Efficient computation of robust average of
compressive sensing data in wireless sensor
networks in the presence of sensor faults

Chun Tung Chou, Member, IEEE, Aleksandar Ignjatovic, Wen Hu, Senior Member, IEEE

Abstract—Wireless sensor networks (WSNs) enable the collection of physical measurements over a large geographic area. It is
often the case that we are interested in computing and tracking the spatial-average of the sensor measurements over a region of the
WSN. Unfortunately, the standard average operation is not robust because it is highly susceptible to sensor faults and heterogeneous
measurement noise. In this paper, we propose a computational efficient method to compute a weighted average (which we will call
robust average) of sensor measurements, which appropriately takes sensor faults and sensor noise into consideration. We assume
that the sensors in the WSN use random projections to compress the data and send the compressed data to the data fusion centre.
Computational efficiency of our method is achieved by having the data fusion centre work directly with the compressed data streams.
The key advantage of our proposed method is that the data fusion centre only needs to perform decompression once in order to
compute the robust average, thus greatly reducing the computational requirements. We apply our proposed method to the data collected
from two WSN deployments to demonstrate its efficiency and accuracy.

Index Terms—Wireless sensor networks, compressive sensing, distributed compressive sensing, fault tolerance, data fusion, robust
averaging

+

INTRODUCTION

This paper considers the fusion of distributed compres-
sive sensing [7], [15], [16] data in a wireless sensor
network (WSN) [5]. Compressive sensing is a collection
of recently proposed sampling and signal reconstruction
methods. A promise of compressive sensing is that it
can obtain a good approximation of an unknown signal
by performing a small number of generalised measure-
ments, called projections, provided that the unknown
signal is compressible. For WSNs, it means that com-
pressive sensing can be used to reduce the bandwidth
requirement and lower the energy consumption.

Given that sensor faults (e.g. offset, stuck-at errors
and variation of sensor measurement noises etc. [17],
[27] etc.) are common in WSNs, many WSN designers
choose to deploy redundant sensors so that neighbour-
ing sensors should return the same reading if they are
noise-free and not faulty. For these WSNs, the users will
be interested to compute the average of the data from
neighbouring sensor nodes. Unfortunately, the standard
average operation is not robust when there are sensor
faults, therefore it is important to appropriately modify
the averaging process to take into account the presence
of faults. This paper proposes a method to compute
a robust average of sensor measurements, which ap-

o C.T Chou and A. Ignjatovic are with the School of Computer Science and
Engineering, University of New South Wales, Sydney, Australia. E-mail:
ctchou@cse.unsw.edu.au, ignjat@cse.unsw.edu.au.

o W. Hu is with the Autonomous Systems Laboratory, CSIRO ICT Centre,
Brisbane, Australia. E-mail: Wen.Hu@csiro.au

propriately takes sensor faults and sensor noise into
consideration, in a computational-efficient manner. Our
proposed method achieves computational efficiency by
working on the compressed data, which has a smaller
dimension compared with the original data.

Figure 1 depicts a “standard” method in which dis-
tributed compressive sensing [16] can be used to com-
pute a robust average in a WSN. Instead of sending
the original sensor measurements, each sensor performs
projections on its sensor measurements to produce a
lower bandwidth compressed data stream. These com-
pressed data streams are then transmitted over the WSN
to reach the data fusion centre where these data streams
are decompressed to retrieve the original signals (or
more precisely, an accurate approximation of the original
signals because the compression is lossy). Based on the
decompressed data streams, the data fusion centre can
examine which of the signals are faulty. Assuming that
we are interested in calculating the average of the data,
we can now use the decompressed data streams to deter-
mine suitable weights for this averaging operation, e.g.
by weighting noisy signals less than the clean signals.
The key advantage of this method is that bandwidth will
be saved by sending compressed data streams over the
network. This method is suggested in [16].

In this paper, we examine the alternative method
depicted in Figure 2. For this method, the sensors again
send compressed data streams to the data fusion centre.
The main difference is the sequence of operations to be
performed at the data fusion centre. Instead of first de-
compressing the compressed data to obtain the original
data stream, our proposed method will work directly

with the compressed data without decompressing them.
Our proposed method determines a weight for each of
the compressed data streams which reflects whether the
sensor which produces the compressed data stream may
be faulty or not. We then apply these weights to compute
a robust average of the compressed data streams. A
nice property of this robust average of the compressed
data streams is that, upon decompressing (or applying
the compressive sensing reconstruction method to) this
stream, we will obtain an approximation of the robust
average of the original sensor readings. The key ad-
vantage of our proposed method is a great reduction
of computation requirement at the data fusion centre.
Firstly, we work directly with the compressed data,
whose dimension is only a fraction of that of the original
sensor readings. Secondly, we only need to perform
decompression (or compressive sensing reconstruction)
once, this represents a huge saving in computation re-
quirement because each decompression requires a linear
programming problem to be solved. In addition, we
show that our fusion algorithm can be implemented on
resource-limited wireless sensor nodes.

The rest of this paper is organised as follows. In
Section 2, we define the set-up of WSN and the data
models. We then present our robust averaging method
in Section 3. In Section 4, we apply our proposed method
to data obtained from two outdoor WSN deployments.
Section 5 discusses related work and Section 6 concludes
the paper.

Compressed
Y11, Y12, --- Y21,Y22; .- YnlsYn2; -+ e—— pata
1 ! H Streams
B . | - - . |
H _ .
L4 > Network
I —
1 ! ! Data
FL _I N _v_l r v_ decompression or
1 ;
| D 1 | D ! | D : reconstruction
-) = block
] - 1
U U
v v v
x11,T12, Z21, 22, Tpl, Tn2s - < Decompressed
1 1 : Data Streams
U U
Y _ o __ Y ____Y
__ Robustaversgingalgorttn 1 | owatuin
T k-~ centre
v
Robust average r

Fig. 1. This method determines the robust average
after decompressing all the signals. Because of single
processor environment, the time needed to decompress n
compressed data streams (n = number of sensors) equals
to n times of the time needed to decompress one data
stream.

2 MODELS
2.1

We consider a WSN with n sensors indexed by s =
1,...,n. We assume that the sensors are time synchro-
nised and at each time slot ¢, each sensor performs

Problem setting: Basic

Compressed
Y11, Y12, - Y21, Y22, - Ynl,Yn2; -+ -¢—— pata

1 H H Streams

H _ - —
—K > Network
S g

: — i

H 1 I

\ 4 \ v

1
v Data i
decompression or
reconstruction
- = block

P

1
| Data fusion
k-~ centre

Fig. 2. The new method proposed in this paper. Note that
this method requires only one decompression.

n number of sensors [[m | amount of data in a block
Xs uncompressed data vector from sensor s

zst | data from sensor s at time ¢

Vs projected (compressed) data vector from sensor s

ysk | k-th projection from sensor s

[projection matrix r | weighted average
ws | weight on sensor s || p | number of projections
Vs deviation from weighted mean, see (6)

TABLE 1

Notation used in this paper.

a measurement. We will use x4 to denote the sensor
reading by sensor s at time slot {. We assume that the
network works on one block of data with m consecutive
data points in a block, therefore a block of data consists
of {zs} with s =1,.,n and t = 1,...,m. Note: Table 1
contains a summary of notation used in this paper.

As depicted in Figure 2, the sensors will not send their
readings x; directly to the data fusion centre in order
to conserve bandwidth and energy. Instead, each sensor
will perform projections [8] on its sensor readings and
send only the results of the projections, which we call
either the compressed data stream or the compressed
data, to the data fusion centre. The action of, say sensor
s, on projecting its data sequence z (t = 1,...,m) can
be expressed in matrix form, as follows:

Ys1 ¢11 ¢12 ¢>1m Ts1

Ys2 1 P21 P22 Pom Ts2 1)

2 Y 2 R :

Ysp ¢p1 ¢p2 ¢pm Tsm
——

Ys P Xs

SYs = st (2)

The matrix ® is the projection matrix and the vector
¥s is the result of the projection. (Note that all vector and
matrix quantities are typeset in boldface in this paper.)
The theory of compressive sensing says that the elements
¢;; can be drawn from one of these distributions: (1)
Standard Gaussian distribution; (2) Symmetric Bernoulli

distribution of random numbers {+1,—1}; or (3) Cate-
gorical distribution whose outcomes /3, 0 and —+/3 oc-
cur with probability }, 2 and } respectively. We assume
that all the sensors use the same projection matrix for
each block of data. Since the network is synchronised,
this can be achieved by using a time dependent seed
for the pseudo-random number generators. This also
means that the sink knows the projection matrix that
is being used and the sensors do not have to send this
information. The parameter p (< m) here is the number
of projections to be used and we assume that all sensors
use the same value of p.

