
DPST1092 23T2 — Data Representation Part 2

https://www.cse.unsw.edu.au/~dp1092/23T2/

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 1 / 35

Character Data

Character data has several possible representations (encodings)

The two most common:

ASCII (ISO 646)
▶ 7-bit values, using lower 7-bits of a byte (top bit always zero)
▶ can encode roman alphabet, digits, punctuation, control chars

UTF-8 (Unicode)
▶ 8-bit values, with ability to extend to multi-byte values
▶ can encode all human languages plus other symbols

e.g.:

√ ∑ ∀ ∃

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 2 / 35

ASCII Character Encoding

Uses values in the range 0x00 to 0x7F (0..127)

Characters partitioned into sequential groups

control characters (0..31) ... e.g. '\0', '\n'
punctuation chars (32..47,91..96,123..126)
digits (48..57) ... '0'..'9'
upper case alphabetic (65..90) ... 'A'..'Z'
lower case alphabetic (97..122) ... 'a'..'z'

Sequential nature of groups allows for things like (ch - '0') Eg.

See man 7 ascii

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 3 / 35



Unicode

Basically, a 32-bit representation of a wide range of symbols

around 140K symbols, covering 140 different languages

Using 32-bits for every symbol would be too expensive

e.g. standard roman alphabet + punctuation needs only 7-bits

More compact character encodings have been developed (e.g. UTF-8)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 4 / 35

UTF-8 Character Encoding

UTF-8 uses a variable-length encoding as follows

#bytes #bits Byte 1 Byte 2 Byte 3 Byte 4
1 7 0xxxxxxx - - -
2 11 110xxxxx 10xxxxxx - -
3 16 1110xxxx 10xxxxxx 10xxxxxx -
4 21 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

The 127 1-byte codes are compatible with ASCII

The 2048 2-byte codes include most Latin-script alphabets

The 65536 3-byte codes include most Asian languages

The 2097152 4-byte codes include symbols and emojis and ...

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 5 / 35

ASCII Character Encoding

UTF-8 examples

ch unicode bits simple binary UTF-8 binary
$ U+0024 7 010 0100 00100100
¢ U+00A2 11 000 1010 0010 11000010 10100010
€ U+20AC 16 0010 0000 1010 1100 11100010 10000010 10101100

Unicode strings can be manipulated in C (e.g.” ” )

Like other C strings, they are terminated by a 0 byte (i.e. '\0')

Warning: Functions like strlen may not work as expected.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 6 / 35



Exercise 1: UTF-8 Unicode Encoding

For each of the following symbols, with their Unicode value

show the bit-string that would be used to represent them

Symbols:

& U+00026
µ U+000B5

Given that has the code U+02665

Convert it into the bitstring that would represent it
Write a C program to print
beats

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 7 / 35

Fractions in different Bases

The decimal fraction 0.75 means

7*10-1 + 5*10-2 = 0.7 + 0.05 = 0.75
or equivalently 75/102 = 75/100 = 0.75

Similary 0b0.11 means

1*2-1 + 1*2-2 = 0.5 + 0.25 = 0.75
or equivalently 3/22 = 3/4 = 0.75

Similarly 0x0.C means

12*16-1 = 0.75
or equivalently 12/161 = 3/4 = 0.75

Note: We call the . a radix point rather than a decimal point when we are dealing with other bases.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 8 / 35

Fractions in different Bases

If we want to convert 0.75 in decimal to binary, it may be easy to look and and realise we need 0.5 + 0.25 which gives
us 0b0.11. Sometimes it is not that easy and we need a systematic approach.

The algorithm to convert a decimal fraction to another base is:

take the fractional component and multiply by the base
the whole number becomes the next digit to the right of the radix point in our fraction.
We now disregard the whole number part of the previous result and repeat this process until the fractional part
becomes exhausted or we have sufficient digits (this process is not guaranteed to terminate).

