DPST1092 23T2 — Processes

https://www.cse.unsw.edu.au/~dp1092/23T2/

16
Processes

A process is an instance of an executing program
Each process has an execution state, defined by

@ current execution point (PC register)

@ current values of CPU registers

@ current contents of its virtual address space
@ information about open files, sockets, etc.

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 2/4

Unix Processes

Every process in Unix/Linux is allocated a unique process ID (PID)

@ a +ve integer, unique among currently executing processes

@ with type pid_t (defined in <unistd.h>)

@ PID 0 is often used for the Operating System

@ PID1isinit ("used to boot the system”)

@ low PIDs are typically system-related as they start when the system is booted (but PIDs are recyled so this is not
always the case)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 3/42

Parent Processes

Each process has a parent process

@ typically, the process that created the current process
@ if the parent of the process dies, it becomes an orphan and is inherited by process 1

A process may have child processes

@ these are processes that it created

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 4] 62

Unix provides a range of tools for manipulating processes
Commands:

@ ps ... show process information

> ps

> ps-ef

> ps -u z1234567 -o pid,ppid,time,stat,args
@ top ... show high-cpu-usage process information
@ kill.. send asignal to a process

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 5/42

System Calls to Get information about a process

pid_t getpid()

@ requires #include <sys/types.h>
@ returns the process ID of the current process

pid_t getppid()

@ requires #include <sys/types.h>
@ returns the parent process ID of the current process

For more details: man 2 getpid

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 6/42

System Calls to Get information about a process

Minimal example for getpid() and getppid():

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(void){
printf("My PID s (%d)\n", getpid());
printf("My parent's PID s (%d)\n", getppid());

return 0;
https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 7/42

Unix/Linux Processes

Environment for processes running on Unix/Linux systems

argc, argv, envp, uid, gid, ...

stdin (fd:0) ———— stdout (fd:1)

stderr (fd:2)

return status
(0 = ok, 10 = error)

sla
Environment Variables

Every process is passed a set of environment variables as an array of strings of the form name=value, terminated with
NULL.

These can be accessed via

@ access via global variable environ
@ many C implementation also provide as 3rd parameter to main: int main(int argc, char xargv[],
char xenv[])

// print all environment variables

extern char *xenviron;

for (int i = 0; environ[i] != NULL; 1i++) {
printf("%s\n", environ[i]);

}

source code for environ.c

@ Most programs instead use getenv() and setenv() to access environment variables

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 9/ 42

getenv () — get an environment variable

#include <stdlib.h>
char *getenv(const char *name);

@ search environment variable array for name=value
@ returns value
@ returns NULL if name not in environment variable array

char *value = getenv("PATH");
printf("Environment variable 'PATH' has value '%s'\n", value);

source code for get_env.c

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 10/ 42

setenv () — set an environment variable

#include <stdlib.h>

int setenv(const char *name, const char xvalue, int overwrite);

@ adds name=value to environment variable array
o if name in array, value changed if overwr-ite is non-zero

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 1/ 42

Environment Variables - Why are they useful

@ Unix-like shells have simple syntax to set environment variables
» common to set environment in startup files (e.g . profile)
» then passed to any programs they run

@ Almost all program pass the environment variables they are given to any programs they run
» perhaps adding/changing the value of specific environment variables

@ Provides simple mechanism to pass settings to all processes, e.g

timezone (T2)

user’s prefered language (LANG)

directories to search for promrams (PATH)

>
>
>
» user's home directory (HOME)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 12/ 42

Multi-tasking

Process management is a critical OS functionality
On a typical modern operating system
@ multiple processes are active "simultaneously” (multi-tasking)
The operating system provides a virtual machine to each process:
@ each process executes as if it is the only process running on the machine

@ each process has its own address space (N bytes, addressed 0..N-1)

: :
Multi-tasking

When there are multiple processes running on the machine

@ each process uses the CPU until pre-empted or exits
@ then another process uses the CPU until it too is pre-empted
@ eventually, the first process will get another run on the CPU

13/ 42

time
Process 1 e oo
Procesgs 2 :corverieee P T I
PrOCESS 3 ~rorrrrrrrrrrrmrran e — e

Overall impression: three programs running simultaneously

: :
Multi-tasking

What can cause a process to be pre-empted?

