
DPST1092 23T2 — Debugging

https://www.cse.unsw.edu.au/~dp1092/23T2/

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 1 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/
https://www.cse.unsw.edu.au/~dp1092/23T2/

Debugging Tools

Please watch this pre-recorded video to accompany these lecture slides

Debugging Lecture video

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 2 / 13

https://moodle.telt.unsw.edu.au/mod/resource/view.php?id=5626183
https://www.cse.unsw.edu.au/~dp1092/23T2/

Debugging Tools

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 3 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Debugging Tools
Debugging is like detective work ...

Examine the crime scene

Examine the output for the given inputs

Form a hypothesis
(what happened? whodunnit?)

Form a hypothesis
(what might have caused this runtime behaviour?)

Look for clues
(to strengthen hypothesis)

Look at code
(to strengthen hypothesis)

Gather evidence

Observe program behaviour**

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 4 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/

GDB: The Gnu Debugger

gdb provides facilities to

control execution of program
(step-by-step execution, breakpoints)
view intermediate state of program
(values stored in data structures, control stack)

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 5 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Using GDB
Program must be compiled using -g option.

gdb provides control of execution, monitoring of state

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 6 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Using GDB

Executing program under gdb control:

$ gdb myProg
(gdb) run < dataFile
... crashes, displaying line of code
(gdb) where
... stack trace
(gdb) list
... show code around current location
(gdb) print expr
... display value of expression
(gdb) help
... documentation
(gdb) quit

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 7 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Basic GDB Commands

quit -- quits from gdb

help [CMD] -- on-line help

Gives information about CMD command.

run ARGS -- run the program

ARGS are whatever you normally use, e.g.

$ xyz < data

is acheived by

(gdb) run < data

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 8 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/

GDB Status Commands

where -- stack trace

find which function the program was executing when it crashed.
stack may also have references to system error-handling functions.

up [N] -- move down the stack

allows you to skip to scope of particular function in stack

list [LINE] --- show code

displays five lines either side of current statement.

print EXPR -- display expression values

EXPR may use (current values of) variables
special expression a@1 shows all of the array a

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 9 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/

GDB Execution Commands

break [FUNC|LINE] - set break-point

stop execution and return control to gdb
on entry to function FUNC or on reaching line LINE

next - single step (over functions)

execute next statement
if statement is function call, execute whole function

step - single step (into functions)

execute next statement
if statement is function call, go to first statement in function body

continue - resume program execution

continue to execute statements until a break point is reached or the program terminates

For more details see gdb’s on-line help.

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 10 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Exercise: Monitoring Program Execution

Use GDB to examine the execution of the following:

iterative factorial function (fac0.c)
recursive factorial function (fac.c)
iterative list traversal (List.c)

Do each of the following:

set a breakpoint
run the program with command line arguments
check the stack
print the values of variable
step though the next line of code
continue execution after the breakpoint

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 11 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/

valgrind

valgrind is a tool that can

Find memory leaks (memory you malloced but did not free)
Find memory errors (bugs where you illegally tried to access memory)

Program must be compiled using -g option.

Can be run like:

$ valgrind ./a.out

Or for more information about memory leaks:

$ valgrind --leak-check=full ./a.out

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 12 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Exercise: Finding Memory Leaks

Use valgrind to examine the execution of the following:

iterative list traversal (testList.c and List.c)

Do each of the following:

Fix any memory errors
Fix any memory leaks

https://www.cse.unsw.edu.au/~dp1092/23T2/ DPST1092 23T2 — Debugging 13 / 13

https://www.cse.unsw.edu.au/~dp1092/23T2/

