are wait on each other

Livelock threads running without making progress

Starvation threads never getting to run

If these topics sound interesting at all to you, consider COMP3231/3891 ([Extended] Operating Systems)!

Advanced reading: cs3231 Deadlocks slides

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 27 / 44

Example: bank_account_deadlock.c — deadlock with two resources (i)

void *andrew_send_zac_money(void *argument) {
for (int i = 0; i < 100000; i++) {

pthread_mutex_lock(&andrews_bank_account_lock);
pthread_mutex_lock(&zacs_bank_account_lock);
if (andrews_bank_account > 0) {

andrews_bank_account--;
zacs_bank_account++;

}
pthread_mutex_unlock(&zacs_bank_account_lock);
pthread_mutex_unlock(&andrews_bank_account_lock);

}
return NULL;

}
source code for bank_account_deadlock.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 28 / 44

Example: bank_account_deadlock.c — deadlock with two resources (ii)

void *zac_send_andrew_money(void *argument) {
for (int i = 0; i < 100000; i++) {

pthread_mutex_lock(&zacs_bank_account_lock);
pthread_mutex_lock(&andrews_bank_account_lock);
if (zacs_bank_account > 0) {

zacs_bank_account--;
andrews_bank_account++;

}
pthread_mutex_unlock(&andrews_bank_account_lock);
pthread_mutex_unlock(&zacs_bank_account_lock);

}
return NULL;

}
source code for bank_account_deadlock.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 29 / 44

Example: bank_account_deadlock.c — deadlock with two resources (iii)
int main(void) {

// create two threads sending each other money
pthread_t thread_id1;
pthread_create(&thread_id1, NULL, andrew_send_zac_money, NULL);
pthread_t thread_id2;
pthread_create(&thread_id2, NULL, zac_send_andrew_money, NULL);
// threads will probably never finish
// deadlock will likely likely occur
// with one thread holding andrews_bank_account_lock
// and waiting for zacs_bank_account_lock
// and the other thread holding zacs_bank_account_lock
// and waiting for andrews_bank_account_lock
pthread_join(thread_id1, NULL);
pthread_join(thread_id2, NULL);
return 0;

}
source code for bank_account_deadlock.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 30 / 44

Avoiding Deadlock

A simple rule can avoid deadlock in many programs

All threads should acquire locks in same order

▶ also best to release in reverse order (if possible)

Previous program deadlocked because one thread executed:

pthread_mutex_lock(&andrews_bank_account_lock);
pthread_mutex_lock(&zacs_bank_account_lock);

and the other thread executed:

pthread_mutex_lock(&zacs_bank_account_lock);
pthread_mutex_lock(&andrews_bank_account_lock);

Deadlock avoided if same order used in both threads, e.g

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 31 / 44

Atomics!

Atomic instructions allow a small subset of operations on data, that are guaranteed to execute atomically! For
example,

fetch_add: n += value

fetch_sub: n -= value

fetch_and: n &= value

fetch_or: n |= value

fetch_xor: n ^= value

Complete list: https://en.cppreference.com/w/c/atomic

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 32 / 44

Atomics!

With mutexes, a program can lock mutex A, and then (before unlocking A) lock some mutex B.

▶ multiple mutexes can be locked simultaneously.

Atomic instructions are (by definition!) atomic, so there’s no equivalent to the above problem.

▶ Goodbye deadlocks!

Atomics are a fundamental tool for lock-free/wait-free programming.

Non-blocking: If a thread fails or is suspended, it cannot cause failure or suspension of another thread.

Lock-free: non-blocking + the system (as a whole) always makes progress.

Wait-free: lock-free + every thread always makes progress.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 33 / 44

Example: bank_account_atomic.c — safe access to a global variable

#include <stdatomic.h>
atomic_int bank_account = 0;
// add $1 to Andrew's bank account 100,000 times
void *add_100000(void *argument) {

for (int i = 0; i < 100000; i++) {
// NOTE: This *cannot* be `bank_account = bank_account + 1`,
// as that will not be atomic!
// However, `bank_account++` would be okay
// and, `atomic_fetch_add(&bank_account, 1)` would also be okay
bank_account += 1;

}
return NULL;

}
source code for bank_account_atomic.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 34 / 44

What’s the catch with atomics?

Specialised hardware support is required

▶ essentially all modern computers provide atomic support
▶ may be missing on more niche / embedded systems.