@ it runs "long enough” and the OS replaces it by a waiting process
@ it needs to wait for input/output or some other operation

On pre-emption ...

@ the process's entire state must be stored
@ the new process'’s state must be restored
@ this change is called a context switch (these are very expensive)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes

14/ 42

15/ 42

Multi-tasking

The context (or state) for each process is store in a Process Control Block (PBC).
Typical contents of a PCB:

PID

static information: program code and constant data
dynamic state: heap, stack, registers, program counter
0S-supplied state: environment variables, stdin, stdout
status running, ready, suspended, exited

privileges: effective user ids

memory management info: (reference to) page table
accounting: CPU time used, amount of I/0 done

1/0: open file descriptors

The operating system maintains a table of PCBs. One for each active process.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes

More Process-related System Calls

Unix/Linux system calls:

o fork() ... create a new process

@ _exit() .. terminate an executing process

@ wait() .. wait for state change in child process
@ execve() .. convert one process into another

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes

fork

pid_t fork(void)

requires #include <unistd.h>

creates new process by duplicating the calling process

new process is the child, calling process is the parent

child has a different process ID (pid) to the parent

in the child, fork () returns 0

in the parent, fork () returns the pid of the child

if the system call fails, fork () returns -1

child inherits copies of parent’s address space and open fd's

Typically, the child pid is a small increment over the parent pid

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes

16/ 42

17/ 42

18/ 42

fork

Minimal example for fork():

#include <stdio.h>
#include <unistd.h>

int main(void){
pid_t pid;
pid = fork();
if (pid < 0)
perror("fork() failed");
else if (pid == 0)
printf("I am the child.\n");
else
printf("I am the parent.\n");
return 0;

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 19/42

_exit

void _exit(int status)

@ terminates current process

@ closes any open file descriptors

@ a SIGCHLD signal is sent to parent

@ returns status to parent (viawait())

@ any child processes are inherited by init (pid=1)

@ termination may be delayed waiting for i/o to complete

On final exit, process's process table and page table entries are removed

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 20/ 42

exit

void exit(int status)

@ triggers any functions registered as atexit()
o flushes stdio buffers; closes open FILE *'s
@ then behaves like _exit ()

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 21/ 42

Exercise: The _exit () Function

What do you think the difference in output will be between the following 2 programs?

int main(void){
printf("Hello");
exit(0);

int main(void){
printf("Hello");
_exit(0);

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 22/ 42

Zombie Processes

Photo credit: kenny Louie, Flickr.com

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 23/ 42

Zombie Processes

A process cannot terminate until its parent is notified.

o if exit() called, operating system sends SIGCHLD signal to parent
@ exit() will not return until parent handles SIGCHLD

Zombie process = exiting process waiting for parent to handle SIGCHLD

@ all processes become zombie until SIGCHLD handled
@ bug in parent that ignores SIGCHLD creates long-term zombies
@ note that zombies occupy a slot in the process table and wastes resources

Orphan process = a process whose parent has exited

@ when parent exits, orphan is assigned pid=1 as its parent
@ pid=1always handles SIGCHLD when process exits

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 24 [42

waitpid

pid_t waitpid(pid_t pid, int xstatus, int options)

@ pause current process until process pid changes state
» where state changes include finishing, stopping, re-starting, ...
@ ensures that child resources are released on exit (ie does not become a zombie)

@ special values for pid ...
» if pid = -1, wait on any child process

» if pid =0, wait on any child in process group

» if pid >0, wait on the specified process

pid_t wait(int *status)

