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Abstract

Molecular communication networks consist of transmitters and receivers dis-

tributed in a fluid medium. The communication in these networks is realised

by the transmitters emitting signalling molecules, which are diffused in the

medium to reach the receivers. This paper investigates the properties of noise,

or the variance of the receiver output, in molecular communication networks.

The noise in these networks come from multiple sources: stochastic emission

of signalling molecules by the transmitters, diffusion in the fluid medium and

stochastic reaction kinetics at the receivers. We model these stochastic fluctua-

tions by using an extension of the master equation. We show that, under certain

conditions, the receiver outputs of linear molecular communication networks are

Poisson distributed. The derivation also shows that noise in these networks is

a nonlinear function of the network parameters and is non-additive. Numer-

ical examples are provided to illustrate the properties of this type of Poisson

channels.

Keywords: Molecular communications; nano communication networks; noise;

stochastic reaction kinetics; master equations; Poisson distribution;

1. Introduction

A molecular communication network consists of transmitters and receivers

distributed in a fluid medium. A transmitter communicates with the receiver
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by sending one or more signalling molecules, which are diffused in the fluid

medium. Molecular communication networks are ubiquitous in living organisms

and have been extensively studied in biology. There is a growing interest in en-

gineering synthetic or artificial molecular communication networks in disciplines

such as synthetic biology [1] and nano communication networks [2, 3, 4]. These

synthetic molecular communication networks have applications in areas such as

nano-sensor networks [2], nano-medicine [5] and so on. In order to be able to

engineer synthetic molecular communication networks, one needs to understand

the properties of these networks. Some example of properties of interest include

the noise characteristics at the receivers, signal detection performance and ca-

pacity of the communication channel. The aim of this paper is to understand

the noise properties in a specific class of molecular communication networks.

The noise characteristics of molecular communication networks have recently

been studied in [6]. The work is based on analysing the molecular dynamics of

the transmitters and receivers. It shows that the noise at the transmitters

and receivers can be modelled as, respectively, sampling and counting noise.

The sampling noise at the transmitter is due to random emission of signalling

molecules while the counting noise at the receiver is due to random ligand-

receptor binding and unbinding.

Instead of molecular dynamics, we take a different approach in [7] and

propose an extension to the reaction-diffusion master equation (RDME) for

modelling molecular communication networks. We call our extension reaction-

diffusion master equation with exogenous input (RDMEX) where the exogenous

input is used to model the emission of signalling molecules by the transmitters.

We show in [7] that RDMEX can readily be used to model molecular com-

munication networks with multiple transmitters and receivers. The work in

[7] is focused on understanding the mean receiver outputs. In this paper, we

use RDMEX to understand the noise properties of a specific class of molecular

communication networks, namely linear molecular communication networks.

In a linear molecular communication network, the reactions at the receivers

are restricted to those reactions whose reaction rates are linear functions of the
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quantity of the reactants. Linear molecular reactions have been extensively stud-

ied in bio-mathematics and bio-physics because they can model some chemical

reactions in living organism and can be used to approximate higher order reac-

tions whose reaction rates are nonlinear functions [8]. We show in [7] that linear

molecular communication networks can be used to approximate the behaviour

in their nonlinear counterparts.

In this paper, our aim is to study the noise properties of linear molecular

communication networks. We present two key results. First, we derive an

efficient method to compute the covariance of the receiver outputs of these

networks (Section 3). Second, we prove that, under certain assumptions, the

receiver outputs of these networks are Poisson distributed. For those networks

where these assumptions do not hold, we use simulation and statistical tests

to investigate whether Poisson distribution may still hold. An insight from

this result is that the noise in linear molecular communication networks is non-

additive and nonlinear. This is discussed in Section 4. As an application of these

results, we investigate the capacity of a discrete memoryless channel formed

by linear molecular communication networks in Section 5. Related work and

conclusions can be found in Sections 6 and 7, respectively. We begin the core

component of this paper by presenting an overview of the RDMEX model in

Section 2.

