
COMP9444/9844 Assignment 1:

Neural networks and handwritten digits

Due 26th August, 18:00.

This assignment is based on a face recognition assignment designed by Tom Mitchell at Carnegie
Mellon University.

1. Introduction

This assignment gives you an opportunity to apply neural network learning to the problem of
classifying images. You will experiment with a neural network program to recognise a particular
digit, and to recognise each digit from a collection of handwritten samples. You will experiment with
the effects of changing properties of the network, such as the number of units, different activation
functions, and scaling input.

You will not need to do significant amounts of coding for this assignment, and you should not let
the size of this document scare you, but training your networks will take time. It is recommended
that you read the assignment in its entirety first, and start early.

Download the file MLP numbers.tgz from the class webpage next to where you got this assign-
ment from and uncompress and unpack using tar xvfz MLP numbers.tgz in a directory you want
to use for this assignment.

1.1. Submission

The assignment report is to be submitted as a document, and submitted using the “classrun”
system. To submit, log in to your account on a CSE machine, and run 9444 classrun -give mlp

myfile.pdf (replace myfile.pdf with the name of your document). The same command should
be used for people enrolled in the extended course. Further information on using classrun is
available at:

http://www.cse.unsw.edu.au/help/doc/primer/node26.html .

The deadline for submission is August 26 18:00:00. Maximum file size is 3MB however smaller
files are preferred. Late penalty is one mark off the maximum mark for each day late, further
details are on the class website.

1



1.2. The image dataset

The images used are from the MNIST set of handwritten digits. This contains 70,000 small images,
and has been used in many research projects. You can see what the images look like from the large
images in the images/ directory, which give a representation of each sample1. The images loaded
by the program are stored in binary format, and are the same as the ones shown in the large images.

Each image in the dataset has a class label representing the digit, and an identifying number,
from 0 to approximately 7000 for each class. A second representation is given in the file imglist.gz,
which includes the label for each image, and can be viewed easily using zless. The original dataset
contains 60,000 training images and 10,000 test images, the labels in the imglist.gz mention
whether the image is from the original “train” or “test” set, however for the purposes of this
assignment they are joined together into one collection.

1.3. The neural network and image access code

We’re supplying C code for a three-layer fully-connected feedforward neural network which uses the
backpropagation algorithm to tune its weights. To make life as easy as possible, we’re supplying
the code for loading the images and the top-level program for training and testing, as a skeleton
for you to modify. To help explore what the nets actually learn, you’ll also find a utility program
for visualizing hidden-unit weights as images.

The code is located in the directory where you unpacked the tar-file. Type make to build the
package with the supplied code. When the compilation is done, you should have one executable
program: nettrain. Briefly, nettrain takes script files as input, which represent lists of images
to be used for the training and test sets, that are used for training and testing the neural network.
The program can be used for training and/or recognition, and also is able to save and load the
network weights of a trained network.

The code has been compiled and tested successfully on various Linux PCs such as those in the
labs. If you wish to use the code on some other platform, feel free, but be aware that the code has
only been tested on these platforms.

Details of the routines, explanations of the source files, and related information can be found in
Section 3 of this handout.

1.4. Format of the image list scripts

The program takes three files as input that describe the list of images to be used for the training,
validation and test sets. These script files describe the specific images to be included in each set,
according to the class and id number of each image. This allows the description of the images to
be included in each dataset.

Each line of the script file is in the format class {0 − 9} first {0− ∼ 7000} last {0− ∼
7000}, for example the line class 3 first 0 last 299 will add 300 images representing the digit

1These images are from http://www.cs.nyu.edu/∼roweis/data.html

2



3 to the given dataset. Additional lines allow further images of different classes to be added, the
order of the lines is not important.

2. The Assignment

Prepare a short write-up of your answers to the questions in bold face found in the following
sequence of initial experiments. When you show modifications of the code, always indicate in
what function you make changes and show a bit of context before and after your code and show
replaced/modified code where applicable.

1. The code you have been given is currently set up to learn to recognise the digit ‘0’. The
network is set up with 5 hidden units and one output unit. The network is trained to provide
a high response for the output unit if the observed image is a ‘0’, and give a low response
otherwise. Train the network using the zeroeight datasets, which trains the network to
identify a ‘0’ digit in a dataset containing ‘0’ and ‘8’ digits. This can be done with the
following command:

nettrain -n zeroeight.net -t zeroeight train -1 zeroeight validate -2 zeroeight test

-e 100

The arguments are described in more detail in Section 3.1.1, but a short description is in
order here. zeroeight.net is the name of the network file which will be saved when training
is finished. zeroeight train, zeroeight validate, and zeroeight test are script files
which specify the training set (2000 examples) and two test sets (1000 and 1000 examples),
respectively.