@ equivalenttowaitpid(-1, &status, 0)
@ pauses until one of the child processes terminates

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes

More on waitpid(pid, &status, options)

@ status issetto hold info about pid
> e.g. exit status if pid terminated

» macros allow precise determination of state change
(e.g. WIFEXITED (status), WCOREDUMP (status))
@ options provide variations in waitpid () behaviour

» default: wait for child process to terminate

» WNOHANG: return immediately if no child has exited
» WCONTINUED: return if a stopped child has been restarted

For more information: man 2 waitpid

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes

waitpid

Minimal example forwait():

#include
#include
#include
#include

<stdio.h>
<unistd.h>
<sys/types.h>
<sys/wait.h>

int main(void)

{

pid_t pid;

pid =

fork();

if (pid == 0)
printf("I am the child.\n");

else {

wait(NULL);
printf("I am the parent.\n");

}

return 0;

}

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes

25/ 42

26/ 42

27/ 42

execve
How Unix creates processes:

pid = 12346

execve()

pid = 12345 transform

pid = 12346

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 28/ 42

execve

int execve(char *Path, char *Argv[], char *Envp[])

@ transforms current process by executing Path object

» Path must be an executable, binary or script (starting with #!)
@ passes arrays of strings to new process

» both arrays terminated by a NULL pointer element

» envp[] contains strings of the form key=value
@ much of the state of the original process is lost, e.g.

» new virtual address space is created, signal handlers reset, ...
@ new process inherits open file descriptors from original process
on error, returns -1 and sets errno
@ if successful, does not return

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 29/ 42

On Unix, processes create new different processes via:

pid_t pid = fork();
if (pid > 0)
// parent
wait(NULL); // wait for child to complete
else {
// child
char xcmd = "/x/y/z"; // name of executable
char x*args;
// set up command-line arguments
char x*env;
// set up environment varables

execve(cmd, args, env); // child is transformed

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 30/ 42

Exercise; Executor

Write a small program that will run other programs

reads, one per line, values for command-line arguments
trims each line and stores pointer to it in array args|[]
uses args[0] as the path of the program to run
usesargs[] asargv[] inthe exec'd process

passes no envp[] values (i.e. envp=NULL)

invokes the specified program then waits for it to complete
displays the exit status of the invoked process

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 31/42

poOSiX_spawn

int posix_spawn(pid_t *pid, const char *path, const posix_spawn_file_actions_t
*file_actions, const posix_spawnattr_t *attrp, char xconst argv[], char *const
envp[]);

creates new process, running program at path

argv specifies argv of new program

envp specifies environment of new program

*pid set to process id of new program

file_actions specifies file actions to be performed before running program
» can be used to re-direct stdin or stdout to file or pipe
» advanced topic

@ attrp specifies attributes for new process

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 32/42

Review: Processes and Multi-tasking

Multi-tasking = multiple processes are "active” at the same time

@ processes are not necessarily executing simultaneously
» although this could happen if there are multiple CPUs

@ more likely, have a mixture of processes
> some are blocked waiting on a signal (e.g. i/o completion)
» some are runnable (ready to execute)
» one is running (on each CPU)

Aims to give the appearance of multiple simultaneous processes

@ by switching process after one runs for a defined time slice
@ after timer counts down, current process is pre-empted
@ a new process is selected to run by the system scheduler

https://www.cse.unsw.edu.au/~dp1092/2312/ DPST1092 23T2 — Processes 33/42

Process States

How process state changes during execution ...

waiting
(blocked)

o 1

i/0, wait() exit()

forkiexec signal

vy

ready

(runnable)

P timer

scheduler

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 34/ 42

pipe () — stream bytes between processes

A common style of inter process interaction (communication)

@ producer process writes to byte stream (cf. stdout)
@ consumer process reads from same byte stream

write() read()

Producer \
pipe E—

Process

Consumer
Process

A pipe provides buffered i/o between producer and consumer
@ producer blocks when buffer full; consumer blocks when buffer empty
Pipes are bidirectional unless processes close one file descriptor.