2. The RMDEX model

This section reviews the RDMEX model, which is proposed in our recent

work [9], for modelling molecular communication networks. The inclusion of

this review is to make this paper self-contained. The review covers model as-

sumptions, notation, and results on the computation of mean and variance of

receiver outputs. We will use RDMEX to study the noise properties of molecular

communication networks in later sections.
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2.1. Model assumptions and notation

2.1.1. Framework and transmission medium

The RDMEX model is an extension to the RDME [10, 11] which is com-

monly used in physics to model systems with both diffusion and reactions. The

RDMEX model assumes that time is continuous while the space is discrete. We

consider a 3-dimensional volume of dimension X × X × X. Each dimension

is divided into Nv equal parts of length ∆ = X
Nv

. This results in N3
v voxels

of volume ∆3 each. We will refer to the voxel by a triple (x, y, z) where x,

y and z are integers in the range [1, Nv] or a single index ξ ∈ [1, N3
v ] where

ξ(x, y, z) = x+Nv(y − 1) +N2
v (z − 1).

We assume all the transmitters in the molecular network use the same type

of signalling molecule (or chemical species) L for communication. The medium

is assumed to be homogeneous with the diffusion coefficient for L in the medium

is D. Define d = D
∆2 . The mean rate that a molecule of L will diffuse from a

voxel to a neighbouring (resp. non-neighbouring or outside the medium) voxel

is d (resp. 0).

2.1.2. Transmitters

We assume the network consists of Nt transmitters and Nr receivers. For

simplicity, we assume a transmitter or a receiver occupies exactly one voxel.

However, it is straightforward to generalise to the case where a transmitter or a

receiver occupies multiple voxels. We further assume that the voxels occupied

by the transmitters and receivers are all distinct. The a-th transmitter (a =

1, ..., Nt) is assumed to be located at the voxel with index Ta. The h-th receiver

(h = 1, ..., Nr) is assumed to be located at the voxel with index Rh.

In RDMEX, a transmitter is modelled by a sequence which specifies the

number of molecules emitted by the transmitter at a certain time. We assume

that, at time tb (where b = 1, 2, ...), the a-th transmitter emits ka,b signalling

molecules. This is identical to viewing the arrival of the signalling molecules to

the system as an exogenous input; this is what “X” in RDMEX stands for. In

this section, we assume the number of molecules emitted is deterministic, we

will generalise to the probabilistic case in later sections.
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2.1.3. Receivers

When a signalling molecule L arrives at the receiver, it may react, via one or

more chemical reactions, to produce one or more output molecules. The output

signal of a receiver is the number of output molecules at the receiver over time.

For example, a signalling molecule L reacts with a receptor R to form a complex

C (the output molecule), via the reaction:

L+R
k+−−⇀↽−−
k−

C (1)

In this paper, we will focus on linear molecular communication networks.

In such networks, the reactions at the receivers have the property that their

reaction rates are linear functions of the quantity of reactants in the reactions.

The classes of reactions that are linear include: Si → Sj (conversion), Si → φ

(degradation), Sj → Sj + Sk (catalytic) and Si → Sj + Sk (splitting) where Si,

Sj and Sk denote chemical species, and φ denotes chemicals that we are not

interested in keeping track in our model.

For illustration purpose, in this section, we assume that at the receivers, sig-

nalling molecules L are converted to complexes C (output molecules) reversibly

via the following conversion reaction:

L
k+−−⇀↽−−
k−

C (2)

where k+ and k− are, respectively, the macroscopic rate constant for the forward

and reverse reactions. This means that at a receiver voxel, the complexes are

formed at a rate of k+
∆3 times the number of signalling molecules in the voxel.

We assume that the complex C does not diffuse. For simplicity, we assume all

receivers have the same structure but RDMEX can be applied to heterogenous

receiver structures too.

We use the number of complexes at a receiver as the output of the receiver.

This is motivated by using the number of complexes at the receiver to detect the

symbols that the transmitter has sent. Note that the number of complexes at

a receiver is a stochastic process. The stochastic fluctuations come from three

sources: (1) The emission by the transmitter is a probabilistic event; (2) The
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diffusion of the signalling molecule being probabilistic; and (3) The stochastic

nature of the reaction at the receiver. Since we assume that the number of

molecules emitted by the transmitters is deterministic in the section, we will

not consider the effect of (1) here, but it will be studied in the later sections.

2.1.4. State vector and state transition

We define the state vector of the molecular communication network to consist

of the number of signalling molecules in each voxel and the number of complexes

at each receiver. The state vector Q(t) contains Nq = N3
v + Nr elements. We

define

Q(t) =
[
nL,1(t) ... nL,N3

v
(t) nR,1(t) ... nR,NR

(t)
]

(3)

where nL,ξ(t) represents the number of signalling molecules in voxel with index

ξ at time t and nR,h is the number of complexes in the h-th receiver at time

t. Let the set Q denote the set of all possible states. At each time t, we have

Q(t) ∈ Q. We will use q to denote an element from Q, i.e. q ∈ Q.

