
What did we learn this term?

1

Programming in C

Meme: Hussain Nawaz
2

Programming in C

DPST1091 C Language Techniques in the order they were taught

• Input/Output
• Variables
• If statements
• While statements

(looping)
• Arrays
• Functions
• Pointers
• Characters and Strings
• Command Line Arguments
• Structures
• Memory Allocation
• Multi-File Projects
• Linked List
• Recursion

3

C as a programming language

• A compiled language
• We use dcc as our compiler here, but there are others

• clang
• gcc
• and others . . .

• Compilers read code from the top to the bottom
• They translate it into executable machine code
• All C programs must have a main() function, which is their starting point
• Compilers can handle multiple file projects
• We compile C files while we #include H files

4

C and Compilation

Meme: Edward Ambrogio

5

Input/Output

Meme: Khoi Nguyen
6

Input/Output

Scanf and Printf allow us to communicate with our user

• scanf reads from the standard input

• printf writes to standard output

• They both use pattern strings like %d and %s to format our data in a
readable way

// ask the user for a number, then say it back to them
int number;
printf("Please enter a number: ");
scanf("%d", &number);
printf("You entered: %d ", number);

7

Alternatives for input/output

We can get and put lines and characters also

• getchar and putchar will perform input and output in single characters

• fgets and fputs will perform input and output with lines of text

• We can also use handy functions like strtol to convert characters to
numbers so we can store them in integers

8

Command Line Arguments

When we run a program, we can add words after the program name

• These extra strings are given to the main function to use

• argc is an integer that is the total number of words (including the program
name)

• argv is an array of strings that contain all the words

9

Command Line Arguments in use

int main(int argc, char *argv[]) {
printf("The %d words were ", argc);
int i = 0;
while (i < argc) {

printf(" %s ", argv[i]);
i++;

}
}

When this code is run with: $./args hello world

It produces this: The 3 words were ./args hello world

10

Hello World :P

Meme: James Comninos 11

Variables

• Variables
• Store information in memory
• Come in different types:

• int, double, char, structs, arrays etc
• We can change the value of variables
• We can pass the value of variables to functions
• We can pass variables to functions via pointers
• Constants
• #define allows us to set constant values that won’t change in the program

12

Simple Variables Code

// GOKU will be treated as if it's 9001 in our code
#define GOKU 9001
int main(void) {

// Declaring a variable
int power;
// Initialising the variable
power = 7;
// Assign the variable a different value
power = GOKU;
// we can also Declare and Initialise together
int power_two = 88;

}

13

if statements

Meme:Ronish Karmacharya 14

if statements

Questions and answers

• Conditional programming

• Evaluate an expression, running the code in the brackets

• Run the body inside the curly brackets if the expression is true (non-zero)
if (x < y) {

// This section runs if x is less than y
}
// otherwise the code skips to here if the
// expression in the () equates to 0

15

While loops

Looping Code

• While loops allow us to run the same code multiple times

• We can stop them after a set number of times

• Or we can stop them after a certain condition is met

Loops are used for . . .

• Checking all the values in a data structure (array or linked list)

• Repeating a task until something specific changes

• and any other repetition we might need

16

Looping

17

While loop code - Arrays

Very commonly used to loop through an array
int numbers[10] = { 0 };
// set array to the numbers 0-9 sequential
int i = 0;
while (i < 10) {

// code in here will run 10 times
numbers[i] = i;
// increment the counter
i++;

}
// When counter hits 10 and the loop’s test fails
// the program will exit the loop

18

While loop code - Linked Lists

Looping through Linked Lists is also very common
// current starts pointing at the first element of the list
struct node *current = head;
while (current != NULL) {

// code in here will run until the current pointer
// moves off the end of the list
// increment the current pointer
current = current->next;

}
// When current pointer is aiming off the end of the list
// the program will exit the loop

19

Arrays

Meme: Jayden Matthews

20

Arrays

Collections of variables of the same type

• We use these if we need multiple of the same type of variable

• The array size is decided when it is created and cannot change

• Array elements arecollected together in memory

• Not accessible individually by name, but by index

21

Array Code

int main(void) {
// declare an array, all zeroes
int m;
marks[10] = {0};
// set first element to 85
marks[0] = 85;
// access using an index variable
int index = 3;
marks[index] = 50;
// copy one element over another
marks[2] = marks[6];
// cause an error by trying to access out of bounds
marks[10] = 99;

22

Functions

23

Functions

Code that is written separately and is called by name

• Not written in the line by line flow

• A block of code that is given a name

• This code runs every time that name is “called” by other code

• Functions have input parameters and an output

24

Function Code

// Function Declarations above the main or in a header file
int add(int a, int b);
int main(void) {

int first = 4;
int second = 6;
int total = add(first, second);
return 0;

