
DPST1092 23T2 — Processes

https://www.cse.unsw.edu.au/~dp1092/23T2/

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 1 / 42

Processes

A process is an instance of an executing program

Each process has an execution state, defined by

current execution point (PC register)
current values of CPU registers
current contents of its virtual address space
information about open files, sockets, etc.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 2 / 42

Unix Processes

Every process in Unix/Linux is allocated a unique process ID (PID)

a +ve integer, unique among currently executing processes
with type pid_t (defined in <unistd.h>)
PID 0 is often used for the Operating System
PID 1 is init (”used to boot the system”)
low PIDs are typically system-related as they start when the system is booted (but PIDs are recyled so this is not
always the case)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 3 / 42

Parent Processes

Each process has a parent process

typically, the process that created the current process
if the parent of the process dies, it becomes an orphan and is inherited by process 1

A process may have child processes

these are processes that it created

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 4 / 42

Unix Tools

Unix provides a range of tools for manipulating processes

Commands:

ps ... show process information
▶ ps
▶ ps -ef
▶ ps -u z1234567 -o pid,ppid,time,stat,args

top ... show high-cpu-usage process information
kill ... send a signal to a process

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 5 / 42

System Calls to Get information about a process

pid_t getpid()

requires #include <sys/types.h>
returns the process ID of the current process

pid_t getppid()

requires #include <sys/types.h>
returns the parent process ID of the current process

For more details: man 2 getpid

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 6 / 42

System Calls to Get information about a process

Minimal example for getpid() and getppid():

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(void){
printf("My PID is (%d)\n", getpid());
printf("My parent's PID is (%d)\n", getppid());
return 0;

}

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 7 / 42

Unix/Linux Processes
Environment for processes running on Unix/Linux systems

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 8 / 42

Environment Variables

Every process is passed a set of environment variables as an array of strings of the form name=value, terminated with
NULL.

These can be accessed via

access via global variable environ
many C implementation also provide as 3rd parameter to main: int main(int argc, char *argv[],
char *env[])

// print all environment variables
extern char **environ;
for (int i = 0; environ[i] != NULL; i++) {

printf("%s\n", environ[i]);
}
source code for environ.c

Most programs instead use getenv() and setenv() to access environment variables

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 9 / 42

getenv() — get an environment variable

#include <stdlib.h>

char *getenv(const char *name);

search environment variable array for name=value
returns value
returns NULL if name not in environment variable array

char *value = getenv("PATH");
printf("Environment variable 'PATH' has value '%s'\n", value);
source code for get_env.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 10 / 42

setenv() — set an environment variable

#include <stdlib.h>

int setenv(const char *name, const char *value, int overwrite);

adds name=value to environment variable array
if name in array, value changed if overwrite is non-zero

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 11 / 42

Environment Variables - Why are they useful

Unix-like shells have simple syntax to set environment variables
▶ common to set environment in startup files (e.g .profile)
▶ then passed to any programs they run

Almost all program pass the environment variables they are given to any programs they run
▶ perhaps adding/changing the value of specific environment variables

Provides simple mechanism to pass settings to all processes, e.g
▶ timezone (TZ)
▶ user’s prefered language (LANG)
▶ directories to search for promrams (PATH)
▶ user’s home directory (HOME)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 12 / 42

Multi-tasking

Process management is a critical OS functionality

On a typical modern operating system

multiple processes are active ”simultaneously” (multi-tasking)

The operating system provides a virtual machine to each process:

each process executes as if it is the only process running on the machine

each process has its own address space (N bytes, addressed 0..N-1)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 13 / 42

Multi-tasking

When there are multiple processes running on the machine

each process uses the CPU until pre-empted or exits
then another process uses the CPU until it too is pre-empted
eventually, the first process will get another run on the CPU

Overall impression: three programs running simultaneously

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 14 / 42

Multi-tasking

What can cause a process to be pre-empted?

it runs ”long enough” and the OS replaces it by a waiting process
it needs to wait for input/output or some other operation

On pre-emption ...

the process’s entire state must be stored
the new process’s state must be restored
this change is called a context switch (these are very expensive)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 15 / 42

Multi-tasking

The context (or state) for each process is store in a Process Control Block (PBC).