The aim of the RDMEX is to describe how the probability Prob(Q(t) = q)

evolves over time. State transitions can be caused by four different types of

events:

1. The emission of signalling molecules by a transmitter

2. The diffusion of a signalling molecule from one voxel to another

3. The conversion of a signalling molecule to a complex in a receiver

4. The conversion of a complex to a signalling molecule in a receiver

We first discuss the last three types of events. Each of these events is char-

acterised by a state transition vector r (which has the same dimension as q) and

a transition rate W (q). We will illustrate this by using two examples.

In the first example, a state transition is caused by the diffusion of a sig-

nalling molecule from voxel (1, 1, 1) (equivalent to index 1) to voxel (2, 1, 1)

(equivalent to index 2). If nL,1 an nL,2 are the number of signalling molecules

in voxels 1 and 2 before this state transition, then after the state transition, the

number of signalling molecules in these voxels will be nL,1 − 1 and nL,2 + 1.
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We can capture this by using a state transition vector r. If the state before

the transition is q, then the state after transition is q + r. For the diffusion of

a signalling molecule from voxel 1 to voxel 2, the state jumps from q to q + r

where

r =
[
−1 1 0 0 ... 0

]
.

This state transition occurs at a rate ofW (q) = d
∆2nL,1 which is a linear function

of nL,R1 .

In the second example, consider the conversion of a signalling molecule to

a complex at receiver 1 located at voxel R1. The state transition vector r has

only two non-zero elements. The R1-th element of r is −1 and the (Nv + 1)-th

element of r is 1. Note that the R1-th element of q is the number of signalling

molecules in the voxel occupied by receiver 1 and (Nv + 1)-th element of q is

the number of complexes in receiver 1. Hence, the state transition vector r

captures the conversion of a signalling molecule to a complex at receiver 1. The

transition rate is W (q) = k+
∆3nL,R1 which is linear in nL,R1 .

In this paper, we assume that the event types 2 − 4 can be modelled by J

transitions with state transition vectors rj and rate Wj(q) where j = 1, ..., J .

For linear molecular communication networks, all transition rates Wj(q) are

linear functions.

2.2. RDMEX model and its properties

The RDMEX model for the molecular communication network is:

dP (q, t)

dt
=

Nt∑
a=1

∞∑
b=1

{P (q − ka,b1Ta
)− P (q, t)}δ(t− ta,b)

+

J∑
j=1

Wj(q − rj)P (q − rj , t)−
J∑
j=1

Wj(q)P (q, t) (4)

where P (q, t) is a shorthand for Prob(Q(t) = q), δ(t) denotes the Dirac delta

function and 1g is vector whose g-th element is 1 but zero otherwise.

The second term in equation (4) models the diffusion of signalling molecules

and the reactions at the receivers, or in other words, events of types 2–4 men-
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tioned in section 2.1.4. If the first term in (4) is absent, then (4) is the RDME

in the literature [11, 10].

The first term in (4) models the emission of signalling molecules by the

transmitters, or the first type of events mentioned in section 2.1.4. Consider

the example that ka,b molecules are emitted by the a-th transmitter at time ta,b

and if the state just before time ta,b is q, then the state just after time ta,b is

q+ ka,b1Ta
because ka,b signalling molecules are added to the Ta-th voxel. This

state transition is modelled by the first term in (4).

It is well known that RDME models a Markov process [11]. However, RD-

MEX is no longer a Markov process due to the presence of exogenous arrivals,

i.e. the first term in (4). It can be shown that RDMEX is a piece-wise Markov

process in the sense that RDMEX is only a Markov process between two con-

secutive arrivals. Define the mean and covariance of Q(t) as:

〈Q(t)〉 =
∑
q

qProb(Q(t) = q) =
∑
q

qP (q, t) (5)

Σ(t) =
∑
q

(q − 〈Q(t)〉)(q − 〈Q(t)〉)TP (q, t) (6)

where 〈•〉 will be used in this paper to denote the mean operator.

The following proposition is proved in [9].

Proposition 1. For the RDMEX model in (4), assuming that Wj(q) is a linear

function of q. Let
∑J
j=1 rjWj(q) = Aq, then

d〈Q(t)〉
dt

= A〈Q(t)〉+

Nt∑
a=1

1Ta

∞∑
b=1

ka,bδ(t− ta,b)︸ ︷︷ ︸
ka(t)

(7)

dΣ(t)

dt
= AΣ(t) + Σ(t)AT +

J∑
j=1

rjr
T
j Wj(〈Q(t)〉) (8)

The above proposition shows that given the emission patterns of the trans-

mitters, we can compute the mean and variance of the output signals. Our

previous work [9] has focused on solving equation (7). We will study how equa-

tion (8) can be efficiently solved in the next section.



