
Memory Organisation

• During execution programs variables are stored in memory.
• Memory is effectively a gigantic array of bytes.

COMP1521 will explain more
• Memory addresses are effectively an index to this array of

bytes.
• These indices can be very large

up to 232 − 1 on a 32-bit platform
up to 264 − 1 on a 64-bit platform

• Memory addresses usually printed in hexadecimal (base-16).

Memory Organisation

In order to fully understand how pointers are used to reference
data in memory, here’s a few basics on memory organisation.

0xFFFFFFFFFFFFFFFF High Memory
0xFFFFFFFFFFFFFFFE

...

0x0000000000000001
0x0000000000000000 Low Memory

Memory

• computer memory is a large array of bytes
• a variable will stored in 1 or more bytes
• on CSE machines a char occupies 1 byte, a an int 4 bytes, a

double 8 bytes
• The & (address-of) operator returns a reference to a variable.
• Almost all C implementations implement pointer values using

a variable’s address in memory
• Hence for almost all C implementations & (address-of)

operator returns a memory address.
• It is convenient to print memory addresses in Hexadecimal

notation. should

Variables in Memory

int k;
int m;

printf("address of k is %p\n", &k);
// prints address of k is 0xbffffb80

printf("address of m is %p\n", &m);
// prints address of k is 0xbffffb84

• k occupies the four bytes from 0xbffffb80 to 0xbffffb83

• m occupies the four bytes from 0xbffffb84 to 0xbffffb87

Arrays in Memory

Elements of the array will be stored in consecutive memory
locations:

int a[5];

int i = 0;
while (i < 5) {

printf("address of a[%d] is %p\n", i, &a[i]);
}
// prints:
// address of a[1] is 0x7ffe693d61c4
// address of a[2] is 0x7ffe693d61c8
// address of a[3] is 0x7ffe693d61cc
// address of a[4] is 0x7ffe693d61d0

Size of a Pointer

Just like any other variable of a certain type, a variable that is a
pointer also occupies space in memory. The number of bytes
depends on the computer’s architecture.

• 32-bit platform: pointers likely to be 4 bytes
e.g. older operating systems/machines

• 64-bit platform: pointers likely to be 8 bytes
e.g. CSE machines, many student machines

• tiny embedded CPU: pointers could be 2 bytes
e.g. your microwave

Pointers

A pointer is a data type whose value is a reference to another
variable.

int *ip; // pointer to int
char *cp; // pointer to char
double *fp; // pointer to double

In most C implementations, pointers store the the memory address
of the variable they refer to.

Pointers

• The & (address-of) operator returns a reference to a variable.
• The * (dereference) operator accesses the variable referred to

by the pointer.
For example:

int i = 7;
int *ip = &i;
printf("%d\n", *ip); // prints 7
*ip = *ip * 6;
printf("%d\n", i); //prints 42
i = 24;
printf("%d\n", *ip); // prints 24

Pointers

• Like other variables, pointers need to be initialised before they
are used .

• Like other variables, its best if novice programmers initialise
pointers as soon as they are declared.

• The value NULL can be assigned to a pointer to indicate it
does not refer to anything.

• NULL is a #define in stdio.h
• NULL and 0 interchangable (where a pointer is expected).
• Most programmers prefer NULL for readability.

Pointer Arguments

We’ve seen that when primitive types are passed as arguments to
functions, they are passed by value and any changes made to them
are not reflected in the caller.

void increment(int n) {
n = n + 1;

}

This attempt fails. But how does a function like scanf manage to
update variables found in the caller? scanf takes pointers to those
variables as arguments!

void increment(int *n) {
*n = *n + 1;

}

Pointer Arguments

We use pointers to pass variables by reference! By passing the
address rather than the value of a variable we can then change the
value and have the change reflected in the caller.

int i = 1;
increment(&i);
printf("%d\n", i);
//prints 2

In a sense, pointer arguments allow a function to ‘return’ more
than one value. This greatly increases the versatility of functions.
Take scanf for example, it is able to read multiple values and it
uses its return value as error status.