The compressed data stream {y,x} (for k = 1,...,p) is
to be transmitted by sensor s to the data fusion centre of
the WSN. For practical implementation, it is easier to use
either Bernoulli distribution or Categorical distribution
mentioned earlier. For Bernoulli distribution, it will be
easier for the sensors to send ,/pysi to the data fusion
centre because only integer addition and subtraction are
needed to perform by the sensor nodes. Furthermore, for
suitable values of p, the transmission of the sequence
{ysx} will require less number of bits than {z.}. If
the analogue-to-digital (A/D) convertor on the sensor
uses b bits, then sending the original sequence will need
mb bits. However, sending the compressed sequence
(assuming the aforementioned practical implementation)
will require p(b+ 1+ [log, m]) bits (where [u] denote the
smallest integer larger than or equal to u) because the
range of yg, is [-m(2° — 1), m(2° — 1)]. Thus, bandwidth
is saved if p(b + 1 + [logym]) < mb (assuming that no
special coding scheme is used) and we will show that
using data from WSN deployments in Section 4. With
suitable implementation of Categorical distribution, the
sensors again only have to perform integer arithmetic.
Also, sampling energy can be saved if a zero is drawn
from the Categorical distribution because such samples
are not needed. For the rest of this paper, we will assume
that either the Bernoulli or Categorical distribution is
used. Note that we will continue to write projection
using the convention in equation (2) which is commonly
used in compressive sensing literature but noting that
the practical implementation may be slightly different.

2.2 Data and fault models for robust averaging

We assume that all the sensors in WSN are measuring
the same physical value at any given time but some
of the sensors can be faulty. The type of faults can
be bias, stuck-at fault or heterogeneous measurement
noise [17]. We model that by assuming that the sensor
reading of sensor s at time ¢, xy, is generated from the
Gaussian distribution with mean r; and variance o2, i.e.
x5 ~ N (r,02). In other words, the model assumes that
all sensors should have the same mean reading r, at
time ¢ but the measurement noise of different sensors
can be different. Our goal is therefore to recover the
value of r; from the sensor readings. We will refer to
this process of recovering r; in the presence of faults as
robust averaging.

Remark 1: The assumption that all sensors have the
same mean reading is a common assumption made in
sensor fault detection literature in WSNs. For example,
such an assumption is made in [21], [17].

3 ROBUST AVERAGING

We will show in section 3.1 how we can recover r; if the
sensor readings {x,} are available. After that, in section
3.2, we show how the same algorithm can be used
for recovering r, from {y,}. Properties of the proposed
algorithm are then analysed in Sections 3.3 and 3.4.

3.1 Computing robust average from x,

Given {x} where x5 ~ N (r,02), we propose to recover
r¢ by using maximum likelihood estimation. The log-
likelihood function for the data sequences {z,;} with r,
and o, as the unknown parameters is:

n n m . o 2
Cmlog(o) - S BT)
s=1 S

s=1t=1

L =

where C is a constant. By differentiating the log-
likelihood function L with respect to o5, we have at the
maximum of L, 02 = L 3" (x4 —)2 After replacing
02 in equation (3) by this expression, it can be shown
that r; can be recovered from the following optimisation
problem

n

T1,T2,0.0, T Z _1Og(

s=1 t

(zst —71)°) “4)

NE

Il
-

Let r denote the column vector [ry 3 ... r,]T (Where
T denotes matrix transpose). It can be shown that the
optimal r can be computed by:

N 6)
s=1

where wi,ws, ..., w, are given by the fixed point of the
following two set of equations:

n
vs = |[|xs — szXIHS fors=1,...n (6)
i=1
1
A
Zj:l Uj
Ws = 1 fors=1,...,n (7)
>ict 1;17“
Z?:l Vj

with the parameter A set to zero. (Note: The role of A
will be explained shortly.) Note that the estimated r is
a weighted average of the signal since w, > 0 (for s =
1,...,n) and 22:1 ws = 1. Intuitively, v; measures the
deviation of sensor s’s measurements x, from r. This
deviation will be large for faulty sensor and vice versa.
Consequently, the weight w, should be small for those
sensors that are faulty or have a large noise variance.
Note that for each block of data, a weight is assigned

to each sensor. The weight for each sensor can change
from a block of data to another since a sensor may only
display faults over a limited period of time.

In order to speed up the convergence of computing
r, we use the fixed point iteration in Algorithm 1. Since
the objective function (4) can be unbounded, therefore
a small positive constant A is needed to improve the
algorithm’s numerical properties. For a small A, the fixed
point iteration algorithm can therefore be interpreted
as an approximate maximum likelihood estimator. Note
that if A is a large number, then the weight w, in equation
(7) is almost equal to %, therefore it is not recommended
to choose a large \. We will show in Appendix C.1
(online supplemental material) that, for stuck-at faults,
a small value of A will only create a small bias in the
estimation of the weights w,.

We will study the convergence of the fixed point
iteration using data collected from various outdoor WSN
deployments in Section 4. We find that the fixed point
iteration converges quickly and this makes it ideal for
implementation in wireless sensor nodes which have
only limited computation power.

Note that the above maximum likelihood interpreta-
tion assumes that the fault is a Gaussian noise. When this
assumption does not hold, maximum likelihood estima-
tor can be viewed as a minimiser of the Kullback-Leibler
divergence between the true and assumed distributions
[33].

Algorithm 1 Robust averaging fixed-point iteration

1: Let wg] and uE] be, respectively, the values of w, and

vs at the ¢-th iteration. Perform the following;:

. Tnitialise £ = 0. w9 = 1

l—1+1
Compute vl from wl ! using equation (6).

: Compute wl! from vl using equation (7).

: If the iteration has converged, output r =
Sony wllx,; otherwise, go back to Step 3.

S G ok W N

3.2 Computing robust average from y,
3.2.1

In order to explain how the robust average r can be
computed from the compressed data y,, let us, for the
time being, assume that we have a method to determine
the weights w, in equation (5) from y,. (We will explain
in section 3.2.2 how ws can be computed from y,.)
By pre-multiplying both sides of equation (5) by the
projection matrix ®, we have

Pr = zn:wsi'xs = zn:wsys (8)
s=1 s=1

where we have used the definition of the projected data
streams y, given in equation (2). The importance of
equation (8) is that ®r is in fact the compressed version

Computing r from ws and'y

of the robust average r. Therefore, if the weights w;
are known, then one can obtain the compressed version
of the robust average by applying the same weights to
the compressed data streams y,. This means that one
can readily obtain r by decompressing > "_; wsy,. This
derivation also shows three of the ingredients which are
needed for our scheme to work (note: there are two
more, for the estimation of w,, which will be explained
later): (1) The averaging operation must be linear. (2)
The compression operation must be linear, which is the
case for compressive sensing. (3) All sensors must use
the same projection matrix, which can be realised by
synchronising the sensor nodes.

Before explaining how the weights w, can be com-
puted from the compressed data {ysr}, we will first
explain how decompression (or reconstruction) can be
done. For our case, decompression can be realised by
using any compressive sensing reconstruction algorithm,
e.g. basis pursuit [8]. For example, if we know that the
robust average is sparse in the basis ¥ € R™*™ (where
the columns are the basis vectors), then we can obtain
an approximation of r by:

n
¥ = Wz where z = arg mﬂi@n lz]|1 s.t. P¥z = ZwsyS
ZERM

s=1
3.22 Computing ws fromys

In order to understand how w, can be computed from
yvs, we first state the Johnson-Lindenstrauss (JL) Lemma.
Lemma 1: (JL Lemma [1]) Let @ be an arbitrary set of

q points in R™, represented by the vectors d;,ds,...,dq.
Given ¢, > 0, let
4+ 24
po == logg)
23

For integer p > po, let ® be a random p x m matrix
whose elements are generated from either: (1) a symmet-
ric Bernoulli distribution of random numbers {+1, -1},
or (2) Categorical distribution whose outcomes /3, 0
and —+/3 occur with probability 1, 2 and %, then with
probability at least 1 — g7, the following holds

1
1—e|d; — |2 < ||—®(d; — d:)||2 <
(i ;112 II\@ ()3

(1+ ¢)lld; — dj|3 Vds,dj € Q (10)

O

Since the projection matrices that are commonly used

in compressive sensing obey the JL Lemma, this means

that v, in Eq. (6) can be approximately computed from
ys, as follows:

Vg =

n
s — D wixil3
i=1

[[P(xs — ZUMX.)H% (by JL Lemma)

i=1

n
= |lys— > _ wiyill3
=1

Q

This derivation shows that one can simply replace x,
by ys in Algorithm 1 to compute the robust average
from the compressed data y,. For the remainder of this
section, we will first provide a maximum likelihood
interpretation of using compressed data to compute the
robust average and then study the perturbation on the
weights ws; when the compressed data {ys;} is used
instead of the original measurements {z;}.

Based on the above discussion, we see that there
are two properties that are needed in order that the
weights can be obtained from the compressed data: (1)
The projection matrix needs to satisfy the JL Lemma. (2)
The algorithm that determines the weights from the data
can only use {>-norm of differences in R™ where m is
the dimension of the original data vectors.

