
global variables

Variables declared outside any function are available to all functions
They are called external variables or global variables

int g = 12;

void f(void) {
printf("The value of g is %d\n", g); // prints 12
g = 42;

}

int main(void) {
f();
printf("The value of g is %d\n", g); // prints 42
return 0;

}

global variables

• Avoid global variables - NOT needed in COMP1511
• make concurrency (threads) problematic
• creating hidden depenencies between parts of program
• make code reuse harder
• pollute the namespace - create a valid name everywhere you

might accidentally use
• generally reduce readability
• global variable can be useful for "meta"-purposes

e.g turning on-off debug logging through your program

More C Operators

C provides some additional operators, which allow for shorter
statements which can make your code a little more readable, or a
lot less readable.

• pre/post-increment: ++i, i++ same as i = i + 1

• pre/post-decrement: –-i, i–- same as i = i - 1
• compound assignment operators:

▶ a += b same as a = a + b
▶ a -= 5 same as a = a - 5
▶ a *= -10 same as a = a * -10
▶ a /= 2 same as a = a / 2
▶ a %= b same as a = a % b

Increment and Decrement Operators In Expressions

++ and -- can be used in in expressions
NOT recommended in COMP1511

They can be used after the variable:

k = 7;
n = k--; // assign k to n, then decrement k by 1
printf("%d %d", k, n) // k=6, n=7

They can be used before the variable:

k = 7;
n = --k; // decrement k by 1, then assign k to n
printf("%d %d", k, n) // k=6, n=6

The for loop

There is also a construct called the for Loop:

for (expr1; expr2; expr3) {
statements;

}

• expr1 is evaluated before the loop starts.
• expr2 is evaluated at the beginning of each loop;

if it is non-zero, the loop is repeated.
• expr3 is evaluated at the end of each loop.

Example of for loop

for (x = 1; x <= 10; x++) {
printf("%d\n", x * x);

}

Can declare variable if used only within for loop:

for (int x = 1; x <= 10; x++) {
printf("%d\n", x * x);

}

for loops and while loops

These two are equivalent:

for (expr1; expr2; expr3) {
statements;

}

expr1;
while (expr2) {

statements;
expr3;

}

Counting Down to Zero

Any of the 3 expressions in the for loop may be omitted
’;’ must still be present. For example:

printf("Enter starting number for Countdown: ");
scanf("%d", &n); // initial value entered by user
for (; n >= 0; n--) {

printf("%d\n", n);
}
printf("Blast Off!\verb|\n|");

for Loop expressions

Although NOT recommended, the comma operator ’,’ can be
used to squeeze multiple statements into expr1 and expr3. For
example,

for (int x=0, y=2; x < MAX; x++, y++) {
...

}

break and continue

• break causes a loop to terminate; no more iterations are
performed, and execution moves to whatever comes after the
loop.

• continue causes the current iteration of the loop to terminate;
execution moves to the next iteration.
▶ with while and do loops, the conditional expression is tested

before moving to the next iteration
▶ with for loops, expr3 is executed, then expr2 is tested before

moving to the next iteration
• break and continue used sparingly can make code more

readable
• overuse of break and continue can make code

incomprehensible

break and continue

Here is a typical use of break:

for (int i = 0; i < LIMIT; i++) {

// lots of complex things happens here

if (/* need to stop loop immediately */) {
break; // exit loop immediately

}

// lots more complex things happens here
}

break and continue Statement

Here is a typical use of continue:

for (int i = 0; i < LIMIT; i++) {

// lots of complex things happens here

if (/* this is not what is wanted */) {
continue; // got next loop iteration

}

// lots more complex things happens here
}

Exiting A Program

• In main return will terminate program
• stdlib.h provides a function useful outside main::

void exit(int status);

• status passed to exit same a return value of main
• stdlib.h defines EXIT_SUCCESS and EXIT_FAILURE
• EXIT_SUCCESS program executed successfully
• EXIT_FAILURE program stopped due to an error
• EXIT_SUCCESS == 0 on unix-like and almost all other

systems

Implicit Type Conversions

Recall that C supports ‘hybrid’ arithmetic operations involving
certain types, in a way that mirrors our expectations. For example:

3 + 5.8

An integer is added to a double, giving a double result. However,
at the machine level floating point addition requires two double
arguments and is a distinct operation from integer addition.

Implicit Conversions
The compiler steps in and performs an automatic conversion,
known as a cast, from integer to double.

double d = 3; // 3 is converted to double
int i = 5;
d = d + i; // i is converted to double

Implicit Type Conversions

Recall that C supports ‘hybrid’ arithmetic operations involving
certain types, in a way that mirrors our expectations. For example:

3 + 5.8

An integer is added to a double, giving a double result. However,
at the machine level floating point addition requires two double
arguments and is a distinct operation from integer addition.

Implicit Conversions
The compiler steps in and performs an automatic conversion,
known as a cast, from integer to double.

double d = 3; // 3 is converted to double
int i = 5;
d = d + i; // i is converted to double

Implicit Type Conversions

Implicit conversions are generally performed when considered
‘safe’, e.g., numeric types are converted to other numeric types
with larger capacity. But sometimes unsafe implicit conversions are
also performed, a common criticism of C. Consider:

int i = 1000;
char c1 = 100; // statically checked, OK
char c2 = 1000; // statically checked, warning
char c3 = i; // no warning

NB
You should be mindful of implicit conversions, often they make
coding easier, but sometimes they can mask programming errors!

Explicit Type Conversions

C allows us to perform our own, explicit type casts, using the
syntax (type). For example:

double d1 = 1 / 2;
double d2 = 1 / (double) 2;

Will the values of d1 and d2 be different?

Yes!

It is good programming style to identify potentially unsafe implicit
conversions and make them explicit:

#include <limits.h>
#include <assert.h>
...
assert(i >= CHAR_MIN && i <= CHAR_MAX);
char c = (char) i; // for some int i

Explicit Type Conversions

C allows us to perform our own, explicit type casts, using the
syntax (type). For example:

double d1 = 1 / 2;
double d2 = 1 / (double) 2;

Will the values of d1 and d2 be different? Yes!

It is good programming style to identify potentially unsafe implicit
conversions and make them explicit:

#include <limits.h>
#include <assert.h>
...
assert(i >= CHAR_MIN && i <= CHAR_MAX);
char c = (char) i; // for some int i

Explicit Type Conversions

NB
When using explicit casts the compiler will often assume that you
know what you are doing and not issue warnings even when a cast
is very likely unsafe!
For example:

int i = 1000;
char c = (char) i;
int *ip = (int *) i;
int nums[] = {0};
printf("%c\n", (char) i);
printf("%s\n", (char *) &i);
printf("%s\n", (char *) nums);

Casts are used here to view one type as another, often dangerous!