Typical contents of a PCB:

PID
static information: program code and constant data
dynamic state: heap, stack, registers, program counter
OS-supplied state: environment variables, stdin, stdout
status running, ready, suspended, exited
privileges: effective user ids
memory management info: (reference to) page table
accounting: CPU time used, amount of I/O done
I/O: open file descriptors

The operating system maintains a table of PCBs. One for each active process.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 16 / 42

More Process-related System Calls

Unix/Linux system calls:

fork() ... create a new process
_exit() ... terminate an executing process
wait() ... wait for state change in child process
execve() ... convert one process into another

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 17 / 42

fork

pid_t fork(void)

requires #include <unistd.h>
creates new process by duplicating the calling process
new process is the child, calling process is the parent
child has a different process ID (pid) to the parent
in the child, fork() returns 0
in the parent, fork() returns the pid of the child
if the system call fails, fork() returns -1
child inherits copies of parent’s address space and open fd’s

Typically, the child pid is a small increment over the parent pid

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 18 / 42

fork

Minimal example for fork():

#include <stdio.h>
#include <unistd.h>

int main(void){
pid_t pid;
pid = fork();
if (pid < 0)

perror("fork() failed");
else if (pid == 0)

printf("I am the child.\n");
else

printf("I am the parent.\n");
return 0;

}

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 19 / 42

_exit

void _exit(int status)

terminates current process
closes any open file descriptors
a SIGCHLD signal is sent to parent
returns status to parent (via wait())
any child processes are inherited by init (pid=1)
termination may be delayed waiting for i/o to complete

On final exit, process’s process table and page table entries are removed

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 20 / 42

exit

void exit(int status)

triggers any functions registered as atexit()
flushes stdio buffers; closes open FILE *’s
then behaves like _exit()

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 21 / 42

Exercise: The _exit() Function

What do you think the difference in output will be between the following 2 programs?

int main(void){
printf("Hello");
exit(0);

}

int main(void){
printf("Hello");
_exit(0);

}

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 22 / 42

Zombie Processes

Photo credit: kenny Louie, Flickr.com
https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 23 / 42

Zombie Processes

A process cannot terminate until its parent is notified.

if exit() called, operating system sends SIGCHLD signal to parent
exit() will not return until parent handles SIGCHLD

Zombie process = exiting process waiting for parent to handle SIGCHLD

all processes become zombie until SIGCHLD handled
bug in parent that ignores SIGCHLD creates long-term zombies
note that zombies occupy a slot in the process table and wastes resources

Orphan process = a process whose parent has exited

when parent exits, orphan is assigned pid=1 as its parent
pid=1 always handles SIGCHLD when process exits

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 24 / 42

waitpid

pid_t waitpid(pid_t pid, int *status, int options)

pause current process until process pid changes state
▶ where state changes include finishing, stopping, re-starting, ...

ensures that child resources are released on exit (ie does not become a zombie)
special values for pid ...

▶ if pid = -1, wait on any child process
▶ if pid = 0, wait on any child in process group
▶ if pid > 0, wait on the specified process

pid_t wait(int *status)

equivalent to waitpid(-1, &status, 0)
pauses until one of the child processes terminates

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 25 / 42

waitpid

More on waitpid(pid, &status, options)

status is set to hold info about pid
▶ e.g. exit status if pid terminated
▶ macros allow precise determination of state change
(e.g. WIFEXITED(status), WCOREDUMP(status))

options provide variations in waitpid() behaviour
▶ default: wait for child process to terminate
▶ WNOHANG: return immediately if no child has exited
▶ WCONTINUED: return if a stopped child has been restarted

For more information: man 2 waitpid

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 26 / 42

waitpid
Minimal example for wait():

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main(void)
{

pid_t pid;
pid = fork();
if (pid == 0)

printf("I am the child.\n");
else {

wait(NULL);
printf("I am the parent.\n");

}
return 0;

}
https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 27 / 42

execve
How Unix creates processes:

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 28 / 42

execve

int execve(char *Path, char *Argv[], char *Envp[])

transforms current process by executing Path object
▶ Path must be an executable, binary or script (starting with #!)

passes arrays of strings to new process
▶ both arrays terminated by a NULL pointer element
▶ envp[] contains strings of the form key=value

much of the state of the original process is lost, e.g.
▶ new virtual address space is created, signal handlers reset, ...

new process inherits open file descriptors from original process
on error, returns -1 and sets errno
if successful, does not return

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 29 / 42

execve

On Unix, processes create new different processes via:

pid_t pid = fork();
if (pid > 0)

// parent ...
wait(NULL); // wait for child to complete

else {
// child ...
char *cmd = "/x/y/z"; // name of executable
char **args;
... // set up command-line arguments
char **env;
... // set up environment varables

execve(cmd, args, env); // child is transformed
}

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 30 / 42

Exercise: Executor

Write a small program that will run other programs

reads, one per line, values for command-line arguments
trims each line and stores pointer to it in array args[]
uses args[0] as the path of the program to run
uses args[] as argv[] in the exec’d process
passes no envp[] values (i.e. envp=NULL)
invokes the specified program then waits for it to complete
displays the exit status of the invoked process