3.3 Maximum likelihood interpretation when com-
pressed data is used

We argued earlier that, when A = 0, the fixed point
iteration for robust averaging can be interpreted as a
maximum likelihood estimator where the original sensor
measurements x5, are generated from N (r;, 0?) with un-
known parameters r; and o2. The maximum likelihood
interpretation continues to hold when the compressed
data ysy, is used instead, except that the variance becomes
larger. The following derivation will also show the trade-
off between efficiency and accuracy in using compressed
data. Let us decompose =g as the sum of r; and a noise
term ey, as follows: x4 = 74 + e5; where e ~ N(0,02).
The compressed data y,, can be written as:

m

= Z \}ﬁﬁbktﬁ + ; \}ﬁ(bktest

t=1

1 m
Ysk = ——= (bktxst
23

Tk €sk

Note that the noise term €, is a sum of Gaussian dis-
tributed random variables, therefore €, is also Gaussian
distributed. By using the facts that (1) ¢x; is a random
variable with zero mean and unit variance; (2) ¢x,¢, is
independent of ¢y, if either ki # ks or ¢y # ta; (3) eq,
is independent of eg,; (4) ¢x: is independent of eg; it
can be shown that

Elésk] = 0 Vs=1,..,n,k=1,...,p 11
- - mof for S1 = S92 and kl = kg
Ees1k:onr] { (f " otherwise (12)

where E denotes expectation. Therefore, if the com-
pressed data {y.x} is used to determine the robust aver-
age instead, the assumption that the noise affecting each
compressed datum ys is corrupted by an independent
Gaussian noise continues to hold. This means that the
maximum likelihood interpretation continues to hold
even if the compressed data {y.} is used instead. Note
that the variance of the noise affecting the compressed
datum vy, is @o2. Since m > p, this noise variance is
larger than that affecting the original sensor measure-
ment. This derivation also shows the price that is being

paid by using the compressed data for robust averaging
is an increase in variance. This also shows that there
is a trade-off between computation-efficiency (which is
achieved by using a small p) and accuracy (which is by
using a large p).

3.4 Effect of using compressed data

The derivation of the fixed point iteration in Section 3.1
assumes that the sensor readings {z,;} are available to
compute the weights w,. Since our goal is to compute
these weights from the compressed data {y.;} and use
the JL approximation, the aim of this section is to study
the perturbation on the weights w, due to the use of
compressed data. We first set up the framework for
performing the perturbation analysis.

Let v and w denote, respectively, the vectors whose s-
th element is v; and w;. In order to facilitate the pertur-
bation analysis, we define two operators. Let T, denote
the operator that maps w to v defined by equation (6)
and T, denote the operator that maps v to w by using
equation (7). If the fixed point of equations (6) and (7)
are given by w® and v°, then

vl = Ty (w?)

w? = T (VO)

(13)
(14)

Let us consider the situation if compressed data ys is
used instead. In this case, equation (6) is replaced by

lys = > wiyill3 = |B(xs — > wixi)|3 (15)

i=1 i=1

Vs ==

Note that the rightmost expression of (15) is an approx-
imation of the right-hand-side of (6) based on the JL
approximation. If compressed data ys is used, the fixed
point algorithm iterates between equations (15) and (7)
instead of equations (6) and (7). Let Twy denote the
operator that maps w to v defined by equation (15). Let
w! and v! be the solution of the fixed-point iterations

using compressed data, then we have:
vi = Ty, (wh)

wl = va(vl)

(16)
17)

Our goal is to derive the perturbation on the weights

Aw = w! — w0 In addition, we let Av = v! — v® and
define the relative error ¢, evaluated at w! by
_ e = 3 wixa) 3 — lxs — 35 wixill3
s n 2 (18)
llxs — Zi:l wixi”z w=wl

3.4.1 Local perturbation analysis

In this section, we derive the first order approximation
for the perturbation Aw assuming that ¢, is small. First,
we use equations (13) and (16) to obtain:

Av = Tuv(wl) — Ty (w0)
(va(wl) - va(wl)) + (va(wl) - TWV(WO))
~ Vlie+ OTwy Aw (19)

W | wo

where V! is a diagonal matrix whose s-th diagonal
element is the s-th element of v!, e is a vector whose s-th
element is ¢, and % is a Jacobian matrix. Note that
Tov (W) =Ty (W) equals to V'e because of the defini-
tion of ¢, in (18). Lastly, the second term in equation (19)
comes from Taylor series expansion. (Note: expressions
of Jacobian matrices are given in the appendix.)

By using equations (14) and (17), and Taylor series
expansion, it can be shown that

%) va
ov

Given equations (19) and (20), it can be shown that:
-1

Aw Av

vO

(20)

B 0T vw
ov

OT wv
ow

8va

Aw= |1 v

Vie (21)

vO

vo wo

F

G
where I denotes the identity matrix. If the perturbation
€s obeys |e5| < ¢, ie. ||e]w < ¢ then by using standard
result on the induced oco-norm [19], the largest possible
perturbation in the weights w; is given by

”AWHOO = ”G'”ooE (22)

Therefore, if |G|« is small, then the use of y, will cause
only a small change in w;. Also, if the spectral norm p(F)
of the matrix F is bounded by unity, then the fixed point
is locally stable [2]. Unfortunately, the exact computation
of p(F) and ||G||e requires the uncompressed data. We
show in Appendix A (online supplemental material),
how we can approximate them using compressed data.
In the Appendix (online supplemental material), we will
evaluate the size of perturbation and local stability of the
fixed point iteration by using data collected from two
WSN deployments.

3.4.2 Large perturbation analysis

The local perturbation analysis is Section 3.4.1 applies
when the value of ¢, is small. However, for the practical
situation considered in this paper, this is generally not
true. E.g., for m = 200 and p = 80, we use Monte-Carlo
simulation to find that there is a 95% probability that
€5 is in the range of [—0.3,0.3]. Therefore, we derive an
expression for the effect on ws; when the perturbation ¢

is large.
Proposition 1: The perturbation of |[w! — w°|| obeys
T va - va
Jwt —wo < T W woy 23
1- ”T(va - va)HL

where T = (Tyw * — Tywy) ' and | e ||, denotes the
Lipschitz operator norm. Note that the norm can be
1—,2— or co-norm, as long as the same type of norm
is used. O

The proof of this proposition can be found in the
Appendix B (online supplemental material). We will use
this result to study the effect of the perturbation on the
weights using data from an outdoor WSN in Section 4.

4 APPLICATION TO DATA COLLECTED FROM
OUTDOOR WSN DEPLOYMENTS

We have studied the behaviour of our robust averaging
algorithm when it is applied to 3 commonly found
sensor faults in WSNs, namely stuck-at-faults, offset
and variance degradation fault [17]. Our study shows
that our robust averaging algorithm can deal with these
faults, even when a mixture of them appear in a WSNSs,
see Appendix C (online supplemental material).

We have applied our robust averaging algorithm to
data obtained from two outdoor WSN deployments. The
results for the Belmont deployment (with 32 temperature
sensors) are presented in Appendix E (online supple-
mental material).

Note that the results presented in this section are ob-
tained from using the symmetric Bernoulli distribution
to form the projection matrix. The results from using
Categorical distribution to form the projection matrix are
very similar and are not shown here.

4.1 The QCAT deployment

This section describes the results of applying our robust
averaging algorithm to the data obtained from an out-
door WSN testbed operated by CSIRO in their QCAT
research facility in Brisbane, Australia. The WSN consists
of 5 sensors measuring humidity and a block of data
for each sensor consists of 400 points. Figure 3 shows
the sensor measurements. The first four sensors have
the same trend but the fifth sensor shows completely
erroneous measurements.

4.1.1 Accuracy of robust averaging using compressed
data

We apply our robust averaging algorithm to the original
sensor measurements as well as to the compressed data
with 160 (= p) projections using a Bernoulli distributed
projection matrix. The fixed point iteration converges
quickly. The upper plot in Figure 4 shows the con-
vergence of the weights w;, when compressed data is
used, in 4 iterations. Similar convergence rate is observed
when uncompressed data is used, see [9].

The lower figure in Figure 4 shows the weights w, for
the sensors, where s = 1,...,5, obtained from using the
original sensor readings as well as the compressed data.
It can be seen that the two sets of weights are very close
to each other. The solid line in figure 15 is at the level of
which is the weight to use when all sensors are working.
The figure shows that sensor 5, whose measurements are
erroneous, has a very low weight.

Figure 5 shows the average humidity given by our
fixed point iteration algorithm. The curve with long
dashes shows the result obtained from applying the fixed
point iteration to the original sensor measurements. The
solid curve shows the result obtained from applying the
fixed point iteration to the compressed data followed by
reconstruction. It can be seem that there is not much loss
in fidelity in using the compressed data as the two curves

are almost on top of each other. The figure also shows the
robust average captures the trend of the working sensor,
which is given by the curve with short dashes.

4.1.2 Comparison with other fault detection techniques

We compare our proposed robust averaging method
against three other fault detection methods. The first
method is based on a classical statistical method — the
Grubb’s method [18] — for detecting the outlier in a
set of univariate data. At each time ¢, we consider the
readings from the n sensors as the data set. The Grubb’s
method computes the absolute standard score of each
data point in the data set and compares it against a
critical value (which depends on the sample size, sig-
nificance level and ¢-distribution) to determine whether
it is an outlier. If an outlier is detected, we remove it from
the data set. We then compute the average of the data
points remaining in the data set. This step is repeated
for each time ¢. We call this method Statistical.

