
malloc and free

For example, let’s assume we need a block of memory to hold a
string of say 100,000,000 ints.

int *p;
p = malloc(100000000 * sizeof (int));
if (p == NULL) {

printf("Error: array could not be allocated.\n");
exit(1);

}
// we can now use the pointer
// ... lots of things to do

free(p); // free up the memory that was used



sizeof

• sizeof - C operator yields bytes needed for type or variable
• sizeof (type) or sizeof variable
• note unusual (badly designed) syntax - brackets indicate

argument is a type
• use sizeof for every malloc call

printf("%ld", sizeof (char)); // 1
printf("%ld", sizeof (int)); // 4 commonly
printf("%ld", sizeof (double)); // 8 commonly
printf("%ld", sizeof (int[10])); // 40 commonly
printf("%ld", sizeof (int *)); // 4 or 8 commonly
printf("%ld", sizeof "hello"); // 6



malloc and sizeof

• sizeof - C operator yields bytes needed for type or variable
• note unusual syntax sizeof (type) or sizeof variable
• use sizeof for every malloc call
• malloc() returns pointer to block of memory
• malloc() returns a (void *) pointer - can be assigned to

any pointer type
• malloc() returns NULL if insufficient memory available -

check for this



free

• free() indicates you’ve finished using the block of memory
• Continuing to use memory after free() results in very nasty

bugs.
• free() memory block twice also cause bad bugs.
• if program keeps calling malloc() without corresponding

free() calls program’s memory will grow steadily larger
called a memory leak.

• Memory leaks major issue for long running programs.
• Operating system recovers memory when program exists.