Pointer Arguments

Classic Example
Write a function that swaps the values of its two integer
arguments.

Before we knew about pointer arguments this would have been
impossible, but now it is straightforward.

void swap(int *n, int *m) {
int tmp;

tmp = *n;
*n = *m;
*m = tmp;

}

Pointer Return Value

You should not find it surprising that functions can return pointers.
However, you have to be extremely careful when returning pointers.
Returning a pointer to a local variable is illegal - that variable is
destroyed when the function returns.
But you can return a pointer that was given as an argument:

int increment(int *n) {
*n = *n + 1;
return n;

}

Nested calling is now possible: increment(increment(&i));

Pointers to structs

If a function needs to modify a struct’s field or if we want to avoid
the inefficiency of copying the entire struct, we can instead pass a
pointer to the struct as a parameter:

int scanZid(Student *s) {
return scanf("%d", &((*s).zid));

}

The “arrow” operator is more readable :

int scan_zid(Student *s) {
return scanf("%d", &(s->zid));

}

If s is a pointer to a struct s->field is equivalent to (*s).field

Array Representation

A C array has a very simple underlying representation, it is stored
in a contiguous (unbroken) memory block and a pointer is kept to
the beginning of the block.

char s[] = "Hi!";
printf("s: %p *s: %c\n\n", s, *s);
printf("&s[0]: %p s[0]: %c\n", &s[0], s[0]);
printf("&s[1]: %p s[1]: %c\n", &s[1], s[1]);
printf("&s[2]: %p s[2]: %c\n", &s[2], s[2]);
printf("&s[3]: %p s[3]: %c\n", &s[3], s[3]);
// prints
// s: 0x7fff4b741060 *s: H
// &s[0]: 0x7fff4b741060 s[0]: H
// &s[1]: 0x7fff4b741061 s[1]: i
// &s[2]: 0x7fff4b741062 s[2]: !
// &s[3]: 0x7fff4b741063 s[3]:

Array variables act like pointers to the beginning of the array!

Array Representation

Because array variables act like pointers, when we passed them to
functions we can change the array.
We can also use pointers like array names if they point at an
array:

int nums[] = {1, 2, 3, 4, 5};
int *p = nums;

printf("%d\n", nums[2]);
printf("%d\n", p[2]);
// both print: 3

Array Representation

We can even make a pointer point to the middle of an array:

int nums[] = {1, 2, 3, 4, 5};
int *p = &nums[2];
printf("%d %d\n", *p, p[0]);

There are differences between an array variable and a pointer.

int i = 5;
p = &i; // this is OK
nums = &i; // this is an error

Unlike a pointer, an array variable is constant and may not be
modified.
It always points to the start of the array. of the array, it

Arrays As Function Parameters

Arrays are converted to pointers when pass as function parameters

// all 3 prototypes are equivalent
void print_array(int length, int array[length]);
void print_array(int length, int array[]);
void print_array(int length, int *array);

The first prototype is more readable but the length is ignored in
the 2nd parameter.

Pointer Comparison

Pointers can be tested for equality or relative order.

double ff[] = {1.1, 1.2, 1.3, 1.4, 1.5, 1.6};
double *fp1 = ff;
double *fp2 = &ff[0];
double *fp3 = &ff[4];

printf("%d %d\n", (fp1 > fp3), (fp1 == fp2));
// prints: 0 1

Note that we are comparing the values of the pointers, i.e.,
memory addresses, not the values the pointers are pointing to!

Pointer Summary

Pointers:
• are a compound type
• usually implemented with memory addresses
• are manipulated using address-of(&) and dereference()
• should be initialised when declared
• can be initialised to NULL

• should not be dereferenced if invalid
• are used to pass arguments by reference
• are used to represent arrays
• should not be returned from functions if they point to local

variables