The second method is a fault detection technique for
WSNs [17] based on using the local outlining factor
(LOF) [4], which is a recent method to detect outliers
without making any assumption on statistical distri-
bution of data. This method uses: (1) LOF to give a
probability that a data point at time ¢ from sensor s is an
outlier. LOF looks at the neighbourhood with different
number of closest neighbours (which is known as the
MinPts parameter in LOF), and compares the distance
of the points within and outside the neighbourhood to
decide whether a point can be an outlier. (2) Recursive
Bayesian update of the reputation of a node at time ¢
based on the output of LOE. A node which is believed
to be faulty at time ¢ will have a low reputation at that
time. We use the normalised reputation at each time as
the weight to compute the weighted average. We call
this method as Reputation.

The third method [26] determines the posteriori proba-
bility that a sensor in a WSN is faulty. It makes use of the
fact that a group of working sensors should show similar
trend and value. It fits a linear regression model over a
short time interval to determine whether sensors have
similar trend. In addition, a recursive Bayesian update
where the posteriori probability of the combination of
working/faulty sensors at time ¢ becomes the prior at
time ¢ 4 1. The weighted average is computed using a
weight proportional to the probability that a sensor is
working at time ¢. We call this method Bayes. Note that
both Statistical and Reputation treat the data at each time
as independent while Bayes takes temporal correlation
into consideration.

We apply Statistical, Reputation and Bayes to the
uncompressed data streams (Note: these 3 methods are
designed for uncompressed data.), and our robust av-
eraging to the compressed data with p = 160. For
Statistical, the significance level is 0.05. For Reputation,
the MinPts parameter varies from 2 to the number of
sensors minus 1. We use the standard average of the
first four sensors (the working sensors) as the reference

and compute the root mean square (RMS) error of the
average obtained by the four methods. The results are
shown in the first row of Table 2. It can be seem that
the results are comparable though robust averaging has
a slight edge over the other methods. Figure 10 (online
supplemental material) plots the time series of the aver-
age obtained by the four methods.

We next apply these four methods to data from 4
sensors (3 working and 1 faulty) and 3 sensors (2 work-
ing and 1 faulty). The reference is the average of the
working sensors. The second and third rows of Table 2
show the RMS error of the four methods. It can be seem
that our robust averaging method performs better than
the other three methods. Figure 6 plots the time series
of the average given by the four methods against the
reference. Note that the results in Table 2 are obtained
from a particular choice of 2 (resp. 3) sensors from 4
working sensors, we repeated the experiment with other
possible combinations and the results were similar.

We now consider the case with 2 faulty sensors. We
retain the faulty sensor in the dataset and introduce an
artificial faulty sensor with stuck-at fault [17], which
is a commonly observed fault in WSNs. The readings
of this faulty sensor is stuck at the same value all the
time. We apply the methods to data from 6 sensors (4
working and 2 faulty) and 5 sensors (3 working and 2
faulty). For a given number of sensors, we perform 10
experiments, where in each experiment, the sensor with
stuck-at fault is stuck at a different value in the range
[20,110]. The last two rows of Table 2 shows the average
and standard deviation (computed over 10 experiments)
of the RMS errors. The proposed robust averaging algo-
rithm performs better than the other methods. Also, the
performance of the robust averaging is stable while that
of the other three algorithms fluctuates with the “stuck-
at value” being used. Comparison of time series for the 5
and 6 sensor cases are shown in Figure 11 and 12 (online
supplemental material).

nq working + Robust | Statistical | Reputation Bayes
ny faulty sensors average

ny =4and ny =1 2.3 3.4 3.3 2.8
ny =3 and ny =1 1.9 5.7 3.9 3.6
ny =2and ny =1 2.6 9.8 24.4 4.7
ny =4and ny =2 | 29403 | 11.1£9.1 10.3£4.4 | 3.4+£7.9
ny =3 and ny =2 | 3.84£04 14.8£10 12.5£5.3 | 4.0£0.9

TABLE 2

RMS error of the average computed by four methods.

4.1.3 Effect of p on accuracy and resource requirements

The key advantage of the proposed robust averaging
method is a reduction in computation time in going from
the set-up in Figure 1 to Figure 2. For p = 160 projections,
the method in Figure 1, which requires the reconstruc-
tion of 5 time series and one run of the robust average
algorithm, took 2.29s to complete, while the method in

Figure 2, which requires only one reconstruction and one
run of the robust average algorithm, took 0.48s and is
therefore 4.8 times faster. These results were obtained
from running Matlab 2009b on a MacBook.

The bandwidth saving in using compressive sensing
(compared with the case where compressive sensing is
not used) can also be computed. The QCAT deployment
uses a 10-bit analogue-to-digital converter. If compres-
sive sending is not used, then each sensor will need
to send mb = 4000 (where b = 10) bits of data to the
data fusion centre. If compressive sensing is used, and
assuming p = 160 projections are used, the number
of bits of data that has to be sent by each sensor is
p(b + 1+ [logy(m)]) =3200 bits. This represents a 20%
saving. Note that the bandwidth consumption for the
two methods in Figures 1 and 2 are identical. This
bandwidth saving is with respect to methods that do
not use compressive sensing. Note also that the above
calculation assumes that the sensor is one hop away from
the data fusion centre, however, the percentage saving
is identical even for a multi-hop topology.

The above results are obtained by using 160 projec-
tions per sensor. We investigate the effect of the num-
ber of projections per sensor on performance. We use
four different performance metrics: (1) The percentage
reduction in computation time; (2) The percentage of
bandwidth saving when compressive sensing is used;
(3) Relative error in reconstructing the robust average
r, expressed as a percentage; (4) Relative error in the
estimation of the weights w,, expressed as a percentage.
Metrics (1) and (2) are calculated in the same way in the
previous paragraphs. For (3) and (4), the “true” robust
average and weights are computed when uncompressed
data is used. Table 3 shows the results for 40 to 160
projections per sensors. If we are willing to accept a 5%
error in reconstruction of robust average, then we can
reduce the number of projections further.

A possible method to choose the parameter p is to
build a predictive model of p based on historical data.
For example, [30] uses support vector machine to predict
the number of projections needed for a tracking prob-
lem. An alternative approach is to adaptively adjust the
number of projections based on the data, see [10], using a
Bayesian approach. We will not tackle the problem here
and will leave it as future work.

We have also performed perturbation analysis (Section
3.4) on this data set and compared our robust averaging
method against random sampling. The results can be
found in Appendix D (online supplemental material).

4.2 Implementation on sensor nodes

We implemented the fixed point iteration of Algo-
rithm 1 on a real world sensor platform to understand
its resource requirements. We use the Fleck3b sensor
node platform [14], which features an 8MHz Atmel
Amegal281 micro-controller with 8KB Random Access
Memory (RAM) and 128 KB flash programmable Read-
Only Memory (ROM), as our hardware test environment.

D 40 60 80 100 | 120 140 | 160
Metric 1 80 80 80 72 79 78 80
Metric 2 80 70 60 50 40 30 20

Metric 3 | 920 | 827 | 410 | 448 | 1.70 | 2.64 | L11
Metric 4 | 543 | 1090 | 812 | 1058 | 3.96 | 14.80 | 2.01
TABLE 3

This table shows the effect of the number of projections p
per sensor on four performance metrics.

sensor 1
2 100 T T T r

humidi
a
=]

0 1 I 1 I L 1 I
0 50 100 150 200 250 300 350 400
sample number
sensor 2

100 T T T T

humidity
@
S

0 L i 1 I i 1 i
0 50 100 150 200 250 300 350 400
sample number
sensor 3

100 T T T T

humidity
a
3

0 L i 1 I i 1 i
0 50 100 150 200 250 300 350 400
sample number
sensor 4

100 T T T T
50

humidity

0 1 I 1 I L 1 I
0 50 100 150 200 250 300 350 400
sample number
sensor 5
100 T T T T T
50 I:
o= T T 1 I T
0 50 100 150 200 250 300 350 400
sample number

humidity

Fig. 3. Humidity reading from the QCAT deployment.
Note that the readings from sensor 5 is very different from
the first 4 sensors. Note: All plots use the same scale.

We use Fleck OS (FOS) [11] as our software test envi-
ronment. FOS is a C-based cooperative multi-threaded
operating system for WSNs. The fixed point iteration
is implemented as an application thread in FOS, and is
waken up whenever the projection buffer is full.

We implemented our fixed-point iteration algorithm
in C and ran it on the Fleck3b platform using different
number of projections per sensor with the data set in
Section 4.1. Table 4 shows the RAM and ROM usage,
together with computation time with different number of
projections p per sensor. Note that there are 5 sensors in
this data set, therefore, if each sensor uses p projections,
then the robust averaging algorithm works with 5p
projections. As expected, the resource usage increases
with the number of projections. Note that the increase
is almost linear and this makes the algorithm a scalable

p | RAM | ROM | Computation | Energy consumption
(byte) | (byte) time (ms) (m])

50 | 1,338 | 6,092 616 19.7

60 | 1,538 | 6,292 734 23.5

70 | 1,738 | 6,492 852 27.3

80 | 1,938 | 6,692 890 28.8

90 | 2,138 | 6,892 1,088 34.8

TABLE 4

The resource requirements in Fleck3b sensor nodes.

