https://www.cse.unsw.edu.au/~dp1092/23T2/

Character Data

Character data has several possible representations (encodings)
The two most common:

- ASCII (ISO 646)
- 7-bit values, using lower 7-bits of a byte (top bit always zero)
- can encode roman alphabet, digits, punctuation, control chars
- UTF-8 (Unicode)
- 8-bit values, with ability to extend to multi-byte values
- can encode all human languages plus other symbols
e.g.:

ASCII Character Encoding

Uses values in the range 0×00 to $0 \times 7 \mathrm{~F}$ (0..127)
Characters partitioned into sequential groups

- control characters (0..31) ... e.g. ' \0 ', '\n'
- punctuation chars (32..47,91..96,123..126)
- digits (48..57) ... ' 0 ' .. ' 9 '
- upper case alphabetic (65..90) ... ' $A^{\prime} . .{ }^{\prime} Z^{\prime}$
- lower case alphabetic (97..122) ... 'a '.. 'z'

Sequential nature of groups allows for things like (ch - '0') Eg.

```
See man 7 ascii
```


Unicode

Basically, a 32-bit representation of a wide range of symbols

- around 140 K symbols, covering 140 different languages

Using 32-bits for every symbol would be too expensive

- e.g. standard roman alphabet + punctuation needs only 7-bits

More compact character encodings have been developed (e.g. UTF-8)

UTF-8 Character Encoding

UTF-8 uses a variable-length encoding as follows

\#bytes	\#bits	Byte 1	Byte 2	Byte 3	Byte 4
1	7	0xxxxxxx	-	-	-
2	11	$110 x x x x x$	$10 x x x x x x$	-	-
3	16	$1110 x x x x$	$10 x x x x x x$	$10 x x x x x x$	
4	21	$11110 x x x$	$10 x x x x x x$	$10 x x x x x x$	10 xxxxxx

The 127 1-byte codes are compatible with ASCII
The 2048 2-byte codes include most Latin-script alphabets
The 65536 3-byte codes include most Asian languages
The 2097152 4-byte codes include symbols and emojis and ...

ASCII Character Encoding

UTF-8 examples

ch	unicode	bits	simple	binary			UTF-8 binary		
\$	U+0024	7	010	100			00100100		
¢	U+00A2	11	0001	1010	0010		11000010	10100010	
$€$	U+20AC	16	0010	0000	1010	1100	11100010	10000010	10101100

Unicode strings can be manipulated in C (e.g."안녕하세요")
Like other C strings, they are terminated by a 0 byte (i.e. ' $\backslash 0$ ')
Warning: Functions like strlen may not work as expected.

Exercise 1: UTF-8 Unicode Encoding

For each of the following symbols, with their Unicode value

- show the bit-string that would be used to represent them

Symbols:

- \& U+00026
- $\mu \mathrm{U}+000 \mathrm{~B} 5$

Given that has the code U+02665

- Convert it into the bitstring that would represent it
- Write a C program to print
\checkmark beats

Fractions in different Bases

The decimal fraction 0.75 means

- $7^{*} 10^{-1}+5^{*} 10^{-2}=0.7+0.05=0.75$
- or equivalently $75 / 10^{2}=75 / 100=0.75$

Similary 0b0.11 means

- $1^{*} 2^{-1}+1 * 2^{-2}=0.5+0.25=0.75$
- or equivalently $3 / 2^{2}=3 / 4=0.75$

Similarly 0x0.C means

- $12^{\star} 16^{-1}=0.75$
- or equivalently $12 / 16^{1}=3 / 4=0.75$

Note: We call the . a radix point rather than a decimal point when we are dealing with other bases.

Fractions in different Bases

If we want to convert 0.75 in decimal to binary, it may be easy to look and and realise we need $0.5+0.25$ which gives us 0b0.11. Sometimes it is not that easy and we need a systematic approach.

The algorithm to convert a decimal fraction to another base is:

- take the fractional component and multiply by the base
- the whole number becomes the next digit to the right of the radix point in our fraction.
- We now disregard the whole number part of the previous result and repeat this process until the fractional part becomes exhausted or we have sufficient digits (this process is not guaranteed to terminate).