3 VARIANCE OF THE OUTPUT SIGNAL AT RECEIVERS 9

Remark 1. 1. The choice of linear reactions at the receiver may not be a

severe limitation. We show in [9] that some higher order reactions, such

as Michaelis-Menten, can be approximated by linear reactions.

2. If the reactions at the receiver are not linear, it is still possible to write

down the RDMEX model and the form is identical to (4). However, the

transition ratesW (q) are no longer linear functions. We leave the analysis

of such RDMEX models for future work.

3. Variance of the output signal at receivers

In section 2, we show that we can compute the mean and covariance of the

receiver output signal by solving two coupled ordinary differential equations

(ODEs) (7) and (8). Note that the dimensions of these ODEs are high: (7) and

(8) have a dimension of Nq and N2
q , respectively. Recall that Nq = N3

v + Nr

where N3
v is the number of voxels, which is likely to be a large number. In

our previous work [9], we present a method to compute the mean number of

complexes at the receivers. Let ch(t) denote the mean number of complexes at

h-th receiver at time t and define the input signal of the a-th transmitter as

ka(t) =
∑∞
b=1 ka,bδ(t − ta,b). The paper [9] derives the transfer function from

ka(t) to ch(t). The transfer function allows us to directly compute ch(t) from

ka(t) without having to compute the mean number of signalling molecules in

the voxels, thus lowering the complexity of the computation. In this section, we

focus on solving the covariance equation (8) efficiently.

3.1. Solving equation (8) via a reduced dimension ODE

In order to explain the method for solving equation (8) efficiently, we first

examine the matrix Σ(t) and the forcing function term Wj(〈Q(t)〉). The matrix

Σ(t) contains covariances of the form cov(nL,ξ1(t), nL,ξ2(t)), cov(nL,ξ1(t), nR,h1
(t))

and cov(nR,h1
(t), nR,h2

(t)) where nL,ξ1(t) denotes the number of signalling molecules

in voxel ξ1 at time t, and nR,h1(t) denotes the number of complexes at h1-th

receiver at time t etc. The dimension of Σ(t) is N2
q , which can be a large number.
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The forcing functions in the ODE (8) are Wj(〈Q(t)〉). From the definition of

Q(t), it follows that the forcing functions Wj(〈Q(t)〉) are of the form vξ〈nL,ξ(t)〉

or vh〈nR,h(t)〉, where vξ and vh are some proportional constants. The number

of forcing functions is Nq which can be a large number. Note that our previous

work provides efficient algorithm to compute 〈nR,h(t)〉 but computing 〈nL,ξ(t)〉

for all voxels can be prohibitive.

In order to reduce the complexity of solving (8), we assume that the number

of complexes nR,h in the h-th receiver, whose location is the voxel with index Rh,

depends only on the number of signalling molecules in the voxels close to voxel

Rh. This simplification means that we can set up a lower dimensional ODE

with terms involving only those voxels that are close to the receivers. In order

to formally describe the method, we define the distance function dist(ξ1, ξ2),

where ξ1 and ξ2 are indices for voxels (x1, y1, z1) and x2, y2, z2), as

dist(ξ1, ξ2) = max{|x1 − x2|, |y1 − y2|, |z1 − z2|} (9)

The proposed method takes a positive integer U as the input parameter.

The method is to construct a reduced-dimension ODE from (8) that contains

only the following variables and forcing functions (note: ξ and h below are,

respectively, indices for voxels and receivers):

1. Variables:

(a) All cov(nL,ξ1(t), nL,ξ2(t)) such that dist(ξ1, Rh1
) ≤ U for some h1

and dist(ξ1, Rh2
) ≤ U for some h2 where h1, h2 = 1, ..., Nr

(b) All cov(nL,ξ1(t), nR,h1(t)) and cov(nR,h1(t), nL,ξ1(t)) such that dist(ξ1, Rh1) ≤

U for some h1 = 1, ..., Nr

(c) All cov(nR,h1
(t), nR,h2

(t)) for h1, h2 = 1, ..., Nr

2. Forcing functions

(a) All 〈nL,ξ(t)〉 such that dist(ξ,Rh) ≤ U for some h = 1, ..., Nr

(b) All 〈nR,h(t)〉 for h = 1, ..., Nr

In other words, all the variables and forcing function that are not retained are

assumed to be zero.
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The input parameter U can be chosen as follows. We begin with an initial

choice of U0 and solve the reduced dimension ODE. We can solve the ODE

again with input parameter U1 greater than U0. If the solutions given by these

two input parameters are similar, we stop; otherwise, we increase the input

parameter U until two consecutive choices give similar solutions.