This command creates a neural net and trains it on a sample of 2000 images, and uses further
sets of 1000 images for validation and testing. One way to think of this test strategy is that
1

4
of the images have been held over for testing. The remaining 3

4
have been used for a train

and cross-validate strategy, in which 2

3
of these are being used for as a training set and 1

3
are

being used for the validation set to decide when to halt training.

The output of the program is described in Section 3.1.2. Note that if you run the program
multiple times and the network weights have already been saved into the zeroeight.net file
from a previous run, it will load those weights again. You need to delete or rename the file
to start new training, or load the file to continue from where it was last saved. Keep the
zeroeight.net file produced by one training run as it will be used later.

How are the values in the 2nd column changing over time, and what does this
represent?

How long does the network take to reach the maximum accuracy level on the
training set? At what point does it reach the minimum error level on the vali-
dation set, and what is the accuracy on the test set at this point?

2. Create a new dataset that will train the network to learn to identify the digit ‘0’ from
amongst a set of digits from ‘0-9’. You can copy and modify the zeroeight * files, to create
new training, validation and test sets, that will include all digits.

Because we want to train to recognise the digit ‘0’ as opposed to any other digits, we need
to create the dataset such that there are an equal number of samples for each class we want
to identify. That means that 50% of our samples are for the positive case (‘0’), and 50% for

3



others (‘1-9’), otherwise the network will become biased towards a particular class. This can
be done using a dataset with 900 samples for ‘0’ and 100 samples for each other digit, and a
similar proportion for the validation and test sets, such as using half of each amount. Make
sure no images are re-used between the different sets.

Show the datasets you have constructed. Train your network using this new
dataset for 100 epochs, and place the output into a new network file (eg -n

zeroall.net).

Find the point where the error on the validation set is minimum. What is the
classification accuracy on the test set at this point? What happens to the error
and accuracy on each set as training continues after this point, and why is this
so?

What do the values in the 4th, 6th and 8th columns represent, and how are they
changing over time? what does this mean?

When you are looking for the point where the error level is at a minimum, try and look for
a minimum over an average of several epochs (time steps) rather than a single lowest point.

3. Now, try taking a look at how backpropagation tuned the weights of the hidden units with
respect to each pixel. First type make hidtopgm to compile the utility on your system. Then,
to visualize the weights of hidden unit n, type the following (using the name of your network,
image name and hidden unit number):

hidtopgm network-name.net image-filename.pgm 28 28 n

This will produce an image, which you can view using a program such as eog or xv, which
should be available on lab machines. This will display the range of weights, with the lowest
weights mapped to pixel values of zero, and the highest mapped to 255.

Using the network produced for the zero-vs-eight classifier and the zero-vs-all
classifier, have a look at the weights of some of the hidden units for each. Can
you describe properties of the features constructed?

4. Next you will modify the code to adjust the number of weights used by the network, and the
training class. Change it so that it recognises the number ‘8’, and uses one hidden unit.

What code did you modify?

5. Using this code, we will examine the result of training the system using different size training
sets and different numbers of hidden units. A number of training and test sets have been pro-
vided that we will use. eightall sm train, eightall med train and eightall lg train

are datasets to train to recognise ‘8’ amongst all digits, using a small, medium and large
training set. eightall validate and eightall test are test sets that we will use for each
of the tests.

Conduct a number of runs using these datasets, to compare results using different
size datasets, using the network with 1 hidden unit to identify the digit ‘8’.

For each run, find the maximum accuracy level reached on the training set, and
the find the test accuracy for this run. The test accuracy used should be the
value at the point where the validation set error is minimum, and may be at a
different time than the maximum accuracy level reached on the training set.

How do these values change as different size training datasets are used? What is
your explanation?

4



Be careful not to re-use the same network file between runs.

6. Change the network to use 5 and 50 hidden units, and perform the same tests as the previous
step. This should give you 3x3 results, using a small, medium and large dataset for 1, 5 and
50 hidden units respectively. All of these runs should use the same validation and test sets.

Discuss how the different size network and different size training sets affect train-
ing times and the overall accuracy on the test set.

