
Variables

• Variables are used to store a value.
• The value a variable holds may change over its lifetime.
• At any point in time a variable stores one value (except

quantum computers!)
• C variables have a type

We’ll only use 2 types of variable for the next few weeks:
• int for integer values, e.g.: 42, -1
• double for decimal numbers 3.14159, 2.71828

Variables

• Declare The first time a variable is mentioned, we need to
specify its type.

• Initialise Before using a variable we need to assign it a value.

// Declare
int answer;
// Initialise
answer = 42;
// Use
printf("%d", answer);

Variable Names (and other Identifiers)

• Variable names can made up of letters, digits and underscores
• Use a lower case letter to start your variable names
• Beware variable names are case sensitive,

e.g. hello and hEllo are different names)
• Beware certain words can’t be used as variable names:

e.g.: if, while, return, int, double
• These keywords have special meanings in C programs.
• You’ll learn what many of them are as we go on.

Output using printf()

• No variables:

printf("Hello World\n");

• A single variable:

int num = 5;
printf("num is %d\n", num);

• More than one variable:

int j = 5;
int k = 17;
printf("j is %d and k is %d\n", j, k);

Using values in printf()

• Use %d to print an int (integer) value

int answer;
answer = 42;
printf("The answer is %d\n", answer);

• Use %lf or %g to print a double (floating point) value

double pi;
pi = 3.14159265359;
printf("pi is %lf\n", pi);

Input using scanf()

scanf uses a format string like printf.
• Use %d to read an int (integer) value

int answer;
printf("Enter the answer: ");
scanf("%d", &answer);

• Use %lf to read a double (floating point) value

double e;
printf("Enter e: ");
scanf("%lf", &e);

• use only "%d" and "%lf" format strings with scanf
• read only 1 value at a time with scanf
• scanf can be used in other ways - don’t do it
• we’ll show you better ways to do other input

Integer Representation

• typically 4 bytes used to store an int variable
• 4 bytes → 32 bits → 232 possible values (bit patterns)
• only 232 integers can be represented - which ones?
• −231 to 231 − 1

i.e. -2,147,483,648 to +2,147,483,647
• Why are limits assymetric?
• zero needs a pattern (all zeros)

Integer Overflow/Underflow

• storing a value in an i
¯
nt outside the range that can be

represented is illegal
• unexpected behaviour from most C implementations

e.g the sum of 2 large positive integers is negative
• may cause programs to halt, or not to terminate
• can creates security holes
• bits used for int can be different on other platforms
• C on tiny embedded CPU in washing machine may use 16 bits

−215 to 215 − 1 i.e. -32,768 to +32767
• we’ll show later how to handle this, for now assume 32 bit ints
• also arbitrary precision libraries available for C

manipulate integers of any size (memory permitting)

Real Representation

• commonly 8 bytes used to store a double variable
• 8 bytes → 64 bits → 264 possible values (bit patterns)
• 64-bits gives huge number of patterns but infinite number of

reals
• use of bit patterns more complex, if you want to know now

https://en.wikipedia.org/wiki/Double-precision_
floating-point_format

• reals in (absolute) range 10−308 to 10308 can be approximated
• approximation errors can accumulate
• More later and in COMP1521

Numbers and Types

• Numbers in programs have types.
• Numbers with a decimal point are type double, e.g.

3.14159 -34.56 42.0
• C also lets write numbers in scientific notation:

2.4e5 =⇒ 2.4 × 105 =⇒ 240000.0
Numbers in scientific notation are also type double

• Numbers without decimal point or exponent are type int, e.g.
42 0 -24

• Numbers in programs are often called constants
(unlike variables they don’t change)

Giving Constants Names

• It can be useful to give constants (numbers) a name.
• It often makes your program more readable.
• It can make your program easier to update

particularly if the constant appears in many places
• One method is #define statement e.g.

#define SPEED_OF_LIGHT 299792458.0
• #define statements go at the top of your program

after #include statements
• #define names should be all capital letters + underscore

Arithmetic Operators

• C supports the usual maths operations: + − ∗ /

• Precedence is as you would expect from high school, e.g.:
a + b ∗ c + d/e =⇒ a + (b ∗ c) + (d/e)

• Associativity (grouping) is as you would expect from high
school, e.g.:
a − b − c − d =⇒ ((a − b) − c) − d

• Use brackets if in doubt about order arithemtic will be
evaluated.

• Beware division may not do what you expect.

https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Division in C

• C division does what you expect if either operand is a double
If either operand is a double the result is a double .
2.6/2 =⇒ 1.3 (not 2!)

• C division may not do what you expect if both arguments are
integers.

• The result of dividing 2 integers in C is an integer.
• The fractional part is discarded (not rounded!).

5/3 =⇒ 1 (not 2!)
• C also has the % operator (integers only).

computes the modulo (remainder after division)
14 % 3 =⇒ 2

Mathematical functions

• Mathematical functions not part of standard library
Essentially because tiny CPUs may not support them

• A library of mathematical functions is available including:
sqrt(), sin(), cos(), log(), exp()
Above functions take a double as argument and return a
double

• Functions covered fully later in course
• Extra include line needed at top of program:

#include <math.h>
(explained later in course)

• dcc includes maths library by default
most compilers need extra option:
gcc needs -lm e.g.:

gcc -o heron heron.c -lm

Other functions - printf & scanf

• printf & scanf are functions
• scanf returns a value returns number of items read
• Use this value to determine if scanf successfully read number.
• scanf could fail e.g. if the user enters letters
• OK for now to assume scanf succeeds
• Good programmers always check

Linux Command: cp

• Linux Command cp: copies files and directories.
• cp sourceFile destination
• If the destination is an existing file, the file is overwritten
• if the destination is an existing directory

the file is copied into the directory
• To copy a directory use cp -r sourceDir destination

Linux Command: mv

• Linux Command mv moves or renames a file.
• mv source destination
• If the destination is an existing file, the file is overwritten
• if the destination is an existing directory

the file is moved into the directory.

Linux Command: rm

• Linux Command rm removes a file.
• Usually no undo or recycle bin - be careful & have backups
• rm filename
• rm -r directoryName

▶ This will delete a whole directory.
▶ Be extra careful with this command