3.2. Numerical examples

In this section, we give two numerical examples to illustrate our proposed

method to solve (8).

3.2.1. 1-transmitter 1-receiver network

This section considers a molecular communication network with one trans-

mitter and one receiver in a fluid medium with D = 0.05. Since the parameters

in a reaction-diffusion system can be scaled to some dimensionless quantities

[12, Section 8.2], we do not specify the units for the parameters here. The fluid

medium is divided in 303 voxels with the transmitter locating at voxels [0, 0, 0]

and [3, 0, 0] respectively. The transmitter emits 10 molecules every 10−4 time

units for a duration of 0.2 time units and then stops the emission. The reaction

at the receiver is conversion type in (2) with parameters are k+ = 2.5 × 10−3

and k− = 8.

We first solve the reduced dimension ODE using input parameter U = 3. For

verification, we use τ -leaping [13] to simulate the RDMEX model 120 times and

compute the empirical variance of the receiver output. Note that the simulation

keeps track of the number of signalling molecules in all voxels, i.e. 303 voxels,

while our proposed method uses only the information in the (2U + 1)3 voxels

centred around the receiver voxel.

Figure 1 shows the variance of the number of complexes at the receiver

computed by the reduced ODE (our proposed method) as well as empirical

variance from simulation. The figure shows that the variance computed by the

reduced order ODE is fairly accurate. We have increased the input parameter

U of our proposed method to 5 and it gives almost the same result. The result

is not showed in the figure in order not to clutter the graph.
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We will discuss the curve with the label Mean of output in Figure 1 in Section

3.2.3.

3.2.2. 2-transmitter 2-receiver network

This section considers a molecular communication network with two trans-

mitters and two receivers in a fluid medium with D = 0.05. The transmitters

are located at (0, 0, 0) and (−2,−2,−2). Receivers 1 and 2 are located at (3, 0, 0)

and (2,−2,−2) respectively. Both transmitters have the same emission pattern

of emitting 20 molecules every 10−4 time units for a duration of 0.1 time units

and then stops the emission. Both receivers use conversion type reaction (2)

with k+ = 1.25× 10−4 and k− = 0.05.

We use our proposed method with input parameter U = 3 to compute the

variance of the output of both receivers. For verification, we use τ -leaping to

simulate the system 270 times and compute the empirical variance. The results

are plotted in Figures 2 and 3, for, respectively, receivers 1 and 2. It can be

seem that the variance computed by our proposed method is accurate. We have

used a larger value of U = 5 and the results are similar. The curves with label

mean of output in Figures 2 and 3 will be discussed next.

3.2.3. Comparing mean of output and variance of output

In Figures 1 (for the receiver output of the 1-transmitter 1-receiver network),

and 2 and 3 (for the receiver outputs of the 2-transmitter 2-receiver network),

we have plotted the mean number of complexes at the receivers as well as the

variance of the number of the complexes. An observation that we can make

from these three figures is that the mean number of complexes are almost the

same as the variance of the number of complexes. These observations suggest

that the number of complexes at the receiver may be Poisson distributed. We

will investigate this further in Section 4.

4. Probability distribution of receiver output

The RDMEX model that we have considered so far assumes that the number

of signalling molecules emitted by a transmitter at a given time is a deterministic
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quantity. In this section, we extend the RDMEX model so that the number of

signalling molecules emitted by a transmitter at a given time is probabilistic.

In particular, we will show that, if the number of signalling molecules emitted

is Poisson distributed and the reactions at the receivers are limited to a few

specific types, then the receiver output of a linear molecular communication

network is also Poisson distributed.

4.1. RDMEX with random emissions at the transmitters

The RDMEX model (4) assumes that the a-th transmitter emits exactly ka,b

molecules at time ta,b. In this section, we instead assume that at time ta,b, the

a-th transmitter emits Ka,b molecules where Ka,b is a random variable. Under

this revised assumption, the RDMEX model becomes:

dP (q, t)

dt
=

Nt∑
a=1

∞∑
b=1

∞∑
ka,b=0

{P (q − ka,b1Ta
)− P (q, t)}P (Ka,b = ka,b)δ(t− ta,b)

+

J∑
j=1

Wj(q − rj)P (q − rj , t)−
J∑
j=1

Wj(q)P (q, t) (10)

where P (Ka,b = ka,b) is the probability that the random variable Ka,b takes the

value ka,b with ka,b being a non-negative integer.