7. Lets take a closer look at which images the net may have failed to classify (use the appropriate
.net file for your trained network, you can use the network from any of the previous runs):

nettrain -n eightall sm 50.net -T -1 eightall validate -2 eightall test

This will show the output of the network when presented with each test image, which can
be used to identify misclassified images. You can see what each image looks like according
to its label (eg train3 5143). Copy the label and run zless imglist.gz, if you press ‘/’
and type/paste the image label you can find what the image looks like. Use ‘?’ to search
backwards.

Can you describe notable aspects or commonalities between the misclassified
images?

8. Now, change the network to learn to classify each digit, rather than identifying a single digit.
The network will be presented with an image, and will need to identify which digit it is. To
do this, you will need to implement a different output encoding (since you must now be able
to distinguish among 10 digits). Use 10 output units for this and interpret the outputs such
that the highest output value of a unit will be taken as indicating the respective class.

Describe what code you modified.

9. A number of training and test sets have been provided to train and test the network to
classify all digits. This uses the all * train, all validate and all test sets. Using each
training set (small, med and large), conduct tests using a network of 1, 5 and 50 hidden units,
as previously. This should give 3x3 sets of results (9 total). You may need to change the
number of epochs being run.

Conduct these runs and describe how the training time and test accuracy changes
with different size networks, and with different size training sets. Discuss why
you think these effects occur.

For the smallest network (1 hidden unit), compare what happens to the training
accuracy and test accuracy as the size of the training set is increased. Why does
this happen?

10. The program outtopgm provides output of the weights between the hidden units and the
output nodes. You can use this to identify which features are providing the most influence
on the responses for each output node. For example the following will show the weights for
output unit 3 in a network with 10 output nodes (note that 10 + 1 is used for the third
parameter, as described in Section 3.6).

outtopgm network-name.net image-filename.pgm 11 1 3

The text output from this program will likely be more useful than the image.

Find some of the features (hidden units) that are playing a significant role in
the output of a particular class, either positively or negatively. You can use the

5



network of any of the previous runs. Display the features using hidtopgm. Are
there recognisable aspects of the features?

11. These runs have been conducted using the logistic activation function, ϕ(x) = 1

1+e−x
. Change

the code so that the program uses the activation function ϕ(x) = tanh(x). This should not
require many changes, however requires an understanding of the way the activation function
is used, and other parts of the code that need to be changed. Note that the derivative of the
logistic function is

ϕ′(x) = ϕ(x)(1− ϕ(x))

and the derivative of the tanh function is

ϕ′(x) = 1− ϕ(x)2

Implement this change and describe the various parts of the program that you
changed. Conduct at least one new run using the modified code. Try to verify
that your program is running correctly, and describe any changes to the training
time, behaviour or accuracy of the program.

12. (optional) If you like you can try running the system using the full training set of 50,000
images (full train, and 10,000 for validation in all validate), to see the performance
against the standard test dataset (all test). This may take some time, depending on the
computer you are running it on. There are examples of results from other systems available
at http://yann.lecun.com/exdb/mnist (this will not be assessed).

3. Documentation

The code for this assignment is broken into several modules:

• readimage.c .h, readMNIST.c .h: these provide a number of methods for loading and han-
dling images. This supports read/write of PGM image files and pixel access/assignment. The
readMNIST methods provide a means of reading images from the binary dataset file. You
will not need to modify any code in this module to complete the assignment.

• backprop.c, backprop.h: the neural network package. Supports three-layer fully-connected
feedforward networks, using the backpropagation algorithm for weight tuning. Provides high
level routines for creating, training, and using networks. You will only need to make
changes to this code to alter the activation function and any necessary related
changes, for the last step of the assignment.

• nettrain.c: the top-level program which uses the previous modules to implement an im-
age recogniser. You will need to modify this code to change network sizes and learn-
ing parameters, both of which are trivial changes. The performance evaluation routines
performance on imagelist() and evaluate performance() are also in this module, you
will need to modify these for the all-digit recogniser.

This also includes interface routines for loading images into the input units of a network,
and setting up target vectors for training. You will need to modify the routine load target,
when implementing the all-digit recogniser, to set up appropriate target vectors for the output
encodings you choose.

6



• hidtopgm.c: the hidden unit weight visualization utility. It’s not necessary modify anything
here, although it may be interesting to explore some of the numerous possible alternate
visualization schemes.

Feel free to modify anything you want in any of the files if it makes your life easier or if it allows
you to do a nifty experiment.

3.1. nettrain

3.1.1. Running nettrain

nettrain has several options which can be specified on the command line. This section briefly
describes how each option works. A very short summary of this information can be obtained by
running netfacetrain with no arguments.

-n <network file> - this option either loads an existing network file, or creates a new one with
the given name. At the end of training, the neural network will be saved to this file.