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 9 / 35



Fractions in different Bases

For example if we want to convert 0.3125 to base 2

0.3125 * 2 = 0.625
0.625 * 2 = 1.25
0.25 * 2 = 0.5
0.5 * 2 = 1.0

Therefore 0.3125 = 0b0.0101

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 10 / 35

Exercise 2: Fractions: Decimal → Binary

Convert the following decimal values into binary

12.625
0.1

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 11 / 35

Floating Point Numbers

Floating point numbers model a (tiny) subset of real numbers

many real values don’t have exact representation (e.g. 1/3)
numbers close to zero have higher precision (more accurate)

C has two floating point types

float ... typically 32-bit quantity (lower precision, narrower range)
double ... typically 64-bit quantity (higher precision, wider range)

Literal floating point values: 3.14159, 1.0/3, 1.0e-9

printf("%10.4lf", (double)2.718281828459);
displays 2.7183
printf("%20.20lf", (double)4.0/7);
displays 0.57142857142857139685

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 12 / 35



Floating Point Numbers

IEEE 754 standard ...

scientific notation with fraction F and exponent E
numbers have form F × 2E, where both F and E can be -ve
INFINITY = representation for ∞ and -∞ (e.g. 1.0/0)
NAN = representation for invalid value (e.g. sqrt(-1.0))

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 13 / 35

Floating Point Numbers
IEEE 754 standard internal structure of floating point values

More complex representation than int because 1.dddd e dd

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 14 / 35

Floating Point Numbers

Example of normalising the fraction part in binary:

1010.1011 is normalized as 1.0101011 × 2011

1010.1011 = 10 + 11/16 = 10.6875
1.0101011 × 2011 = (1 + 43/128) × 23 = 1.3359375 × 8 = 10.6875

The normalised fraction part always has 1 before the decimal point.

Example of determining the exponent in binary:

assume an 8-bit exponent, then bias B = 28-1-1 = 127
valid bit patterns for exponent 00000001 .. 11111110 (1..254)
exponent values -126 .. 127

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 15 / 35



Floating Point Numbers

Example (single-precision):

150.75 = 10010110.11

// normalise fraction, compute exponent

= 1.001011011 × 27

// sign bit = 0

// exponent = 10000110

// fraction = 001011011000000000000000

= 010000110001011011000000000000000

Note: B=127, e=27, so exponent = 127+7 = 134 = 10000110

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 16 / 35

Floating Point Numbers

Convert the decimal numbers 1 to a floating point number in IEEE 754 single-precision format.

Convert the following floating point numbers to decimal.

Assume that they are in IEEE 754 single-precision format.

0 10000000 11000000000000000000000

1 01111110 10000000000000000000000

You can try out more examples with this Floating Point Calculator

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 17 / 35

Floating Point Numbers

Special cases:

If every bit (except the sign bit) is 0 then we have the number 0. This means we can have positive and negative 0.
If every bit of the exponent is 1 and the fraction is 0 then we have infinity (positive or negative)
If every bit of the exponent is 1 and the fraction is not 0 then we have NaN (not a number).
Underflow: If the exponent has minimum value (all zero), special rules for denormalized values are followed.
The exponent value is set to 2-126 and the ”invisible” leading bit for the fraction part is no longer used.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 18 / 35



Pointers

Pointers represent memory addresses/locations

number of bits depends on memory size, 64-bits on cse machines
data pointers reference addresses in data/heap/stack regions
function pointers reference addresses in code region

Many kinds of pointers, one for each data type, but

sizeof(int *) = sizeof(char *)
= sizeof(double *) = sizeof(struct X *)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 19 / 35

Pointers

Code and data is aligned and is machine dependant. For example:

char ... can be stored at any byte address
int ... must be stored at an address addr %4 == 0
double ... often must be stored at an address addr %8 == 0

Thus pointer values must be appropriate for data type, e.g.

(char *) ... can reference any byte address
(int *) ... must have addr %4 == 0
(double *) ... might need to have addr %8 == 0

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 20 / 35

Pointer arithmetic

Pointers can ”move” from object to object by pointer arithmetic

For any pointer T*p;, p++ increases p by sizeof(T )

Examples (assuming 16-bit pointers):

char *p = 0x6060; p++; assert(p == 0x6061)
int *q = 0x6060; q++; assert(q == 0x6064)
double *r = 0x6060; r++; assert(r == 0x6068)

A common (efficient) paradigm for scanning a string

char *s = "a string";
char *c;
// print a string, char-by-char
for (c = s; *c != '\0'; c++) {

printf("%c", *c);
}

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 21 / 35



Function Pointers

In C you may point to anything in memory.