Although faster and simpler than traditional locking, there is still a performance penalty using atomics (and
increases program complexity).

Can be incredibly tricky to write correct code at a low level (e.g. memory ordering, which we won’t cover in
CP1521).

Some issues can arise in application; (e.g. ABA problem, which we won’t cover in CP1521).

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 35 / 44

Final issue: data lifetime

When sharing data with a thread, we can only pass the address of our data.

This presents a lifetime issue

▶ what if by the time the thread reads the data, that data no longer exists?

How have we avoided this so far?

What kind of code could trigger this issue?

How can this issue be avoided?

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 36 / 44

Data lifetime: avoiding so far

so far we have put data in local variables in main

▶ local variables live until their function returns

main has created threads by calling ‘pthread_create

main has waited for all threads to finish by calling pthread_join

so main “outlives” all the created threads.

▶ hence the local variables in main outlive the threads
▶ so the data we pass to each thread will be valid for the entire lifetime of each thread.

but what if we pass data with a lifetime shorter than the thread lifetime?

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 37 / 44

Data lifetime: triggering the issue
pthread_t create_thread(void) {

int super_special_number = 0x42;
pthread_t thread_handle;
pthread_create(&thread_handle, NULL, my_thread, &super_special_number);
// super_special_number is destroyed when create_thread returns
// but the thread just created may still be running and access it
return thread_handle;

}
source code for thread_data_broken.c

void *my_thread(void *data) {
int number = *(int *)data;
sleep(1);
// should print 0x42, probably won't
printf("The number is 0x%x!\n", number);
return NULL;

}
source code for thread_data_broken.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 38 / 44

Data lifetime: solving our problem – malloc

stack memory is automatically cleaned up when a function returns

▶ in mipsy $sp returns to its orignal value
▶ local variable are destroyed
▶ the lifetime of a local variable ends with return

when function create_thread return super_special_number is destroyed -which is causing us
problems.

the function say_hello makes this obvious

▶ it changes the stack memory which used to hold super_special_number (by using it for greeting)

we’ve solved this problem before in COMP1[59]11 by using malloc

▶ the programmer controls the lifetime of memory allocated with malloc
▶ it lives until free is called
▶ the thread can call free when it is finished with the data

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 39 / 44

Data lifetime: solving our problem – malloc

pthread_t function_creates_thread(void) {
int *super_special_number = malloc(sizeof(int));
*super_special_number = 0x42;
pthread_t thread_handle;
pthread_create(&thread_handle, NULL, my_thread, super_special_number);
return thread_handle;

}
source code for thread_data_malloc.c

void *my_thread(void *data) {
int number = *(int *)data;
sleep(1);
printf("The number is 0x%x!\n", number);
free(data);
return NULL;

}
source code for thread_data_malloc.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 40 / 44

Data lifetime: solving our problem – barriers (advanced topic)

Another solution is to force both the calling thread and the newly created thread to wait for each other.

The calling thread shouldn’t proceed until the new thread has had a chance to read the data.

The new thread shouldn’t proceed too far before letting the calling thread keep moving – could stall
performance!

We can implement this cross-thread waiting with barriers.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 41 / 44

Data lifetime: solving our problem – barriers (advanced topic)

pthread_t function_creates_thread(void) {
pthread_barrier_t barrier;
pthread_barrier_init(&barrier, NULL, 2);
struct thread_data data = {

.barrier = &barrier,

.number = 0x42,
};
pthread_t thread_handle;
pthread_create(&thread_handle, NULL, my_thread, &data);
pthread_barrier_wait(&barrier);
return thread_handle;

}
source code for thread_data_barrier.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 42 / 44

Data lifetime: solving our problem – barriers (advanced topic)

void *my_thread(void *data) {
struct thread_data *thread_data = (struct thread_data *)data;
int number = thread_data->number;
pthread_barrier_wait(thread_data->barrier);
sleep(1);
printf("The number is 0x%x!\n", number);
return NULL;

}
source code for thread_data_barrier.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 43 / 44

Aside, COMP6991

If topics such as:

Data races (e.g. bank account without protection)
Lifetime (e.g. the previous example)
Safety through types (e.g. prevent accessing data without locking mutex)

sound interesting to you, you may want to consider COMP6991 (Solving Modern Programming Problems with Rust)!

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Concurrency, Parallelism, Threads 44 / 44

