DPST1092 23T2 — Debugging

https://www.cse.unsw.edu.au/~dp1092/23T72/

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging

https://www.cse.unsw.edu.au/~dp1092/23T2/
https://www.cse.unsw.edu.au/~dp1092/23T2/

Debugging Tools

Please watch this pre-recorded video to accompany these lecture slides

Debugging Lecture video

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging 2/13

https://moodle.telt.unsw.edu.au/mod/resource/view.php?id=5626183
https://www.cse.unsw.edu.au/~dp1092/23T2/

Debugging Tools

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging 3/13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Debugging Tools

Debugging is like detective work ...
Examine the crime scene
Examine the output for the given inputs

Form a hypothesis
(what happened? whodunnit?)

Form a hypothesis
(what might have caused this runtime behaviour?)

Look for clues
(to strengthen hypothesis)

Look at code
(to strengthen hypothesis)

Gather evidence

Observe program behaviour**

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging 4/13

https://www.cse.unsw.edu.au/~dp1092/23T2/

GDB: The Gnu Debugger

gdb provides facilities to

@ control execution of program
(step-by-step execution, breakpoints)
@ view intermediate state of program
(values stored in data structures, control stack)

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging

5/13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Using GDB

Program must be compiled using —g option.

argc,argv
\ compiled with -g stderr
SN m—- stdout

exit
t status

oooag
oooao

gdb O
O

gdb provides control of execution, monitoring of state

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging

6/13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Using GDB

Executing program under gdb control:

$ gdb myProg
(gdb) run < dataFile

. crashes, displaying line of code
(gdb) where

. stack trace
(gdb) list

. show code around current location
(gdb) print expr

. display value of expression
(gdb) help

. documentation
(gdb) quit

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging

7/13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Basic GDB Commands

quit -- quits from gdb
help [CMD] -- on-line help
@ Gives information about CMD command.
run ARGS -- run the program
@ ARGS are whatever you normally use, e.g.
$ xyz < data
is acheived by

(gdb) run < data

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging

8/13

https://www.cse.unsw.edu.au/~dp1092/23T2/

GDB Status Commands

where -- stack trace

@ find which function the program was executing when it crashed.
@ stack may also have references to system error-handling functions.

up [N] -- move down the stack

@ allows you to skip to scope of particular function in stack
list [LINE] --- show code

@ displays five lines either side of current statement.
print EXPR -- display expression values

@ EXPR may use (current values of) variables
@ special expression a@1 shows all of the array a

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging 9/13

https://www.cse.unsw.edu.au/~dp1092/23T2/

GDB Execution Commands

break [FUNC|LINE] - set break-point

@ stop execution and return control to gdb
on entry to function FUNC or on reaching line LINE

next - single step (over functions)

@ execute next statement
if statement is function call, execute whole function

step - single step (into functions)

@ execute next statement
if statement is function call, go to first statement in function body

continue - resume program execution
@ continue to execute statements until a break point is reached or the program terminates

For more details see gdb’s on-line help.

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging 10/13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Exercise: Monitoring Program Execution

Use GDB to examine the execution of the following:

@ iterative factorial function (fac0.c)
@ recursive factorial function (fac. c)
@ iterative list traversal (List.c)

Do each of the following:

set a breakpoint

run the program with command line arguments
check the stack

print the values of variable

step though the next line of code

continue execution after the breakpoint

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging n/13

https://www.cse.unsw.edu.au/~dp1092/23T2/

valgrind

valgrind is a tool that can

@ Find memory leaks (memory you malloced but did not free)
@ Find memory errors (bugs where you illegally tried to access memory)

Program must be compiled using —g option.
Can be run like:

$ valgrind ./a.out

Or for more information about memory leaks:

$ valgrind --leak-check=full ./a.out

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging 12/13

https://www.cse.unsw.edu.au/~dp1092/23T2/

Exercise: Finding Memory Leaks

Use valgrind to examine the execution of the following:
@ iterative list traversal (testList.c and List.c)
Do each of the following:

@ Fix any memory errors
@ Fix any memory leaks

https:/ /www.cse.unsw.edu.au/~dp1092/2372/ DPST1092 23T2 — Debugging

13/13

https://www.cse.unsw.edu.au/~dp1092/23T2/