Under this revised model, the evolution of the mean and covariance of the

state vector Q(t) is given in the following proposition.

Proposition 2. For the RDMEX model in (10), assuming that Wj(q) is a lin-

ear function of q. Let
∑J
j=1 rjWj(q) = Aq, then

d〈Q(t)〉
dt

=A〈Q(t)〉+

Nt∑
a=1

1Ta

∞∑
b=1

〈Ka,b〉δ(t− ta,b) (11)

dΣ(t)

dt
=AΣ(t) + Σ(t)AT +

J∑
j=1

rjr
T
j Wj(〈Q(t)〉)

+

Nt∑
a=1

∞∑
b=1

cov(Ka,b)1
T
Ta
1Ta

δ(t− ta,b) (12)

where 〈Ka,b〉 and cov(Ka,b) are respectively the mean and covariance of Ka,b.

One can readily observe that equations (7) and (8) are special cases of equations

(11) and (12).
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4.2. Poisson distribution property

The following proposition gives the key result of this section on the proba-

bility distribution of the state Q(t) for RDMEX model (10).

Proposition 3. Consider the RDMEX model (10), assumming

(a) The random variable Ka,b is Poisson distributed;

(b) The initial state Q(0) is either zero or Poisson distributed;

(c) The reactions at the receiver are composed of conversion or degradation

types;

then the state Q(t) is Poisson distributed at any time t. Furthermore, the mean

of the Poisson distributed state vector 〈Q(t)〉 evolves according to equation (11).

Proof: Let t0 = mina ta,1 be the time at which the first transmitter emission

occurs in the network. Let also ã = arg mina ta,1, i.e. the first molecule is

emitted by ã-th transmitter.

We first consider the case where the initial state Q(0) is Poisson distributed.

We know from [11, 14] that for a system consisting of the stated types of reac-

tions and whose master equation is

dP (q, t)

dt
=

J∑
j=1

Wj(q − rj)P (q − rj , t)−
J∑
j=1

Wj(q)P (q, t), (13)

if the initial state Q(0) is Poisson distributed, then the system state Q(t) is

Poisson distributed with mean of 〈Q(t)〉 evolving

d〈Q(t)〉
dt

=A〈Q(t)〉 (14)

where A is again defined by
∑J
j=1 rjWj(q) = Aq. Note that equations (13) and

(14) are special cases of (10) and (11) where transmitter emissions are absent.

Consider time t ∈ [0, t0), i.e. before the first transmitter emission occurs. In

the absence of transmitter emissions during t ∈ [0, t0), RDMEX (10) and master

equation (14) are identical. Hence the results in [11, 14] apply to t ∈ [0, t0).

This means, if the initial state Q(0) is Poisson distributed, then for t ∈ [0, t0),
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the state Q(t) is Poisson distributed with mean given by (11), which takes the

form of (14) in this time interval.

Let us consider what happens at time t0. Let t−0 denote the time just before

t0. We know that the state Q(t−0 ) is Poisson distributed. At time t0, Kã,1

signalling molecules are added to the voxel occupied by the ã-th transmitter.

Therefore the system state at time t0 is the random variable Q(t−0 ) + 1Ta
Kã,1.

Since Kã,1 is Poisson distributed and sum of two independent Poisson dis-

tributed random variables is also Poisson, this implies that the state Q(t0) is

Poisson distributed. It also means that 〈Q(t0)〉 = 〈Q(t−0 )〉+ 1Ta〈Kã,1〉 which is

also the result given by equation (11).

We can now repeat the above arguments for the time interval from t0 till

the next transmitter emission. The time t0 is considered to be the initial time

and since Q(t0) is Poisson distributed, the assumptions required for the above

arguments hold. Therefore, by repeating these arguments, we can prove that

the proposition holds for all time t if the initial state Q(0) is Poisson distributed.

For the case where the initial state Q(0) is zero, we know that the state at

time t0 is 1TaKã,1, which is Poisson distributed. We now can repeat the above

arguments to prove the proposition for this case. �

The above proposition shows that for certain receiver structures, the states

(which also include the receiver outputs) of linear molecular communication net-

works are Poisson distributed with mean of the distribution evolving according

to (11). Such networks have the following properties:

1. The variance of receiver output equals to the mean receiver output.

2. The mean (or variance) of receiver output is a nonlinear function of the

receiver parameters and diffusion coefficient D of the fluid medium.