-e <number of epochs> - this option specifies the number of training epochs which will be run.
If this option is not specified, the default is 100.

-T - for test-only mode (no training). Performance will be reported on each of the three datasets
specified, and those images misclassified will be listed, along with the corresponding output
unit levels.

-s <seed> - an integer which will be used as the seed for the random number generator. A
constant default seed is given. This allows you to reproduce experiments if necessary, by
generating the same sequence of random numbers. It also allows you to try a different set of
random numbers by changing the seed.

-S <number of epochs between saves> - this option specifies the number of epochs between
saves. The default is 100, which means that if you train for 100 epochs (also the default), the
network is only saved when training is completed.

-t <training image list> - this option specifies a script file describing the images from the
MNIST dataset that are to be used in the training set. The format is described in Section 1.4.
If this option is not specified, it is assumed that no training will take place (epochs = 0), and
the network will simply be run on the test sets. In this case, the statistics for the training
set will all be zeros.

-1 <test set 1 list> - this option specifies a script file describing the first (or validation) test
set. If this option is not specified, the statistics for test set 1 will all be zeros.

-2 <test set 2 list> - same as above, but for test set 2. The idea behind having two test sets
is that one can be used as part of the train/test paradigm, in which training is stopped when
performance on the test set begins to degrade. The other can then be used as a “real” test
of the resulting network.

7



3.1.2. Interpreting the output of nettrain

When you run nettrain, it will first read in all the data files and print a bunch of lines regarding
these operations. Once all the data is loaded, it will begin training. At this point, the network’s
training and test set performance is outlined in one line per epoch. For each epoch, the following
performance measures are output:

<epoch> <delta> <trainperf> <trainerr> <t1perf> <t1err> <t2perf> <t2err>

These values have the following meanings:

epoch is the number of the epoch just completed; it follows that a value of 0 means that no
training has yet been performed.

delta is the sum of all δ values on the hidden and output units as computed during backprop,
over all training examples for that epoch.

trainperf is the percentage of examples in the training set which were correctly classified.

trainerr is the average, over all training examples, of the error function 1

2

∑
(ti − oi)

2, where ti
is the target value for output unit i and oi is the actual output value for that unit.

t1perf is the percentage of examples in test set 1 which were correctly classified.

t1err is the average, over all examples in test set 1, of the error function described above.

t2perf is the percentage of examples in test set 2 which were correctly classified.

t2err is the average, over all examples in test set 2, of the error function described above.

3.2. Tips

Although you do not have to modify many parts of the code, you will need to know a little bit
about the routines and data structures being used, so that you can easily implement new output
encodings for your networks. The following sections describe each of the packages in a little more
detail. You can look at the code to see how the routines are actually used.

In fact, it is probably a good idea to look over nettrain.c first, to see how the training
process works. You will notice that load target() is called to set up the target vector for train-
ing. You will also notice the routines which evaluate performance and compute error statistics,
performance on imagelist() and evaluate performance(). The first routine iterates through a
set of images, computing the average error on these images, and the second routine computes the
error and accuracy on a single image.

You will almost certainly not need to use all of the information in the following sections, so
don’t feel like you need to know everything the packages do. You should view these sections as
reference guides for the packages, should you need information on data structures and routines.

Another fun thing to do, if you didn’t already try it in the last question of the assignment, is to
use the image package to view the weights on connections in graphical form; you will find routines
for creating and writing images, if you want to play around with visualizing your network weights.

8



Finally, the point of this assignment is for you to obtain first-hand experience in working with
neural networks; it is not intended as an exercise in C hacking. An effort has been made to keep
the image package and neural network package as simple as possible. If you need clarifications
about how the routines work, don’t hesitate to ask.

3.3. The neural network package

As mentioned earlier, this package implements three-layer fully-connected feedforward neural net-
works, using a backpropagation weight tuning method. We begin with a brief description of the
data structure, a BPNN (BackPropNeuralNet).

All unit values and weight values are stored as doubles in a BPNN.

Given a BPNN *net, you can get the number of input, hidden, and output units with net->input n,
net->hidden n, and net->output n, respectively.

Units are all indexed from 1 to n, where n is the number of units in the layer. To get the value of
the kth unit in the input, hidden, or output layer, use net->input units[k], net->hidden units[k],
or net->output units[k], respectively.

The target vector is assumed to have the same number of values as the number of units in the
output layer, and it can be accessed via net->target. The kth target value can be accessed by
net->target[k].