0.3

0.2 q

s

Weights w,

0 L
2

Number of fixed point iterations

0.3 T
© @

X original sensor readings
compressed data

= = =1/n
0 T I I

1 2 3 4
sensor id

@

Fig. 4. The upper figure shows that the convergence of
the weights w,, when the robust averaging algorithm is
applied to the compressed. The lower figure shows the
final weights w, given by the robust averaging algorithm
when applied to uncompressed data (circles) and com-
pressed data (crosses).

120

T
““““ Sensor 1

Robust average using compressed data
= = = Robust average using original data

110+

Humidity

40
0 50 100 150 200 250 300 350 400
Sample number

Fig. 5. The figure shows the robust averages against a
working sensor (short dashes). The line with long dashes
(resp. solid line) shows the robust average computed by
applying the fixed point iteration to the original data (resp.
compressed data followed by reconstruction).

solution in WSNs. Table 4 also shows that the proposed
algorithm is fairly affordable in resource-impoverished
sensor platforms. Let us compute the duty cycle of the
micro-controller. A block of data contains m = 400 data
points obtained at a sampling rate of 1 per 10 seconds. If
p = 80 projections are used per sensor, it takes a sensor
890ms to do the computation, so the duty cycle is less
than 0.3%, which is very affordable. Table 4 also shows
the corresponding energy consumption; note that Flecks
use a voltage of 3V.

3 sensors - 2 working, 1 faulty
110 T T T

Humidity

50 Qi
| Robust average - compressed data

Mean of working sensors

Reputation
— - — - Statistical 7
— — —Bayes

o 9 .
s b
|

30 I I I I I I
0 50 100 150 200 250 300 350 400
Sample number

Fig. 6. Comparison of Statistical, Reputation, Bayes and
our robust averaging method for the QCAT data set. Data
from three sensors (2 working and 1 faulty) are used.

5 RELATED WORK

There are a number of papers investigating how com-
pressive sensing can be applied in WSNs. We can classify
them according to whether projections are computed
“temporally” or “spatially”. In [16], “temporal” projec-
tions are used where each sensor computes projections
of its own data and sends it to the data fusion centre. It
also discusses how fault tolerance can be realised based
on the framework discussed in Figure 1 where all signals
are reconstructed at the data fusion centre. However, this
paper adopts the framework in Figure 2 where only a
minimal number of signals have to be reconstructed to
achieve computation efficiency at the data fusion centre.

Other works in applying compressive sensing in
WSNs view the spatial data from the sensors at each
time instance as an image or snapshot, and compute
projections of the sensor data for each snapshot. All these
works aim at obtaining a sufficient accurate snapshot
of the sensor field by using as little energy as possible.
The work [3] realises this goal by using an additive
radio channel to compute projections. The works in [29],
[23], [10], [25] compute projections by passing messages
between sensors, while the work in [32], [31] consider
random samples as projections.

There is a rich literature in fault tolerance in WSNs.
The work [27] discusses the types of faults that com-
monly appear in WSNs. The papers [21], [17], [26] use a
Bayesian approach to detect whether sensors are faulty.
The work [28] proposes to detect sensor faults by using
recurrent neural networks.

The problem of computing a robust average also ap-
pears in other fields, e.g. reputation ranking and fair as-
sessment of students” work in education [20]. The paper
[22] studies the statistical properties of using a maximum
likelihood estimator for reputation ranking. However,
this estimator experiences convergence problem [13], a

fact which we also pointed out in Section 3.1.

The use of projection matrix as a dimensionality re-
duction method is fairly well known in the data mining
and the machine learning communities, see [24]. The
framework depicted in Figure 2 opens up the possibility
of using some of the algorithms developed in these
communities to WSNSs, e.g. performing clustering using
the compressed data. A feature of our algorithm is that
it works directly with the compressed data without
decompressing them. There is also some recent effort
in using compressed data directly for classification and
detection, see [12].

6 CONCLUSIONS

In this paper, we propose a method to compute a
robust average of sensor measurements in a wireless
sensor network in a computationally efficient manner.
Our method exploits compressive sensing for efficient
data transmission. Furthermore, our method integrates
norm-preserving property of random projection matri-
ces and compressive sensing so that the data fusion
centre can work directly with compressed data without
first decompressing them. This means the data fusion
centre will only need to perform decompression once
and this represents a great reduction in computation
requirements. We have applied our algorithm to data
obtained from two WSN deployments.

REFERENCES

[1] D. Achlioptas. Database-friendly random projections: Johnson-
lindenstrauss with binary coins. Journal of Computer and System
Sciences, Jan 2003.

[2] K.]J. Astrom and R. M. Murray. Feedback systems: an introduction
for scientists and engineers. Princeton University Press, 2008.

[3] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak. Joint source—
channel communication for distributed estimation in sensor net-
works. Information Theory, IEEE Transactions on, 53(10):3629 — 3653,
Oct 2007.

[4] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF:
Identifying Density-Based Local Outliers. SIGMOD, pages 93—
104, 2000.

[5] N.Bulusu and S. Jha. Wireless sensor network systems. Artech, 2005.

[6] E. Candes and]J. Romberg. ¢1-magic : Recovery of Sparse Signals
via Convex Programming. http:/ /www.acm.caltech.edu/I1magic/.

[7] E.Candes, J. Romberg, and T. Tao. Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency
information. Information Theory, IEEE Transactions on, 52(2):489
- 509, Feb 2006.

[8] E. Candes and T. Tao. Near-Optimal Signal Recovery From
Random Projections: Universal Encoding Strategies? Information
Theory, IEEE Transactions on, 52(12):5406-5425, Dec. 2006.

[9] C. T. Chou, A. Ignjatovic, and W. Hu. Efficient computation of

robust average in wireless sensor networks using compressive

sensing. Technical Report ftp://ftp.cse.unsw.edu.au/pub/doc/

papers/UNSW /0915.pdf, UNSW, 2009.

C. T. Chou, R. Rana, and W. Hu. Energy efficient information

collection in wireless sensor networks using adaptive compressive

sensing. IEEE 34th Conference on Local Computer Networks (LCN

2009), 2009.

P. Corke and P. Sikka. Demo abstract: FOS — a new operating

system for sensor networks. In Proceedings of Fifth European

conference on wireless sensor networks (EWSN), 2008.

M. A. Davenport, P. T. Boufounos, M. B. Wakin, and R. G.

Baraniuk. Signal Processing With Compressive Measurements.

IEEE Journal of Selected Topics in Signal Processing, 4(2):445-460,

2010.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

(34]

10

C. de Kerchove and P. V. Dooren. Iterative filtering for a
dynamical reputation system. Arxiv preprint arXiv:0711.3964, Jan
2007.

T. L. Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, and S. Brosnan.
Design and deployment of a remote robust sensor network:
Experiences from an outdoor water quality monitoring network.
Local Computer Networks, Annual IEEE Conference on, pages 799—
806, 2007.

D. Donoho. Compressed sensing. Information Theory, IEEE
Transactions on, 52(4):1289 — 1306, Apr 2006.

M. Duarte, M. Wakin, D. Baron, and R. Baraniuk. Universal
distributed sensing via random projections. IPSN "06: Proceedings
of the 5th international conference on Information processing in sensor
networks, Apr 2006.

S. Ganeriwal, L. Balzano, and M. Srivastava. Reputation-based
framework for high integrity sensor networks. Transactions on
Sensor Networks, 4(3), May 2008.

E. Grubbs. Procedures for Detecting Outlying Observations in
Samples. Technometrics, 11(1):1-21, 1969.

R. A. Horn and C. R. Johnson. Matrix analysis. CUP, 1990.

A. Ignjatovic, C. T. Lee, P. Compton, C. Cutay, and H. Guo. Com-
puting marks from multiple assessors using adaptive averaging.
In International Conference on Engineering Education (ICEE), 2009.
B. Krishnamachari and S. Iyengar. Distributed bayesian algo-
rithms for fault-tolerant event region detection in wireless sensor
networks. Computers, IEEE Transactions on, 53(3):241 — 250, Jan
2004.

P. Laureti, L. Moret, Y. Zhang, and Y. Yu. Information filtering
via iterative refinement. Europhysics Letters, Jan 2006.

S. Lee, S. Pattem, and M. Sathiamoorthy. Spatially-localized
compressed sensing and routing in multi-hop sensor networks.
3rd International Conference on Geosensor Networks (GSN), 2009.

P. Li, T. Hastie, and K. Church. Very sparse random projections.
KDD ’06: Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, Aug 2006.

C. Luo, E Wu, J. Sun, and C. Chen. Compressive data gathering
for large-scale wireless sensor networks. MobiCom '09: Proceedings
of the 15th annual international conference on Mobile computing and
networking, Sep 2009.

K. Ni and G. Pottie. Bayesian Selection of Non-Faulty Sensors.
In 2007 IEEE International Symposium on Information Theory, pages
616-620. IEEE, 2007.