}
// This function takes two integers and returns their sum
int add(int a, int b) {

return a + b;
}

25

Pointers

Variables that refer to other variables

• A pointer aims at memory (actually stores a memory address)

• That memory can be another variable already in the program

• It can also be allocated memory

• The pointer allows us to access another variable

• * dereferences the pointer (access the variable it’s pointing at)

• & gives the address of a variable (like making a pointer to it)

• -> is used with structs to allow a pointer to access a field inside

26

Simple Pointers Code

int main(void) {
int i = 100;
// the pointer ip will aim at the integer i
int *ip = &i;
printf("Value of variable at address %p is %d\n ", ip, *ip);
// this second print statement will show the same address
// but a value one higher than the previous
increment(ip);
printf("Value of variable at address %p is %d\n ", ip, *ip);

}
void increment(int *i) {

*i = *i + 1;
}

27

Problem Solving

28

Problem Solving

Approach Problems with a plan!

• Big problems are usually collections of small problems

• Find ways to break things down into parts

• Complete the ones you can do easily

• Test things in parts before moving on to other parts

29

Code Style

Meme: Edison Fang 30

Code Style

Half the code is for machines, the other half for humans

• Remember . . . readability == efficiency

• Also super important for working in teams

• It’s much easier to isolate problems in code that you fully understand

• It’s much easier to get help if someone can skim read your code and
understand it

• It’s much easier to modify code if it’s written to a good style

31

Code Reviews

No one has to work without help

• If we read each other’s code . . .

• We learn more

• We help each other

• We see new ways of approaching things

• We are able to teach (which is a great way to cement knowledge)

32

Debugging

Meme: Malachi Wu
33

Debugging

The removal of bugs (programming errors)

• Syntax errors are code language errors

• Logical errors are the code not doing what we intend

• The first step is always: Get more information!

• Once you know exactly what your program is doing around a bug, it’s easier
to fix it

• Separate things into their parts to isolate where an error is

• Always try to remember what your intentions are for your code rather than
getting bogged down

34

Professionalism

There’s so much more to computing than code

• What’s the most important thing for a Software Professional?

• It’s not always coding!

• It’s caring about what you do and the people around you!

• Even in terms of pure productivity, it’s going to get more work done long
term than being good at programming

• If you care about your work, you will be fulfilled by it

• If you care about your coworkers you’ll teach and learn from them and you’ll
all grow into a great team

35

Course Survey - MyExperience

Please fill out the survey!

• Accessible via Moodle

• Or directly via http://myexperience.unsw.edu.au/

• This helps us a lot to figure out what is and isn’t working in the course

• A lot of the course structure and even things like marks distribution is based
on feedback from previous myExperience feedback

• We love feedback!

36

Characters and Strings

Meme: Jennifer Truong

Meme: Malachi Wu

37

Characters and Strings

Used to represent letters and words

char is an 8 bit integer that allows us to encode characters

• Uses ASCII encoding (but we don’t need to know ASCII to use them)

• Strings are arrays of characters

• The array is usually declared larger than it needs to be

• The word inside is ended by a Null Terminator ‘\0’

• Using C library functions can make working with strings easier

38

Characters and Strings in code

// read user input
char input[MAX_LENGTH];
fgets(input, MAX_LENGTH, stdin);
printf(" %s\n ", input);
// print string vertically
int i = 0;
while (input[i] != '\0') {

printf("%c\n", input[i]);
i++;

}

39

Structures

Custom built types made up of other types

structs are declared before use

• They can contain any other types (including other structs and arrays)

• We use a . operator to access fields they contain

• If we have a pointer to a struct, we use -> to access fields

40

Structs in code

struct spaceship {
char name[MAX_NAME_LENGTH];
int engines;
int wings;

};
int main(void) {

struct spaceship xwing;
strcpy(xwing.name, "Red 5");
xwing.engines = 4;
xwing.wings = 4;
struct spaceship *my_ship = &xwing;
// my ship takes a hit
my_ship->engines--;
my_ship->wings--;

}

41

Memory

Our programs are stored in the computer’s memory while they run

• All our code will be in memory

• All our variables also

• Variables declared inside a set of curly braces will only last until those braces
close (what goes on inside curly braces stays inside curly braces)

• If we want some memory to last longer than the function, we allocate it

• malloc() and free() allow us to allocate and free memory

• sizeof provides an exact size in bytes so malloc knows how much we need

42

Memory code

struct spaceship {
char name[MAX_NAME_LENGTH];
int engines;
int wings;

};
int main(void) {

struct spaceship *my_ship = malloc(sizeof(struct spaceship));
strcpy(my_ship->name, "Millennium Falcon");
my_ship->engines = 1;
my_ship->wings = 0;
// Lost my ship in a Sabacc game, free its memory
free(my_ship);

}

43

Linked Lists

• Structs for nodes that contain pointers to the same struct
• Nodes can point to each other in a chain to form a linked list
• Convenient because:

• They’re not a fixed size (can grow or shrink)
• Elements can be inserted or removed easily anywhere in the list

• The nodes may be in separate parts of memory

44

Linked Lists

Meme: Caleb Watts
45

Linked Lists in code

struct location {
char name[MAX_NAME_LENGTH];
struct location *next;

};
int main(void) {

struct location *head = NULL;
head = add_node("Tatooine", head);
head = add_node("Yavin IV", head);

}
// Add a node to the start of a list and return the new head
struct location *add_node(char *name, struct location *list) {

struct location *new_node = malloc(sizeof(struct location));
strcpy(new_node->name, name);
new_node->next = list;
return new_node;

}
46

Complications in Pointers, Structs and Memory

What’s a pointer?
• It is a number variable that stores a memory address
• Any changes made to pointers will only change where they’re aiming

What does * do?
• It allows us to access the memory that the pointer aims at (like following the

address to the actual location)
• This is called “dereferencing” (because the pointer is a reference to

something)

What about -> ?
• Specifically access a struct at the end of a pointer
• -> must point at one of the fields in the struct that the pointer aims at
• It will dereference the pointer AND access the field
• Pointers to structs that contain pointers to other structs!
• We can follow chains of pointers like track->beat->note

47

Complicated Pointer Code

int main(void) {
// create a list with two locations
struct location *head = add_node("Dantooine", NULL);
head = add_node("Alderaan", head);
// create a pointer to the first location
struct location *alderaan = head;
// set head to a newly created location
head = malloc(sizeof(struct location));
// What has happened to the alderaan pointer now?
// What has happened to the variable that the head and alderaan
// both pointed at?

}

48

Keeping track of pointers

49

Keeping track of pointers

50

Keeping track of pointers

51

Keeping track of pointers

Remember:

• Changing a pointer changes its value, a memory address

• Changing a pointer will change where it’s aiming, nothing more!

• Once you use -> on a pointer, you’re now looking at a struct field

• This means you are not changing that pointer, you have dereferenced it and
accessed a field inside the struct

52

Abstract Data Types

Separating Declared Functionality from the Implementation

• Functionality declared in a Header File

• Implementation in a C file

• This allows us to hide the Implementation

• It protects the raw data from incorrect access

• It also simplifies the interface when we just use provided functions

53

Abstract Data Types Header code

// Ship type hides the struct that it is
// implemented as
typedef struct ship_internals *Ship;
// functions to create and destroy Ships
Ship ship_create(char *name);
void ship_free(Ship ship);
// set off on a voyage of discovery
Ship voyage(Ship ship, int years);

54

Abstract Data Types Implementation

struct ship_internals {
char name[MAX_NAME_LENGTH];

};
Ship ship_create(char *name) {

Ship new_ship = malloc(sizeof(struct ship_internals));
strcpy(new_ship->name, name);
return new_ship

}
void ship_free(Ship ship) {

free(ship);
}
// set off on a voyage of discovery
Ship voyage(Ship ship, int years) {

int discoveries = 0, years_past = 0;
while (years_past < years) {

discoveries++;
}
return ship;

}

55

Abstract Data Types Main

• Including the Header allows us access to the functions

• The main doesn’t know how they’re implemented

• We can just trust that the functions do what they say
#include "ship.h"
int main(void) {

Ship my_ship = ship_create("Enterprise");
my_ship = voyage(my_ship, 5);

}

56

Recursion

Functions calling themselves

• A slightly inverted way of thinking about program flow

• The order of execution is determined by the Program Call Stack

• Chooses between a stopping case or a recursive case in the function

57

A Recursive Function in code

// Print out the names stored in the list in reverse order
// This is a recursive programming implementation
void rev_print(struct player *list) {

if (list == NULL) {
// stopping case (there are no elements)
return;

} else {
// there are element(s)
rev_print(list->next);
fputs(list->name, stdout);
putchar('\n');

}
}

58

Order of execution

• More recursive function calls
• Check if we’re stopping, if so return
• Otherwise, call the function again with the tail (all remaining elements)

• Check if we’re stopping, if so return
• Otherwise, call the function again with the tail (all remaining elements)

• Check if we’re stopping, if so return
• Otherwise, call the function again with the tail (all remaining elements)
• Then print the name of the current head of the list

• Then print the name of the current head of the list
• Then print the name of the current head of the list

59

So, you’re programming now . . .

Where do we go from here?

• There’s so much you can do with code now

• But there’s also so much to learn

• Computing has more to offer than anyone can learn in a lifetime

• There’s always something new you can discover

• It’s up to you to decide what you want from it and how much of your life
you want to commit to it

• Remember to care for yourselves and your work

• Enjoy yourselves, keep working on what you love and I hope to bask in your
future glory

60

COMP1511

• Good luck, have fun :)

61