It is a good idea to do this and only use pipes for unidirectional communication. If you need two way communication,
use two pipes.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 35/ 42

pipe () — stream bytes between processes

int pipe(int fd[2])

@ open two file descriptors (to be shared by processes)
o fd[0] is opened for reading; fd[1] is opened for writing
@ return 0 if OK, otherwise return -1 and sets errno

Creating the pipe would then be followed by

@ fork() to create a child process
@ both processes have copies of fd[]
@ one can write to fd[1], the other can read from fd[0]

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 36/ 42

pipe () — stream bytes between processes

Creating a pipe ...

d[0] After executing

Original pipe()
Step 1 Prrclngtlzgsas

—|fd[1]

After executing

fork()
fd[0] f—»
Step 2 Criginal o Child
ep Process Process

fd[1] fe=—

After executing

‘1

2 x close()
Original fd*[o] ‘Jﬁfﬂﬂ Child
riginal , i
Step 3 Process Write() Process

fd[1]

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 37/ 42

pipe () — stream bytes between processes
Example: setting up a pipe

int main(void) {

int fd[2], pid; char buffer[10];

assert(pipe(fd) == 0);

pid = fork();

assert(pid >= 0);

if (pid !'= 0) { // parent
close(fd[0]); // writer; don't need fd[0]
write(fd[1], "123456789", 10);
close(fd[1]);

}
else { // child
close(fd[1]); // reader; don't need fd[1]
read(fd[0], buffer, 10);
printf("got \"%s\"\n", buffer);
close(fd[0]);
}
return 0;
[htos//wwwcsewnsweduau/-dp1092/2312/ [DPSTO09P—Pocesses | 3814

pipe () — stream bytes between processes

It is important to close unused duplicate pipe file descriptors

@ If there are open write end file descriptors, read(2) won’t return 0 and will wait for more input
@ If all read end file descriptors have been closed, then a write(2) will cause a SIGPIPE signal to be generated.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 39/ 42

popen () — a convenient but unsafe way to set up pipe

A common pattern in pipe usage

set up a pipe between parent and child
exec () child to become a new process talking to parent

Because so common, a library function is available for it ...

FIL

E *popen(char *Cmd, char *Mode)

analogous to fopen, except first arg is a command

Cmd is passed to shell for interpretation

returns FILE* which be read/written depending on Mode
returns NULL if can’t establish pipe or invalid Cmd

e
popen () — a convenient but unsafe way to set up pipe

Example of popen()

//p
//1
//1
//S
int

{

open is a convenient but unsafe way to set up a pipe

t passes a string to a shell for evaluation

t is brittle and highly vulnerable to security exploits
uitable for quick debugging or throw away programs only
main(void)

FILE *p = popen("1ls -1", "r");
assert(p != NULL);
char 1ine[200], a[20],b[20],c[20],d[20];
long int tot = 0, size = 0;
while (fgets(line,199,p) != NULL) {
sscanf(line, "%s %s %s %s %ld",
a, b, ¢, d, &size);
fputs(line, stdout);
tot += size;
}
printf("Total: %ld\n", tot);

https:/ /www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Processes 4/ 42

po

s1ix_spawn and pipes (advanced topic)

int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t
*file_actions);

int posix_spawn_file_actions_init(posix_spawn_file_actions_t
*file_actions);

int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t
*file_actions, int fildes);

int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t
*file_actions, int fildes, int newfildes);

functions to combine file operations with posix_spawn process creation
awkward to understand & use - but robust

example: capturing output from a process - source code for spawn_read_pipe.c
example: sending input to a process - source code for spawn_write_pipe.c

https://www.cse.unsw.edu.au/~dp1092/2312/ DPST1092 23T2 — Processes 4242

