Variables

e Variables are used to store a value.
e The value a variable holds may change over its lifetime.

e At any point in time a variable stores one value (except
quantum computers!)

e C variables have a type

We'll only use 2 types of variable for the next few weeks:
e int for integer values, e.g.: 42, -1
e double for decimal numbers 3.14159, 2.71828

Variables

e Declare The first time a variable is mentioned, we need to
specify its type.
o Initialise Before using a variable we need to assign it a value.

s ~
// Declare

int answer;
// Initialise
answer = 42;
// Use

printf ("%d", answer);

Variable Names (and other Identifiers)

Variable names can made up of letters, digits and underscores

Use a lower case letter to start your variable names

e Beware variable names are case sensitive,
e.g. hello and hEllo are different names)

e Beware certain words can't be used as variable names:
e.g.: if, while, return, int, double

These keywords have special meanings in C programs.

You'll learn what many of them are as we go on.

Output using printf()

e No variables:

[printf ("Hello World\n");

e A single variable:

int num = 5;
printf("num is %d\n", num);

e More than one variable:

int j = 5;
int k = 17;
printf("j is %d and k is %d\n", j, k);

Using values in printf()

e Use %d to print an int (integer) value

int answer;
answer = 42;
printf ("The answer is %d\n", answer);

e Use %lf or %g to print a double (floating point) value

double pi;
pi = 3.14159265359;
printf("pi is %1f\n", pi);

Input using scanf()

scanf uses a format string like printf.

e Use %d to read an int (integer) value

int answer;
printf ("Enter the answer: ");
scanf ("%d", &answer);

e Use %lf to read a double (floating point) value

double e;
printf ("Enter e: ");
scanf ("}%1f", &e);

e use only "%d" and "%If'"" format strings with scanf
e read only 1 value at a time with scanf
e scanf can be used in other ways - don't do it

e we'll show you better ways to do other input

Integer Representation

e typically 4 bytes used to store an int variable
e 4 bytes — 32 bits — 232 possible values (bit patterns)
e only 232 integers can be represented - which ones?
o 23 to23 -1

i.e. -2,147,483,648 to +2,147,483,647
o Why are limits assymetric?

e zero needs a pattern (all zeros)

Integer Overflow/Underflow

e storing a value in an int outside the range that can be
represented is illegal

e unexpected behaviour from most C implementations
e.g the sum of 2 large positive integers is negative

e may cause programs to halt, or not to terminate
e can creates security holes
e bits used for int can be different on other platforms

e C on tiny embedded CPU in washing machine may use 16 bits
—215 t0 215 — 1 j.e. -32,768 to +32767

e we'll show later how to handle this, for now assume 32 bit ints

e also arbitrary precision libraries available for C
manipulate integers of any size (memory permitting)

Real Representation

e commonly 8 bytes used to store a double variable
e 8 bytes — 64 bits — 2°* possible values (bit patterns)

e 64-bits gives huge number of patterns but infinite number of
reals

e use of bit patterns more complex, if you want to know now
https://en.wikipedia.org/wiki/Double-precision_
floating-point_format

e reals in (absolute) range 107398 to 103%% can be approximated
e approximation errors can accumulate
e More later and in COMP1521

https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Numbers and Types

Numbers in programs have types.
Numbers with a decimal point are type double, e.g.
3.14159 -34.56 42.0

C also lets write numbers in scientific notation:
2.4e5 — 2.4 x 10° = 240000.0
Numbers in scientific notation are also type double

e Numbers without decimal point or exponent are type int, e.g.
42 0 -24

Numbers in programs are often called constants
(unlike variables they don't change)

Giving Constants Names

It can be useful to give constants (numbers) a name.

It often makes your program more readable.

It can make your program easier to update
particularly if the constant appears in many places

One method is #define statement e.g.
#define SPEED_OF_LIGHT 299792458.0

##define statements go at the top of your program
after #include statements

#define names should be all capital letters + underscore

Arithmetic Operators

e C supports the usual maths operations: + — * /

e Precedence is as you would expect from high school, e.g.:
a+bxc+d/e = a+(bxc)+(d/e)

e Associativity (grouping) is as you would expect from high
school, e.g.:
a—b—c—d = ((a—b)—c)—d

e Use brackets if in doubt about order arithemtic will be
evaluated.

e Beware division may not do what you expect.

Division in C

C division does what you expect if either operand is a double
If either operand is a double the result is a double .
2.6/2 = 1.3 (not 2!)

C division may not do what you expect if both arguments are
integers.

The result of dividing 2 integers in C is an integer.

The fractional part is discarded (not rounded!).

5/3 = 1 (not 2!)

C also has the % operator (integers only).
computes the modulo (remainder after division)
14%3 = 2

Mathematical functions

e Mathematical functions not part of standard library
Essentially because tiny CPUs may not support them

e A library of mathematical functions is available including:

sqrt(), sin(), cos(), log(), exp()
Above functions take a double as argument and return a
double

e Functions covered fully later in course

e Extra include line needed at top of program:
#include <math.h>
(explained later in course)
e dcc includes maths library by default
most compilers need extra option:
gce needs -lm e.g.:

gcc —o heron heron.c -1m

Other functions - printf & scanf

printf & scanf are functions

scanf returns a value returns number of items read

Use this value to determine if scanf successfully read number.

scanf could fail e.g. if the user enters letters

OK for now to assume scanf succeeds

Good programmers always check

Linux Command: cp

e Linux Command cp: copies files and directories.
e cp sourcefFile destination
e |f the destination is an existing file, the file is overwritten

e if the destination is an existing directory
the file is copied into the directory

e To copy a directory use cp -r sourceDir destination

Linux Command: mv

Linux Command mv moves or renames a file.

e mv source destination

If the destination is an existing file, the file is overwritten

if the destination is an existing directory
the file is moved into the directory.

Linux Command: rm

Linux Command rm removes a file.

[]
e Usually no undo or recycle bin - be careful & have backups
e rm filename

e rm -r directoryName

» This will delete a whole directory.
» Be extra careful with this command

