
typedef

We can use the keyword typedef to give a name to a type:

typedef double real;

This means variables can be declared as real but they will actually
be of type double.
Do not overuse typedef - it can make programs harder to read, e.g.:

typedef int darthVader;

darthVader main(void) {
darthVader i,j;
....

Using typedef to make programs portable

Suppose have a program that does floating-point calculations.
If we use a typedef’ed name for all variable, e.g.:

typedef double real;

real matrix[1000][1000][1000];
real myAtanh(real x) {

real u = (1.0 - x)/(1.0 + x);
return -0.5 * log(u);

}

If we move to a platform with little RAM, we can save memory
(and lose precision) just by changing the typedef:

typedef float real;

enums

• ENUMS (enumerations) is a custom data type, which
describes set of possible values in a programmer-defined
category

• For example, days of the week

#include <stdio.h>
enum weekdays {Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday};

int main() {

enum weekdays day;
day = tuesday;
if (day == Tuesday) {

printf("Lecture day\n");
}
return 0;

}

Using typedef to make programs portable

#include <stdio.h>
enum weekdays {Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday};
typedef enum weekdays week;
int main() {

week day; // make a new variable called day,
.....

}

structs

• We have seen simple types e.g. int, char, double
▶ variables of these types hold single values

• A compound type: structs
▶ structs hold multiple values (fields)
▶ struct are heterogeneous - fields can be differenttype
▶ struct field selected using name
▶ struct fields are fixed

structs - example

If we define a struct that holds CP1511 student details:

#define MAX_NAME 64
#define N_LABS 12
struct student {

int zid;
double totallabMarks;
double assignment1Mark;
double assignment2Mark;

}

We can declare an array to hold the details of all students: (We
will learn about it later)

struct student cp1511Students[400];

Combining structs and typedef

Common to use typedef to give name to a struct type.

struct student {
int zid;
double totallabMarks;
double assignment1Mark;
double assignment2Mark;

}
typedef struct student Student;
Student cp1511Students[400];

We use the convention that for the typedef we use should be the
same as the tag, but starting with a capital letter.

Assigning values to structs

int main(void){
Student s;
s.zid = 12345678;
s.totallabMarks = 14;
s.assignment1Mark = 10;
//etc

}

Assigning structs to structs

Unlike arrays, it is possible to copy all components of a structure in
a single assignment:

Student student1, student2;
...
student2 = student1;

Comparing structs

It is not possible to compare all components with a single
comparison:

if (student1 == student2) // NOT allowed!

If you want to compare two structures, you need to write a
function to compare them component-by-component and decide
whether they are “the same”.

Nested Structures

One structure can be nested inside another

typedef struct date Date;
typedef struct time Time;
typedef struct parkingTicket ParkingTicket;
struct date {

int day, month, year;
};
struct time {

int hour, minute;
};
struct parkingTicket {

Date date;
Time time;
char plate[MAX_PLATE];

};

