malloc and free

For example, let’s assume we need a block of memory to hold a
string of say 100,000,000 ints.

int *p;

p = malloc(100000000 * sizeof (int));

if (p == NULL) {
printf ("Error: array could not be allocated.\n")
exit(1);

// we can now use the pointer
// ... lots of things to do

free(p); // free up the memory that was used




sizeof

e sizeof - C operator yields bytes needed for type or variable

e sizeof (type) or sizeof variable

e note unusual (badly designed) syntax - brackets indicate
argument is a type

e use sizeof for every malloc call

printf ("%14d",
printf("%14d",
printf("%1d",
printf("%1d",
printf("%14d",
printf ("%1d",

sizeof
sizeof
sizeof
sizeof
sizeof
sizeof

(char));
(int));
(double));

(int[101));

(int *));
"hello");

// 1

// 4 commonly
// 8 commonly
// 40 commonly

// 4 or 8 commonly

// 6

J




malloc and sizeof

e sizeof - C operator yields bytes needed for type or variable
e note unusual syntax sizeof (type) or sizeof variable

e use sizeof for every malloc call

e malloc() returns pointer to block of memory

e malloc() returns a (void *) pointer - can be assigned to
any pointer type

e malloc() returns NULL if insufficient memory available -
check for this



free

free() indicates you've finished using the block of memory

Continuing to use memory after free () results in very nasty
bugs.

free() memory block twice also cause bad bugs.

if program keeps calling malloc() without corresponding
free() calls program’s memory will grow steadily larger
called a memory leak.

Memory leaks major issue for long running programs.

Operating system recovers memory when program exists.