3. The mean transmitter input
∑∞
b=1〈Ka,b〉δ(t− ta,b) and the mean state are

related by a linear time-invariant (LTI) dynamical system. The transfer

function of this LTI system can be computed by taking the Laplace trans-

form of (11), see [9] for derivation. This statement also applies to variance

of system state because variance and mean are identical for Poisson dis-
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tribution.

If we consider the receiver noise as the variance of receiver output, then

the noise in linear molecular communication networks is neither of constant

amplitude (in fact it is a nonlinear function of system parameters) nor additive.

4.3. What happens if the input is not Poisson distributed?

Proposition 3 shows that if the number of molecules emitted by the transmit-

ter is Poisson distributed, then the state of the linear molecular communication

networks (10) is also Poisson distributed. However, no analytical results on the

probability distribution of the state are available if these assumptions do not

hold. In our numerical study in Section 3.2, where the number of molecules

emitted by the transmitter is deterministic, we find that the variance of the

receiver output is equal to its mean. This observation suggests that the prob-

ability distribution of the receiver outputs may be Poisson. In this section,

we use statistical tests to study whether the receiver output may have Poisson

distribution.

We first consider the 1-transmitter 1-receiver molecular network studied in

Section 3.2.1. We use the same set of parameters and simulate the network 120

times using τ -leaping. The simulation duration is 1.6 time units with a time

interval of 10−4 time units. This gives 120 output trajectories, each with the

number of complexes at the receivers at 16000 time points. We apply three dif-

ferent statistical tests — Neyman-Scott statistic, Poisson dispersion test, Likeli-

hood ratio test [15, Chapter 4] — to determine whether the Poisson distribution

may hold at each time point, with a significance level of 95%. The results of

the statistical tests are plotted in Figure 4. It appears that the receiver output

is Poisson distributed for most of the time points with high probability.

We next consider the 2-transmitter 2-receiver molecular network studied in

section 3.2.1. We use the same set of parameters and simulate the network

270 times using τ -leaping. Each simulation spans 0.5 time units and gives the

number of complexes at the two receivers at 5000 time points. We apply the

same statistical tests as before. The results are plotted in Figures 5 and 6 for the
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two receivers. The figures show that the receiver outputs are Poisson distributed

with a high probability.

5. Application to communications

In this section, we present an application of the results to communications.

We consider single-transmitter single-receiver linear molecular communication

networks. In particular, we investigate the impact of receiver structures and

receiver parameters on the communication performance in these networks.

We consider two different receiver structures. The first receiver structure

consists of reversible conversion in (2). We will refer to this as c+c because

both the forward and reverse reactions are of conversion type. The second

receiver structure consists of two reactions:

L
k+−−→ C (15)

C
k−−−→ φ. (16)

Reaction (15) converts the signalling molecules L to a complex C at a rate of

k+ and in reaction (16), the complex C degrades at a rate of k−. We will refer

to this type of receiver as c+d. Note that we use the same k+ and k− values in

c+c and c+d for fair comparison. Both types of receivers satisfy the conditions

of Proposition 3.

We consider two molecular communication networks. Each network has a

transmitter located at voxel (0, 0, 0) and one receiver at (3, 0, 0). The transmitter

parameters for both networks are identical, but one network uses c+c receiver

structure while the other uses c+d.

We first investigate the impact of the receiver parameter k+ on the output

signal of the these networks. We assume that the transmitter emits on average

102 molecules per 10−4 time units according to Poisson distribution, for 0.2 time

units and then stop the emission. According to Proposition 3, the number of

complexes at the molecular networks is Poisson distributed with mean evolving

according to equation (11). We use two different values for k+: 2.5× 10−4 and
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7.5 × 10−4. The k− is 5 for both networks. Figure 7 shows the mean receiver

output for both receiver structures and both choices of k+. If k+ = 2.5× 10−4,

the mean receiver outputs for both c+c and c+d are similar. However, if k+ =

7.5 × 10−4, the mean receiver output for c+c is higher than that of c+d. The

difference can be explained as follows. In c+c networks, if a complex C is

converted to a ligand L (the reverse reaction), the resulting ligand may diffuse

to a neighbouring voxel or reacts to form a complex again. The re-uptaking

of the ligand accounts for the difference in the results. When k+ is sufficiently

large, the rate of the forward reaction is higher than diffusion; this increases

re-uptaking of ligand molecules. However, if k+ is small, re-uptaking rate is low

and ligand molecules tend to diffuse to a different voxel; this has almost the

same effect as degradation.