K. Ni, N. Ramanathan, M. Chehade, L. Balzano, S. Nair, S. Zahedi,
E. Kohler, G. Pottie, M. Hansen, and M. Srivastava. Sensor
network data fault types. Transactions on Sensor Networks, 5(3),
May 2009.

O. Obst. Poster abstract: Distributed fault detection using a recur-
rent neural network. In Proceedings of the International Conference
on Information Processing in Sensor Networks (IPSN 2009), pages
373-374, 2009.

G. Quer, R. Masiero, D. Munaretto, M. Rossi, J. Widmer, and
M. Zorzi. On the interplay between routing and signal repre-
sentation for compressive sensing in wireless sensor networks.
Information Theory and Applications Workshop (ITA 2009), 2009.

R. Rana, W. Hu, T. Wark, and C. T. Chou. An adaptive algorithm
for compressive approximation of trajectory (AACAT) for delay
tolerant networks. In EWSN'11: Proceedings of the 8th European
conference on Wireless sensor networks. Springer-Verlag, Feb. 2011.
R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu. Ear-
phone: an end-to-end participatory urban noise mapping system.
In IPSN '10: Proceedings of the 9th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks. ACM Request
Permissions, Apr. 2010.

Y. Shen, W. Hu, R. Rana, and C. T. Chou. Non-uniform com-
pressive sensing in wireless sensor networks: Feasibility and
application. In Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2011 Seventh International Conference on, pages
271-276, 2011.

H. White. Maximum likelihood estimation of misspecified mod-
els. Econometrica: Journal of the Econometric Society, Jan 1982.

G. Zames. On the input-output stability of time-varying nonlinear
feedback systems part one: Conditions derived using concepts
of loop gain, conicity, and positivity. Automatic Control, IEEE
Transactions on, 11(2):228 — 238, Jan 1966.

Chun Tung Chou Chun Tung Chou is an As-
sociate Professor at the School of Computer
Science and Engineering, University of New
South Wales, Sydney, Australia. He received his
BA in Engineering Science from the University
of Oxford, UK and his Ph.D. in Control Engi-
neering from the University of Cambridge, UK.
His current research interests are wireless net-
works, participatory sensing, compressive sens-
ing, nano-communication and network optimisa-
tion.

Aleksandar Ignjatovic Aleks got his Bachelor’s
and Master's degrees in Mathematics at the
University of Belgrade, former Yugoslavia, and
Ph.D. in Mathematical Logic at the University of
California at Berkeley where he had University of
California Regents’ Fellowship. His thesis "Frag-
ments of Arithmetic and Lengths of Proofs” was
supervised by Professor Jack Silver, one of the
foremost set theorists. After graduation he got a
tenure track position as an Assistant Professor at
the Carnegie Mellon University, where he taught
for 5 years at the Department of Philosophy and the CMU’s Program
for Pure and Applied Logic. He left CMU to found with his business
partner and attorney Nick Carlin their start up "Kromos Technology”. The
company’s CEO was Raj Parekh, former CTO of Sun Microsystems and
among their investors and Board members were former President and
COO of AMD Atiq Raza, the former CEO of Fiberlane, Cerent and Siara
Raj Singh, as well as Redwood Venture Partners. After the company
was acquired by "Comstellar Technologies” Aleks joined in 2002 the
School of Computer Science and Engineering at UNSW, where he is
teaching algorithms. His research interests include sampling theory and
signal processing, applications of mathematical logic to computational
complexity theory, algorithms for embedded systems design as well
as educational use of puzzles for teaching serious problem solving
techniques.

11

Wen Hu Wen Hu is a senior research scientist
and research team leader at the Autonomous
Systems laboratory in the Commonwealth Sci-
entific and Industrial research Organisation’s
Information and Communication Technologies
(CSIRO ICT) Centre. His current research inter-
ests are low-power communications, compres-
sive sensing, and security issues in sensor net-
works. Hu has a PhD in sensor networks from
the University of New South Wales (UNSW).
He is also an adjunct associate professor at
Queensland university of Technology and holds a visiting research
position at UNSW. He is a senior member of IEEE.

SUPPLEMENTARY MATERIALS TO “EFFICIENT
COMPUTATION OF ROBUST AVERAGE OF COM-
PRESSIVE SENSING DATA IN WIRELESS SEN-
SOR NETWORKS IN THE PRESENCE OF SENSOR
FAULTS”

APPENDIX A
COMPUTATION OF p(F) AND |G|~ USING COM-
PRESSED DATA

Note that the perturbation analysis in Section 3.4.1 as-
sumes that we evaluate the Jacobian matrices at the fixed
point w? and v° determined by the original data {xs}.
Since the original data is assumed to be not available,
we will estimate the perturbation by using the fixed
point given by the compressed data instead. This is
straightforward for the Jacobian matrix 2T¥» (whose
expressions are §1ven in section A.l). However the
Jacobian matrix 2T¥+ depends on the data; in fact, the
(i, 7)-element of the matrix is:

ava <
[N S
9 =1

Since the projection matrix ® approximately preserves
the /;-norm with a high probability, we expect that the
projection matrix ® will also approximately preserve the
inner product because the inner product of two vectors
u and v can be computed by:

(24)

ary = It v u—vig 5)

In other words, we will use:

OT vy -
[ow :| ~ 2YJT(Z Wqg¥q — Yi) (26)
i g=1
A.1 Expressions of Jocobian matrices
The Jacobian matrix a’g% is given by J1J2 where
5 ey
Jil.. - v - L 27
| 1]” Do Wk (D Wi)? @7)
(o _ (Sij
n, Vk 2 n, Vg
[J2]ij _ (Zkfl 1) Zk‘fl (28)
(7 +A)?
k=10
where
- 1
Ws = g (29)
2 k1 Uk

[¢];; denotes the (7, j)-element of a matrix and §;; = 1 if
i = j and is zero otherwise.

The Jacobian matrix 25« ig
ava] T
= 2x; (r—x;) (30)
[ow ij

12

APPENDIX B
PROOF OF PROPOSITION 1

By using equations (16) and (17), we have

wl = Tow(Tuv(wl)) (31)
We will “center” this equation by using the following
operations:
wl Tow(Twy (W)
< Tow(w!) = va(wl
g T;v}/(wl) - va(wl) = va(wl) - va(wl)
And (T;v}/ — Twv (Wl) (A wv va)(wl)
& wh = (T;v}/ va)—l(va - va)(wl)
& wl = T(Twy — Twv)(wh))

Note that the Johnson-Lindenstrauss Lemma says that
Twy(w!) appears as a perturbation around T (w')
(see equation (10)), therefore the aim of the above op-
eration is to “centre” Ty (w!') around Ty (w'). The
“centering” method has also been used in [34] to obtain
tighter stability bound in the presence of conic sector-
bound non-linearity.

Consider the norm of w! — w°, we have
[wt —wO
= HT((TWV WV)(1)) 0” (32)
= | T((Twy — Twy)(W")) = T((Twy — Tuv)(W°)) +
((va _TWV)(WO)))H (33)
< T(Twy — Taw)(Wh) = T((Twy — Twv)(WO))l| +
IT(Twy — Twy)(W?)) —)H (34)
< T (Twy — Tw)llo][w = w0 +
HT(TWVTWV) - I””WOH (35)

where I in equation (35) denotes the identity map. In the
above derivation, equation (33) is obtained by adding
and subtracting the term T((Twy — Twy)(W®)) within
the norm. Equation (34) is obtained by using the triangle
inequality, and equation (35) is obtained from using the
definition of the Lipschitz operator norm and operator
norm.

Proposition 1 is now obtained by re-arranging the last
inequality.

APPENDIX C
BEHAVIOUR UNDER COMMONLY ENCOUNTERED
FAULT MODELS IN WSNSs

In this section, we will show that our robust averaging
algorithm can deal with three commonly encountered
faults, namely stuck-at faults, offset and variance degra-
dation fault [17], in WSNs. Two pieces of results will
be presented here. Firstly, for the case of stuck-at fault,
we present an analytical study in Section C.1 to show
that our robust averaging algorithm can be designed
to give an arbitrarily small bias in the robust average.
Secondly, we present simulation results in Section C.2 to

show that our robust averaging algorithm works even
all the three aforementioned faults are present in the
network. Note that the results in Section C.2 are obtained
via simulation. We will present results on applying our
robust averaging algorithm to real data in Section 4.

We will first give precise definitions of the three
aforementioned faults.

o The stuck-at fault occurs when the sensor readings
are being stuck at a value which is not related to the
true sensor measurement. It can be modelled as

Tg = c¢ Vit

where c is a constant.

o The offset fault occurs when the reported sensor
reading is corrupted by an additive offset. Let Z,; be
the true sensor reading that sensor s should report
at time ¢, then sensor s is said to suffer from the
offset fault if the sensor reading reported by sensor
s is:

Tst = {

where c is a constant additive offset with corrupts
the data with a probability of p,.

o The variance degradation fault occurs when the
noise variance becomes larger over time. The vari-
ance degradation fault can be modelled as an ad-
ditive Gaussian distributed noise of larger variance
compared with the other sensors. Let Z; be the true
sensor reading that sensor s should report at time
t, then the actual reading that will be reported by
sensor s at time ¢ is:

Zst + ¢ with probability p,
Tgt with probability 1 — p,

Tst = Tst+ st

where eg; is a Gaussian distributed random variable
of zero mean and variance o2.

