
The char Type

• The C type char stores small integers.
• It is 8 bits (almost always).
• char guaranteed able to represent integers 0 .. +127.
• char mostly used to store ASCII character codes.
• Only use char for characters.
• Even if a numeric variable is only use for the values 0..9, use

the type int for the variable.

ASCII Encoding

• ASCII (American Standard Code for Information Interchange)
• Specifies mapping of 128 characters to integers 0..127.
• The characters encoded include:

▶ upper and lower case English letters: A-Z and a-z
▶ digits: 0-9
▶ common punctuation symbols
▶ special non-printing characters: e.g newline and space.

• You don’t have to memorize ASCII codes
Single quotes give you the ASCII code for a character:

printf("%d", 'a'); // prints 97
printf("%d", 'A'); // prints 65
printf("%d", '0'); // prints 48
printf("%d", ' ' + '\n'); // prints 42 (32 + 10)

• Don’t put ASCII codes in your program - use single quotes
instead.

Manipulating Characters

The ASCII codes for the digits, the upper case letters and lower
case letters are contiguous.
This allows some simple programming patterns:

// check for lowercase
if (c >= 'a' && c <= 'z') {
...

// check is a digit
if (c >= '0' && c <= '9') {

// convert ASCII code to corresponding integer
numeric_value = c - '0';

}

Reading a Character - scanf

scanf("%d", &my_int);
scanf("%c", &my_char);

• scanning an int ignores whitespace
• scanning a char does not ignore whitespace
• We can ignore leading whitespace with chars:

scanf(" %c", &character);

Reading a Character - getchar

C provides library functions for reading and writing characters
• getchar reads a byte from standard input.
• getchar returns an int
• getchar returns a special value (EOF usually -1) if it can not

read a byte.
• Otherwise getchar returns an integer (0..255) inclusive.
• If standard input is a terminal or text file this likely be an

ASCII code.
• Beware input often bufferred until entire line can be read.

int c;
printf("Please enter a character: ");
c = getchar();
printf("The ASCII code of the character is %d\n", c);

Reading a Character - getchar

Consider the following code:

int c1, c2;

printf("Please enter first character:\n");
c1 = getchar();
printf("Please enter second character:\n");
c2 = getchar();
printf("First %d\nSecond: %d\n", c1, c2);

The newline character from pressing Enter will be the second
character read.

Reading a Character - getchar

How can we fix the program?

int c1, c2;

printf("Please enter first character:\n");
c1 = getchar();
getchar(); // reads and discards a character
printf("Please enter second character:\n");
c2 = getchar();
printf("First: %c\nSecond: %c\n", c1, c2);

End of Input

• Input functions such as scanf or getchar can fail because no
input is available, e.g., if input is coming from a file and the
end of the file is reached.

• On UNIX-like systems (Linux/OSX) typing Ctrl + D signals
to the operating system no more input from the terminal.

• Windows has no equivalent - some Windows programs
interprert Ctrl + Z similarly.

• getchar returns a special value to indicate there is no input
was available.

• This non-ASCII value is #defined as EOF in stdio.h.
• On most systems EOF == -1. Note getchar otherwise returns

(0.255) or (0..127) if input is ASCII
• There is no end-of-file character on modern operating systems.

Reading Characters to End of Input

Programming pattern for reading characters to the end of input:

int ch;

ch = getchar();
while (ch != EOF) {

printf("'%c' read, ASCII code is %d\n", ch, ch);
ch = getchar();

}

For comparison the programming pattern for reading integers to
end of input:

int num;
// scanf returns the number of items read
while (scanf("%d", &num) == 1) {

printf("you entered the number: %d\n", num);
}