The compiled program is in memory
The compiled program is made up of functions
Therefore you can point at functions

Function pointers ...

are references to memory address of a function
are pointer values and can be assigned/passed

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 22 / 35

Function Pointers

Syntax of declaring a function pointer:

return_t (*var) (arg_t, ...)

Examples of declaring a function pointer:

// variable fp is a pointer to a function with
// one int parameter and an int return value
int (*fp) (int);

// variable fp2 is a pointer to a function with
// a char and an int parameters and a void return value
void (*fp2) (char, int);

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 23 / 35

Function Pointers

Examples of use:

int square (int x) { return x*x; }
int timesTwo (int x) { return x*2; }

int (*fp) (int);
//Point to the square function and use it
fp = &square;
int n = (*fp)(10);

//It also works without the '&'
fp = timesTwo;
n = (*fp)(2);

//Normal function notation also works
n = fp(2);

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 24 / 35



Function Pointers

Can traverse a collection such as an array, applying the function to all values

void traverse(int len, int a[], int (*f)(int)){
for(int i = 0; i < len; i++){

a[i] = f(a[i]);
}

}

int main(void){
int a[3] = {1,2,3};
traverse(3,a,square);
traverse(3,a,timesTwo);
return 0;

}

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 25 / 35

Arrays

Arrays are defined to have N elements, each of type T

Examples:

int a[100]; // array of 10 ints
char str[256]; // array of 256 chars
double vec[100]; // array of 100 doubles

Elements are laid out adjacent in memory

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 26 / 35

Arrays

Assuming an array declaration like Typev[N ] ...

individual array elements are accessed via indices 0..N-1
total amount of space allocated to array N × sizeof(Type )
array name gives address of first element (e.g. v = &v[0])
v[i] is the same as *(v+i)

Strings are just arrays of char with a '\0' terminator

constant strings have '\0' added automatically
string buffers must allow for element to hold '\0'

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 27 / 35



Arrays
When arrays are ”passed” to a function, actually pass &a[0]

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 28 / 35

Arrays
Arrays can be created automatically or via malloc()

int main(void)
{

char str1[9] = "a string";
char *str2; // no array object yet

str2 = malloc(20*sizeof(char));
strcpy(str2, str1);
printf("&str1=%p, %s\n", &str1, str1);
printf("&str2=%p, %s\n", &str2, str2);
printf("str1=%p, str2=%p\n",str1,str2);
free(str2);
return 0;

}

Two separate arrays (different &’s), but have same contents

(except for the unitialised parts of the arrays)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 29 / 35

structs
Structs are defined to have a number of components

each component has a Name and a Type

Example:

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 30 / 35



structs

To ensure alignment for the fields and for the struct itself, internal

Padding wastes space; You can try to re-order fields to minimise waste.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 31 / 35

unions

A union is a special data type available in C that allows storing different data types in the same memory location.

The size of a union is equal to the size of its largest member (plus any padding).

An example of declaring a union

union MyUnion {
unsigned long long value;
char s[8];

};

This union can store either an unsigned long long value, or a string of size 8 (including the ’\0’ terminator).

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 32 / 35

unions

Example usage

union MyUnion u;
printf("%d\n",sizeof(union MyUnion)); //prints out 8
u.value = 999999;
printf("%llu\n",u.value); //prints out 999999
strcpy(u.s,"hello");
printf("%s\n",u.s); //prints out hello
printf("%llu\n",u.value); //Does NOT print out 999999

//as it has been (partly) overwritten

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 33 / 35



Memory and Endianness

Memories can be categorised as big-endian or little-endian

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 34 / 35

Exercise: Endianness

Write code to print out an int, byte by byte. Is your system big or little endian?

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Data Representation Part 2 35 / 35


