
While Statements

• We often need to execute code (statements) many times.
• if statements only allow us to execute or not execute code. in

other words they allow us to execute code 0 or 1 times
while loops allow us to execute code 0 or more times

• Like if, while loops have a condition
but while statements execute their body until
the condition becomes false

while (CONDITION) {
stmt1;
stmt2;
...
stmtn;

}

While Statements

• C has other looping constructs - but while is all you need
• for loops can be a little more concise/convenient

we’ll see them later - for now use while
• Often use a loop counter variable to count loop repetitions
• Can then have a while loop execute n times.

while Loop - Loop Counter Example

// read an integer n
// print n asterisks
int loop_counter, n;

printf("How many asterisks? ");
scanf("%d", &n);

loop_counter = 0;
while (loop_counter < n) {

printf("*");
loop_counter = loop_counter + 1;

}
printf("\n");

while Loop - Loop Counter Pattern

Here is the programming pattern for a while that executes n times:

int i = 0;
while (i < n) {

//
// statements the loop needs to perform
//

i = i + 1;
}

While Statements - Termination

• Can control termination (stopping) of while loops in many
ways.

• Easy to write while loop that do not terminate.
• Often a sentinel variable is used to stop a while loop

when a condition occurs in the body of the loop

while Loop - Sentinel Variable Example

// read numbers printing whether even or odd
// stop if zero read
int stop_loop, numbers;

stop_loop = 0;
while (stop_loop != 1) {

scanf("%d", &number);
if (number == 0) {

stop_loop = 1;
} else if (number % 2 == 1) {

printf("%d is odd.\n", number);
} else {

printf("%d is even.\n", number);
}

}

while Loop - Sentinel Variable Pattern

Here is the programming pattern for a while loop that executes
until the sentinel variable is changed.

stop_loop = 0;
while (stop_loop != 1) {

//
// statements the loop needs to perform
//
if (.......) {

stop_loop = 1;
}

//
// perhaps more statements
//

}

Nested While Loops

• Often need to nest while loops.
• Need a separate loop counter variable for each nested loop.

// print a square of 10x10 asterisks

int i = 0;
while (i < 10) {

int j = 0;
while (j < 10) {

printf("* ");
j = j + 1;

}

printf("\n");
i = i + 1;

}

Nested While Loops

• Nested while loops are used when repetition of repetition is
required.

• This often happens in problems which have a two-dimensional
nature, such as printing a square of asterisks.

• Remember to reset the value of the inner while loop’s counter
variable each time it runs!