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 31 / 42

posix_spawn

int posix_spawn(pid_t *pid, const char *path, const posix_spawn_file_actions_t
*file_actions, const posix_spawnattr_t *attrp, char *const argv[], char *const
envp[]);

creates new process, running program at path
argv specifies argv of new program
envp specifies environment of new program
*pid set to process id of new program
file_actions specifies file actions to be performed before running program

▶ can be used to re-direct stdin or stdout to file or pipe
▶ advanced topic

attrp specifies attributes for new process

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 32 / 42

Review: Processes and Multi-tasking

Multi-tasking = multiple processes are ”active” at the same time

processes are not necessarily executing simultaneously
▶ although this could happen if there are multiple CPUs

more likely, have a mixture of processes
▶ some are blocked waiting on a signal (e.g. i/o completion)
▶ some are runnable (ready to execute)
▶ one is running (on each CPU)

Aims to give the appearance of multiple simultaneous processes

by switching process after one runs for a defined time slice
after timer counts down, current process is pre-empted
a new process is selected to run by the system scheduler

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 33 / 42

Process States

How process state changes during execution ...

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 34 / 42

pipe() — stream bytes between processes

A common style of inter process interaction (communication)

producer process writes to byte stream (cf. stdout)
consumer process reads from same byte stream

A pipe provides buffered i/o between producer and consumer

producer blocks when buffer full; consumer blocks when buffer empty

Pipes are bidirectional unless processes close one file descriptor.

It is a good idea to do this and only use pipes for unidirectional communication. If you need two way communication,
use two pipes.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 35 / 42

pipe() — stream bytes between processes

int pipe(int fd[2])

open two file descriptors (to be shared by processes)
fd[0] is opened for reading; fd[1] is opened for writing
return 0 if OK, otherwise return -1 and sets errno

Creating the pipe would then be followed by

fork() to create a child process
both processes have copies of fd[]
one can write to fd[1], the other can read from fd[0]

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 36 / 42

pipe() — stream bytes between processes

Creating a pipe ...

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 37 / 42

pipe() — stream bytes between processes
Example: setting up a pipe

int main(void) {
int fd[2], pid; char buffer[10];
assert(pipe(fd) == 0);
pid = fork();
assert(pid >= 0);
if (pid != 0) { // parent

close(fd[0]); // writer; don't need fd[0]
write(fd[1], "123456789", 10);
close(fd[1]);

}
else { // child

close(fd[1]); // reader; don't need fd[1]
read(fd[0], buffer, 10);
printf("got \"%s\"\n", buffer);
close(fd[0]);

}
return 0;

} https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 38 / 42

pipe() — stream bytes between processes

It is important to close unused duplicate pipe file descriptors

If there are open write end file descriptors, read(2) won’t return 0 and will wait for more input
If all read end file descriptors have been closed, then a write(2) will cause a SIGPIPE signal to be generated.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 39 / 42

popen() — a convenient but unsafe way to set up pipe

A common pattern in pipe usage

set up a pipe between parent and child
exec() child to become a new process talking to parent

Because so common, a library function is available for it ...

FILE *popen(char *Cmd, char *Mode)

analogous to fopen, except first arg is a command
Cmd is passed to shell for interpretation
returns FILE* which be read/written depending on Mode
returns NULL if can’t establish pipe or invalid Cmd

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 40 / 42

popen() — a convenient but unsafe way to set up pipe
Example of popen()

//popen is a convenient but unsafe way to set up a pipe
//It passes a string to a shell for evaluation
//It is brittle and highly vulnerable to security exploits
//Suitable for quick debugging or throw away programs only
int main(void)
{

FILE *p = popen("ls -l", "r");
assert(p != NULL);
char line[200], a[20],b[20],c[20],d[20];
long int tot = 0, size = 0;
while (fgets(line,199,p) != NULL) {

sscanf(line, "%s %s %s %s %ld",
a, b, c, d, &size);

fputs(line, stdout);
tot += size;

}
printf("Total: %ld\n", tot);

} https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 41 / 42

posix_spawn and pipes (advanced topic)

int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t
*file_actions);
int posix_spawn_file_actions_init(posix_spawn_file_actions_t
*file_actions);
int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t
*file_actions, int fildes);
int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t
*file_actions, int fildes, int newfildes);

functions to combine file operations with posix_spawn process creation
awkward to understand & use - but robust
example: capturing output from a process - source code for spawn_read_pipe.c
example: sending input to a process - source code for spawn_write_pipe.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 42 / 42