C.1

In this section, we use analytical tools to investigate
the property of our robust averaging algorithm in the
presence of stuck-at faults. Our goal is to show that the
positive constant A in our robust averaging algorithm
will only produce a small change in the weights and a
small bias in the robust average.

We consider a network of n sensors. The sensor read-
ings for these sensors are given by:

Effect of)\ on the robust averaging algorithm

. _ X for sensors s =1,...,np;t =1,..,m
.7 | X+ D forsensors s =mng+1,...

For this model, we assume that ny sensors are function-
ing correctly and they all register the correct reading X.
The other n; = n — ng sensors are stuck-at the same
wrong value which is X + D. We further assume that
there are more working sensors than faulty sensors, i.e.
ng > ni. Under these assumptions, all the ng working
sensors will have the same weight (denoted by o) and

nt=1,..,m

13

all the n; faulty sensors also have the same weights
(denoted by «;).
By using equation (6), we have

'Uz

; Zl’st

B mn1a1D2 for sensors s = 1,...,n9,Vt = 1,. 6)
~ | mnZa2D? for sensors s = ng + 1,..n,Vt = 1 (m
By using equation (7), it can be shown that
n n
O(Ul +)‘sz) = al(vn"'/\zvs) (37)
s=1 s=1

By substituting the expressions of v; in equation (36) in
the above equation, we have

ao(n%a% +)\nonl(nloﬁ + noag))

= ai(niad 4+ Mnoni(niai +noad)) (38)
Since all the weights must sum up to unity, we also have
noag +nia; = 1 (39)

By using equations (38) and (39), we can solve for «;
and «s. Also, the robust average is

X —‘r’leCle Vit (40)

This also means that the bias in the robust average is
nia1D. Therefore, the smaller value of a; (= weight
of the faulty sensor), the smaller the bias in the robust
average.

For A = 0, it can be shown that the admissible solution
is g = n—lo and «; = 0. Therefore the weights for the
faulty sensors are zero. This also means that the robust
average is exactly X which is the correct value.

We will now show that, if the parameter A if chosen
sufficiently small, it will only produce a small bias. We
first divide both sides of equation (38) by . After
substituting 3 = 3! and re-arrange the result as a
polynomial in A, we have that § is the root of this
following equation:

£(B) = Mnoni(n B2 +no) (B — 1)] + B(ng — niB)
x(B) fo(B)

First note that f(0) = —Angny < 0, i.e. f(0) is strictly
negative. With the assumption that ny > ni, we have
fo(B) is strictly positive for all 0 < § < 1 and fi(B)
is strictly negative for all 0 < § < 1. Therefore, for
sufficiently small A, f(8y) is strictly positive for some
Bo € (0,1). Therefore, there is a root for equation (41)
in the range (0, 5o). In fact, By can be made arbitrarily
small (by having a sufficiently small A), therefore § = £
can be made arbitrarily small, i.e. the weights of the
faulty sensors a; can be made as close to 0 as possible.
Therefore, with a small enough A, the weights of the
sensors will only change by a small amount. Since the
bias in the robust average is proportional to o, therefore
the small positive constant will result in only a small
bias.

re =

= 0 (41)

C.2 Mixture of different types of faults in a network

In this section, we consider a simulation where all the
three sensor faults described earlier appear in the same
wireless sensor network. Our simulation consists of 10
sensors and a block of data consists of 100 data points.
The true signal is a sinusoid. The data is plotted in Figure
7. Sensors 1, 2 and 3 are faulty. Sensor 1 has a higher
noise variance of 25 while Sensors 4-10 have a smaller
variance between 1 and 4. Sensor 2 suffers the stuck-
at fault and the sensor reading stays at 50 all the time.
Sensor 3 has an offset of 40 with a probability of 0.75.

We use Bernoulli distributed projection matrices and
40 projections. We apply our robust averaging algorithm
to both the original sensor measurements as well as
to the compressed data. Figure 8 show the weights
computed from using these two sets of data. It can be
seen that the weights computed by these two sets of
data are almost identical. Furthermore, Sensors 2-3 have
a smaller weights, thus indicating that they are likely
to be faulty. Note that Sensor 1 has a weight which is
smaller than Sensors 4-10 but a larger weight compared
with Sensors 2-3. This is reasonable since the stuck-at
fault (Sensor 2) and offset fault (Sensor 3) produce data
that does not resemble the average behaviour. Therefore,
the weights for Sensors 2 and 3 are lower. Although
Sensor 1 has larger variance, the true data hidden behind
the noise is similar to what is found in Sensors 4-10,
therefore Sensor 1 has a weight which is in-between.

Finally, we show the robust average computed in
Figure 9. The dashed blue line show the readings from
sensor 10, which is a working sensor, as the reference.
The thick red line shows the robust average computed
using the original sensor reading. The thick green line
shows the robust averaging computed using the com-
pressed data. We see that there is almost no loss in
fidelity in using the compressed data to compute the
robust average.

APPENDIX D
ADDITIONAL RESULTS FROM THE QCAT DE-
PLOYMENT

This appendix contains 3 additional figures (Figures 10,
11 and 12) on the results from the QCAT deployment. In
addition, this appendix contains the results on applying
the perturbation analysis (discussed in Section 3.4) on
the QCAT data set and results on comparing our robust
averaging method against random sampling.

D.0.1 Additional figures

In Figure 10, we compare the performance of our robust
averaging algorithm against that of Statistical and Rep-
utation and Bayes to the QCAT dataset with 4 working
and 1 faulty sensors. The robust averaging algorithm
uses compressed data while the other methods use un-
compressed data.

In Figures 11 and 12), we compare the performance of
our robust averaging algorithm against that of Statistical

14

sensor reading sensor reading sensor reading

sensor reading sensor reading
i

=N W =N W =N W [-] N A
o O O o O o o O O o O o o O O
o o o o o
N N N N N
o o o o o
8 4 8 4 4
33 0338 0338 038 w338 o
k=3 23S 23S = 23 2
° z 2 z 2 z 2 z 2 Z
g o5 %5 a5 o5 h
(2] [{e] D ~ (2] [4;] (2] w (2] [l
o O o O o O o O o O
@ (¢} @ (v} D
g 8 g 8 g
2] e] -] o] 2]
o o o o o
[= = [=
o o o o o
o o o o o

sensor reading sensor reading sensor reading sensor reading sensor reading
BN W BN W BN W BN W A5 G 0
o O o O o O o O o

o o S) o ©

<) [<) <) <)

N N N N N

<]] S o S
8 8 8 B 8
35 238 w38 PER] w38 1)
h=1 =1 oS [ol=A ©S @
@ o © > @ 3 o > @ >
> [S-] 8: 83 8: 8
IS c S e S e S E 2
3o 53 o © 3 o o3 o »~3 o N
g © g O o © o O o O
o 4] o o [}

0 © 0 © [

S S S S S

= = = = =

o o o o o

<] S S) <]

Fig. 7. Simulated data with three different types of sensor
faults. Sensor 1 has a higher noise variance. Sensor 2
has stuck-at fault. Sensor 3 has an offset fault. Noise
of different variances are added to the other 7 sensor
readings.

and Reputation and Bayes when there are 5 sensors (3
working, 2 faulty with one stuck at the level of 20) and
6 sensors (4 working and 2 faulty with one stuck at the
level of 110).

D.0.2 Perturbation analysis

Table 5 shows the values of the spectral norm p(F)
(which determines the stability of the fixed point) and
|G|l (Which gives the size of perturbation caused
by using the compressed data). One pair of values is
calculated from using the original sensor measurements.
The other pair of values is calculated from using the
compressed data. It can readily be seen that both the
original data and the compressed data give similar re-
sults. Since the spectral norm p(F) is less than 1, the
fixed point is stable. In addition, |G|l is small, which
means that the perturbation on the weights in using the
compressed data is small. This is also confirmed earlier
in Figure 4.

We use the results of Proposition 1 to study the effect
of large perturbation on the weights w,. We first use the
particular projection matrix that we have used in our
experiment to generate a probability distribution of e,.
By assuming that each ¢, is independently distributed,
we compute the oo-norm relative perturbation of the

0121 -

0.1

0.08 q

weights

0.06 - 4

0.04 q

0.02 . B . : . -
R orignal sensor readings
o compressed data

— 1 /1)

0 I I I I I T T T
1 2 3 4 5 6 7 8 9 10

sensor id

Fig. 8. The weighs ws from our robust averaging algo-
rithm. The weights computed from the original sensor
readings are shown in circles and those computed from
the compressed data are shown in crosses. The line is
at the level of L which is the expected weight when no
sensors are faulty.

40 T

T T
= = = Sensor 10

Robust average using compressed data
= Robust average using original data

35 q

w
S
T
I

sensor reading
N
3]

20

15

10 I I I I I
0 10 20 30 40 50 60 70 80 90 100

Sample number

Fig. 9. The dashed blue line show the readings from
sensor 10, which is a working sensor. The red line shows
the robust average computed using the original sensor
reading. The green line shows the robust averaging com-
puted using the compressed data.

weights w given by the right-hand side of equation
(23) for 10,000 sets of {e;} generated. Figure 13 shows
the cumulative probability distribution of the bound
of relative perturbation. It shows that there is a high
probability that the relative perturbation is less than 0.02.