For example if we want to convert 0.3125 to base 2

- 0.3125 * $2=0.625$
- 0.625 * $2=1.25$
- $0.25 * 2=0.5$
- 0.5 * $2=1.0$

Therefore $0.3125=0 \mathrm{~b} 0.0101$

Exercise 2: Fractions: Decimal \rightarrow Binary

Convert the following decimal values into binary

- 12.625
- 0.1

Floating Point Numbers

Floating point numbers model a (tiny) subset of real numbers

- many real values don't have exact representation (e.g. 1/3)
- numbers close to zero have higher precision (more accurate)

C has two floating point types

- float ... typically 32-bit quantity (lower precision, narrower range)
- double ... typically 64-bit quantity (higher precision, wider range)

Literal floating point values: $3.14159,1.0 / 3,1.0 \mathrm{e}-9$
printf("\%10.4lf", (double)2.718281828459);
displays 2.7183
printf("\%20.20lf", (double)4.0/7);
displays 0.57142857142857139685

IEEE 754 standard ...

- scientific notation with fraction F and exponent E
- numbers have form $F \times 2^{E}$, where both F and E can be -ve
- INFINITY = representation for ∞ and $-\infty$ (e.g. 1.0/0)
- NAN = representation for invalid value (e.g. sqrt(-1.0))

Floating Point Numbers
IEEE 754 standard internal structure of floating point values

double precision

More complex representation than int because $1 . d d d$ e $d d$

Floating Point Numbers

Example of normalising the fraction part in binary:

- 1010.1011 is normalized as 1.0101011×2^{011}
- $1010.1011=10+11 / 16=10.6875$
- $1.0101011 \times 2^{011}=(1+43 / 128) \times 2^{3}=1.3359375 \times 8=10.6875$

The normalised fraction part always has 1 before the decimal point.
Example of determining the exponent in binary:

- assume an 8 -bit exponent, then bias $B=2^{8-1}-1=127$
- valid bit patterns for exponent 00000001 .. 11111110 (1..254)
- exponent values -126.. 127

Floating Point Numbers

Example (single-precision):
$150.75=10010110.11$
// normalise fraction, compute exponent
$=1.001011011 \times 2^{7}$
// sign bit $=0$
// exponent $=10000110$
// fraction $=001011011000000000000000$
$=010000110001011011000000000000000$
Note: $B=127, e=2^{7}$, so exponent $=127+7=134=10000110$

Floating Point Numbers

Convert the decimal numbers 1 to a floating point number in IEEE 754 single-precision format.
Convert the following floating point numbers to decimal.
Assume that they are in IEEE 754 single-precision format.
01000000011000000000000000000000

10111111010000000000000000000000
You can try out more examples with this Floating Point Calculator

Floating Point Numbers

Special cases:

- If every bit (except the sign bit) is 0 then we have the number 0 . This means we can have positive and negative 0 .
- If every bit of the exponent is 1 and the fraction is 0 then we have infinity (positive or negative)
- If every bit of the exponent is 1 and the fraction is not 0 then we have NaN (not a number).
- Underflow: If the exponent has minimum value (all zero), special rules for denormalized values are followed. The exponent value is set to 2^{-126} and the "invisible" leading bit for the fraction part is no longer used.

Pointers represent memory addresses/locations

- number of bits depends on memory size, 64-bits on cse machines
- data pointers reference addresses in data/heap/stack regions
- function pointers reference addresses in code region

Many kinds of pointers, one for each data type, but

- sizeof(int *) $=\operatorname{sizeof(char~*)~}$
= sizeof(double $*$) = sizeof(struct X *)

Pointers

Code and data is aligned and is machine dependant. For example:

- char ... can be stored at any byte address
- int ... must be stored at an address addr \%4 == 0
- double ... often must be stored at an address addr $\% 8==0$

Thus pointer values must be appropriate for data type, e.g.

- (char *) ... can reference any byte address
- (int *) ... must have addr \%4 == 0
- (double \star) ... might need to have addr \%8 == 0

Pointer arithmetic

Pointers can "move" from object to object by pointer arithmetic
For any pointer T *p; p^{++}increases p by sizeof(T)
Examples (assuming 16-bit pointers):

```
char *p = 0x6060; p++; assert(p == 0x6061)
int *q = 0x6060; q++; assert(q == 0x6064)
double *r = 0x6060; r++; assert(r == 0x6068)
```

A common (efficient) paradigm for scanning a string

```
char *s = "a string";
char *c;
// print a string, char-by-char
for (c = s; *c != '\0'; c++) {
    printf("%c", *c);
}
```

In C you may point to anything in memory.

- The compiled program is in memory
- The compiled program is made up of functions
- Therefore you can point at functions

Function pointers ...