In our second investigation, we consider the communication performance of

these two networks as discrete memoryless channels. The transmitter uses the

same pulse waveform considered before but it can vary the emission rate. The

emission rate can be varies from 10 to 100 molecules per 10−4 time units. We

assume the resolution in emission rate is 1. This results in 91 different emission

rates or input symbols. The output is the number of molecules at the receiver at

0.25 time units after the beginning of the pulse. This particular sampling time

is indicated by the vertical line in Figure 7. We also assume that consecutive

symbols are well separated in time so that inter-symbol interference can be

neglected.

We consider the receiver structures c+c and c+d, and vary the parameter k+

from 2.5 × 10−4 to 2.3 × 10−3. We use the Blahut algorithm [16] to calculate

the capacity of the discrete memoryless channel for both receiver structures and

for different k+. The results are shown in Figure 8. It shows that for both

receiver structures, the capacity is an increasing function of k+. In fact, for

these networks, the capacity is an increasing function of a gain parameter g.

The gain g is defined as the ratio of the mean receiver output at sample time

to the mean (non-zero) emission rate of the pulse input. Due to the linearity

between the mean receiver output and mean transmitter emission rate (see the
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discussion in Section 4), the gain g is a constant for a given network and sample

time. The computation shows that capacity is an increasing function of g which

is in turn an increasing function of k+.

6. Related work

Molecular communication networks are investigated in the area of nano com-

munication networks. Recent reviews on this topic can be found in [2, 3, 4].

The characterisation of noise in molecular communication networks is im-

portant in understanding the communication performance of these networks.

Pioneering work has been done in [17] and [18, 19] to understand the mean

behaviour and noise properties of molecular communication networks. These

models are based on modelling molecular communication networks using dis-

crete molecular particle dynamics.

An alternative approach to modelling molecular systems, but with coarser

granularity compared to molecular dynamics, is the master equation approach

[20, 10]. Master equations have been used to model systems with chemical

reactions alone, which results in chemical master equation (CME) [10], as well

as systems with both reactions and diffusion, which results in RDME.

The work in [19] uses the CME to study the stochastic dynamics of ligand-

receptor at the receiver. This model covers only the receiver, and does not

consider the transmitter and the diffusion channel. Another stochastic model

for molecular communication is proposed in [21]. The model gives the proba-

bility distribution of the number of signalling molecules arriving at the receiver

through the fluid channel. This model covers the transmitter and fluid medium,

but does not consider the receivers.

In our earlier work in [9], we propose the RDMEX model for molecular com-

munication networks. The model covers the transmitter, the fluid medium and

the receiver. In particular, RDMEX can be used to model networks with multi-

ple transmitters and multiple receivers. The work in [9] focus on understanding

the behaviour of the mean output signal at the receivers. In this paper, we
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consider linear molecular communication networks and investigate the variance

and distribution of the output signal.

The fact that one of the solutions for an RDME has a Poisson distributions

is shown in [22]. This article also shows the connection between Poisson distri-

bution and grand canonical ensemble in statistical physics. This paper extends

this result to RDMEX model. Note that RDME models a Markov process but

RDMEX is piece-wise Markov.

The capacity of the photon channel is studied in [23, 24, 25]. The receiver

signal of a photon channel is Poisson distributed, and is given by the sum of

a noise-free and a noisy Poisson distribution. Although the receiver signals of

linear molecular communication networks are also Poisson distributed under

certain conditions, the noise in molecular communication is not additive.

7. Conclusions

In this paper, we investigate the properties of the variance of the receiver

outputs of linear molecular communication networks. We show that, under cer-

tain conditions, the output signals of these networks are Poisson distributed.

The derivation also shows that the variance of the receiver output, which can

be considered to be the receiver noise, is a nonlinear function of the network

parameters and is non-additive. Our future work is to investigate more compli-

cated receiver structures.
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Figure 1: The variance and mean number of complexes in the 1-transmitter 1-receiver network.
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Figure 2: The variance and mean number of complexes of output 1 of the 2-transmitter
2-receiver network.
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Figure 3: The variance and mean number of complexes of output 2 in the 2-transmitter
2-receiver network.
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Figure 4: Poisson statistical tests on the receiver output of the 1-transmitter 1-receiver net-
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network.
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