D.0.3 Comparison with random sampling

We compare the performance of compressive sensing
and random sampling for a given percentage of band-
width saving. From the above calculation, we know that
100 projections will give a bandwidth saving of 50%.

Humidity

Fig.

our
five

Humidity

110

5 sensors — 4 working, 1 faulty

100

90,

80

70

60

50

Mean of working sensors

Robust average - compressed data
O Reputation

— - — - Statistical

— — —Bayes

40
0

I
100

I
150

I I I I
200 250 300 350
Sample number

400

15

10. Comparison of Statistical, Reputation, Bayes and
robust averaging method for the QCAT data set. All
sensors (4 working and 1 faulty) are used.

110

5 sensors — 3 working, 2 faulty

50

of Mean of working sensors
Robust average - compressed data
O Reputation
— - — - Statistical
— — —Bayes

30 I I I I I I I
0 50 100 150 200 250 300 350 400
Sample number

Fig. 11. Comparison of Statistical, Reputation,Bayes and
our robust averaging method. Data from 5 sensors (3
working and 2 faulty) are used.

This amount of bandwidth saving can also be realised
by having the sensors performing random sampling so
that only half of the samples (in this case 200 samples
per sensor) are sent from the sensors to the fusion centre.
Given these random samples, we can follow our robust
averaging procedure to compute the robust average at
each sampling instance. Finally, the complete time series
of the robust average (of which 200 samples are not
known because they are not sampled at these instances)
can be reconstructed by using compressive sensing re-
construction method. We find that compressive sensing
gives a relative error in reconstructing the robust average
(the first metric in the previous paragraph) of 2.73%
while the random sampling method gives 8.02%. We
repeat the same experiment with 50 projections (which

6 sensors - 4 working, 2 faulty
110 T T T

Humidity

Mean of working sensors
Robust average - compressed data
O Reputation
— - — - Statistical
= — — —Bayes

I I I I I I
50 100 150 200 250 300 350 400
Sample number

Fig. 12. Comparison of Statistical, Reputation,Bayes and
the proposed robust averaging method. Data from 6 sen-
sors (4 working and 2 faulty) are used.

o(F) | G0
Using original sensor readings | 0.1358 | 0.1894
Using compressed data 0.1427 | 0.1965

TABLE 5
This table compares the values of p(F) and |G|«
evaluated by using the original sensor readings against
those computed by using the compressed data. This
table is for the QCAT deployment.

results in a bandwidth saving of 75%) for compressive
sensing and compare it against random sampling where
each sensor returns 100 random samples (out of 400
samples, which also gives a bandwidth saving of 75%) to
the fusion centre. In this case, we find that compressive
sensing gives a relative error in reconstructing the robust
average of 7.90% while the random sampling method
gives 11.92%. Thus, compressive sensing gives better es-
timation of robust average compared with other methods
for the same amount of bandwidth.

APPENDIX E
THE BELMONT DEPLOYMENT

This appendix describes the results of applying our
robust averaging algorithm to the data obtained from
an outdoor wireless sensor network testbed operated by
CSIRO in Belmont, central Queensland, Australia. The
WOSN consists of 32 sensors measuring temperature and
a block of data for each sensor consists of 221 points.
Figure 14 shows the temperature measurement of the 8
selected sensors over the measurement period. The cor-
rect trend is that the temperature readings should drop
from (about) 31°C to (about) 19°C over the measurement
period, which is the behaviour of sensors 1 and 32. Some
of the sensors are faulty. For example, sensor 3 is stuck at

16

0.8 ~

0.6 q

0.4r q

Estimated cumulative distribution

0.2 ~

0 I I I I I I
] 0.005 0.0. 0.025 0.03 0.035

1 .01! .02
Infinity norm on the perturbation of w

Fig. 13. This figure shows the cumulative probability
distribution of the bound of relative perturbation on the
weight vector w obtained by Monte Carlo simulation.

31°C throughout, sensor 10 is stuck at 28 °C and sensor
11 is stuck at 12 °C . Some sensors are only faulty for
part of the time. For example, sensor 9 is stuck at 30°C in
the first half of the measurement period but works in
the second half; both sensors 13 and 14 are stuck in the
second half of the measurement period.

We apply our fault detection algorithm to the original
sensor measurements, as well as to the compressed data
with 88 (= p) projections with a Bernoulli distributed
projection matrix. Figure 15 shows the weights w, for
the sensors, where s = 1,...,32, obtained from using
the original sensor readings as well as the compressed
data. It can be seen that the two sets of weights are
very close to each other. The solid line in figure 15 is
at the level of 35 which is the weight to use when all
sensors are working. Figure 15 shows that sensors 3,
10 and 11 have very low weights, and they correspond
to those three sensors that are stuck throughout the
measurement period. Sensors 13 and 14 also receive low
weights because they are stuck for a good part of the
measurement period. The same observation apply to
sensors 5 and 9, which also have low weightings.

Figure 16 shows the average temperatures given by
our fixed point iteration algorithm. (We use the ¢;-magic
toolbox [6] for compressive sensing reconstruction.) The
curve with short dashes shows the behaviour of sensor
1, which is a working sensor. The curve with long
dashes shows the result obtained from applying the fixed
point iteration to the original sensor measurements. The
solid curve shows the result obtained from applying the
fixed point iteration to the compressed data followed
by reconstruction. It can be seem that there is no loss
in fidelity in using the compressed data. It is hard to
distinguish the latter two curves because they are almost
on top of each other. The figure also shows the robust
average captures the trend of the working sensor.

We compare the computation time of the two meth-

p(F) | G0
Using original sensor readings | 0.0982 | 0.0186
Using compressed data 0.0967 | 0.0185

TABLE 6
This table compares the values of p(F) and |G|«
evaluated by using the original sensor readings against
those computed by using the compressed data.

ods shown in Figures 1 and 2. The computation was
performed on a MacBook running Matlab 2009b. The
method in Figure 1, which requires the reconstruction
of 32 time series and one run of the robust average
algorithm, took 10.47s to complete, while the method
in Figure 2, which requires only one reconstruction and
one run of the robust average algorithm, took 0.37s and
is therefore 28.1 times faster.

Table 6 shows the values of the spectral norm p(F)
(which determines the stability of the fixed point) and
|G|l (which gives the size of perturbation caused
by using the compressed data). One pair of values is
calculated from using the original sensor measurements.
The other pair of values is calculated from using the
compressed data. It can readily be seen that both the
original data and the compressed data give similar re-
sults. Since the spectral norm p(F') is less than 1, the fixed
point is stable. In addition, |G|« is very small, which
means that the perturbation on the weights in using
the compressed data is minimal. This is also confirmed
earlier in Figure 15.

The bandwidth saving in using compressive sensing
can be computed. Since the sensors use 10-bit A/D
converter, sending all the sensor readings to the data
fusion centre will mean each sensor needs to transmit
2210 bits of data. With compressive sensing, the number
of bits of data that has to be sent by each sensor is
p(b+ 1+ [logy(m)]) =1408 bits. This represents a 25%
saving.

Sensor 1 Sensor 32

—~C] e

50 100 150 200 50 100 150 200
Sample number Sample number
Sensor 3 Sensor 10

W
S
W
S

N
=]
]
=]

Temperature
Temperature

i
5]
i
5]

30 30

20 20

Temperature
Temperature

10

10
50 100 150 200 50 100 150 200

Sample number Sample number
Sensor 11 Sensor 9

] ®
=]]
g 30 g 30—\———‘5—_
o @
2 20 2 20
£ £
€ 10 2 10

50 100 150 200 50 100 150 200

Sample number Sample number
Sensor 13 Sensor 14

o e
o] @
2 20 2 20
5 5
= 10 F 10

50 100 150 200 50 100 150 200

Sample number Sample number

Fig. 14. Sensor readings of 8 selected sensors.

17

p=88
0.04
0.035| BB Q v 008 % 8% ®
® 09 ®
0031 ®)
X
(0)
0,025 :)
a
=
S o002 @ a
H
0,015)
001+ ®)
0.005 - 8 6 orignal sensor readings
compressed data
. ‘ ‘ ® ‘ ‘ —1n ‘
0 5 10 15 20 25 30 35

sensor id

Fig. 15. The weights w, are shown in circles (from original
sensor readings) and crosses (from compressed data).
The line is at the level of 55 which is the expected weight
when no sensors are faulty.

32

T
““““ Sensor 1

Robust average using compressed data
= = = Robust average using original data

Temperature
N
>

T

N
i
T

22

20

18 I I
0 50 100 150 200 250
Sample number

Fig. 16. The figure shows the averages against the
trend of one working sensor (short dashes). The line
with long dashes shows the robust average computed
by applying the fixed point iteration to the original data.
The solid curve shows the robust average by applying the
fixed point iteration to the compressed data followed by
reconstruction.