- are references to memory address of a function
- are pointer values and can be assigned/passed

Function Pointers

Syntax of declaring a function pointer:
return_t (*var) (arg_t, ...)
Examples of declaring a function pointer:
// variable $f p$ is a pointer to a function with // one int parameter and an int return value int (*fp) (int);
// variable fp2 is a pointer to a function with
// a char and an int parameters and a void return value void (*fp2) (char, int);

Function Pointers

Examples of use:
int square (int x) \{ return $x * x$; \}
int timesTwo (int x) \{ return $x * 2 ;\}$
int (*fp) (int);
//Point to the square function and use it
fp = \□
int $n=(* f p)(10)$;
//It also works without the '\&'
fp = timesTwo;
$\mathrm{n}=(\star \mathrm{fp})(2)$;
//Normal function notation also works
$\mathrm{n}=\mathrm{fp}(2)$;

Function Pointers

Can traverse a collection such as an array, applying the function to all values

```
void traverse(int len, int a[], int (*f)(int)){
    for(int i = 0; i < len; i++){
        a[i] = f(a[i]);
    }
}
int main(void){
    int a[3] = {1,2,3};
    traverse(3,a,square);
    traverse(3,a,timesTwo);
    return 0;
}
```


Arrays

Arrays are defined to have N elements, each of type T
Examples:
int a[100]; // array of 10 ints
char str[256]; // array of 256 chars
double vec[100]; // array of 100 doubles
Elements are laid out adjacent in memory

Arrays

Assuming an array declaration like Typev [N]...

- individual array elements are accessed via indices 0..N-1
- total amount of space allocated to array $N \times$ sizeof (Type)
- array name gives address of first element (e.g. $v=\& \vee[0]$)
- $v[i]$ is the same as * $(v+i)$

Strings are just arrays of char with a ' $\backslash 0$ ' terminator

- constant strings have ' \0' added automatically
- string buffers must allow for element to hold ' $\backslash 0^{\prime}$

Arrays

When arrays are "passed" to a function, actually pass \& a [0]

```
int main(void)
{
    char str[5] = "abc";
    f(str);
}
void f(char *s)
{
    while (*s != '\0'){
        printf("%c", *s);
        s++;
    }
}
```

str

Arrays

Arrays can be created automatically or via malloc()

```
int main(void)
{
    char str1[9] = "a string";
    char *str2; // no array object yet
    str2 = malloc(20*sizeof(char));
    strcpy(str2, str1);
    printf("&str1=%p, %s\n", &str1, str1);
    printf("&str2=%p, %s\n", &str2, str2);
    printf("str1=%p, str2=%p\n",str1,str2);
    free(str2);
    return 0;
}
```

Two separate arrays (different \&'s), but have same contents
(except for the unitialised parts of the arrays)

structs

Structs are defined to have a number of components

- each component has a Name and a Type

Example:

called struct _student

structs

To ensure alignment for the fields and for the struct itself, internal

struct xyz (version 2)

Padding wastes space; You can try to re-order fields to minimise waste.

unions

A union is a special data type available in C that allows storing different data types in the same memory location.
The size of a union is equal to the size of its largest member (plus any padding).
An example of declaring a union

```
union MyUnion {
    unsigned long long value;
    char s[8];
};
```

This union can store either an unsigned long long value, or a string of size 8 (including the ' $\backslash 0$ ' terminator).

unions

Example usage

```
union MyUnion u;
printf("%d\n",sizeof(union MyUnion)); //prints out 8
u.value = 999999;
printf("%llu\n",u.value); //prints out 999999
strcpy(u.s,"hello");
printf("%s\n",u.s); //prints out hello
printf("%llu\n",u.value); //Does NOT print out 999999
                                    //as it has been (partly) overwritten
```


Memory and Endianness

Memories can be categorised as big-endian or little-endian

	[0]	[1]	[2]	$[3]$
$[0]$	byte0	byte1	byte2	byte3
$[4]$	byte4	byte5	byte6	byte7
$[8]$				

Little-endian

	[0]	[1]		[2]
$[3]$				
$[0]$	byte3	byte2	byte1	byte0
$[4]$	byte7	byte6	byte5	byte4
$[8]$				

\square
Big-endian

Loading a 4-byte int from address 0 gives

byte3	byte2	byte1	byte0

Exercise: Endianness

Write code to print out an int, byte by byte. Is your system big or little endian?