To get the value of the weight connecting the ith input unit to the jth hidden unit, use
net->input weights[i][j]. To get the value of the weight connecting the jth hidden unit to
the kth output unit, use net->hidden weights[j][k].

The routines are as follows:

void bpnn initialize(seed)

int seed;

This routine initializes the neural network package. It should be called before any other
routines in the package are used. Currently, its sole purpose in life is to initialize the random
number generator with the input seed.

BPNN *bpnn create(n in, n hidden, n out)

int n in, n hidden, n out;

Creates a new network with n in input units, n hidden hidden units, and n output output
units. All weights in the network are initialised to zero to make the output display more
readable, however this can be changed to be randomly initialised to values in the range
[−1.0, 1.0]. Returns a pointer to the network structure. Returns NULL if the routine fails.

void bpnn free(net)

BPNN *net;

Takes a pointer to a network, and frees all memory associated with the network.

void bpnn train(net, learning rate, momentum, erro, errh)

BPNN *net;

9



double learning rate, momentum;

double *erro, *errh;

Given a pointer to a network, runs one pass of the backpropagation algorithm. Assumes that
the input units and target layer have been properly set up. learning rate and momentum

are assumed to be values between 0.0 and 1.0. erro and errh are pointers to doubles, which
are set to the sum of the δ error values on the output units and hidden units, respectively.

void bpnn feedforward(net)

BPNN *net;

Given a pointer to a network, runs the network on its current input values.

BPNN *bpnn read(filename)

char *filename;

Given a filename, allocates space for a network, initializes it with the weights stored in the
network file, and returns a pointer to this new BPNN. Returns NULL on failure.

void bpnn save(net, filename)

BPNN *net;

char *filename;

Given a pointer to a network and a filename, saves the network to that file.

3.4. The image package

The image package provides a set of routines for manipulating images. An image is a rectangular
grid of pixels; each pixel has an integer value ranging from 0 to 255. Images are indexed by rows
and columns; row 0 is the top row of the image, column 0 is the left column of the image.

IMAGE *img creat(filename, nrows, ncols)

char *filename;

int nrows, ncols;

Creates an image in memory, with the given filename, of dimensions nrows × ncols, and
returns a pointer to this image. All pixels are initialized to 0. Returns NULL on failure.

int ROWS(img)

IMAGE *img;

Given a pointer to an image, returns the number of rows the image has.

int COLS(img)

IMAGE *img;

Given a pointer to an image, returns the number of columns the image has.

char *NAME(img)

IMAGE *img;

Given a pointer to an image, returns a pointer to its base filename (i.e., if the full filename is
/usr/joe/stuff/foo.pgm, a pointer to the string foo.pgm will be returned).

10



int img getpixel(img, row, col)

IMAGE *img;

int row, col;

Given a pointer to an image and row/column coordinates, this routine returns the value of
the pixel at those coordinates in the image.

void img setpixel(img, row, col, value)

IMAGE *img;

int row, col, value;

Given a pointer to an image and row/column coordinates, and an integer value assumed to
be in the range [0, 255], this routine sets the pixel at those coordinates in the image to the
given value.

int img write(img, filename)

IMAGE *img;

char *filename;

Given a pointer to an image and a filename, writes the image to disk with the given filename.
Returns 1 on success, 0 on failure.

void img free(img)

IMAGE *img;

Given a pointer to an image, deallocates all of its associated memory.

IMAGELIST *imgl alloc()

Returns a pointer to a new IMAGELIST structure, which is really just an array of pointers to
images. Given an IMAGELIST *il, il->n is the number of images in the list. il->list[k]

is the pointer to the kth image in the list.

void imgl add(il, img)

IMAGELIST *il;

IMAGE *img;

Given a pointer to an imagelist and a pointer to an image, adds the image at the end of the
imagelist.

void imgl free(il)

IMAGELIST *il;

Given a pointer to an imagelist, frees it. Note that this does not free any images to which
the list points.

void imgl load images from textfile(il, filename)

IMAGELIST *il;

char *filename;

Takes a pointer to an imagelist and a filename. filename is assumed to specify a file which is
a list of pathnames of images, one to a line. Each image file in this list is loaded into memory
and added to the imagelist il.

11



3.5. hidtopgm

hidtopgm takes the following fixed set of arguments:

hidtopgm net-file image-file x y n

net-file is the file containing the network in which the hidden unit weights are to be found.

image-file is the file to which the derived image will be output.

x and y are the dimensions in pixels of the image on which the network was trained.

n is the number of the target hidden unit. n may range from 1 to the total number of hidden
units in the network.

3.6. outtopgm

outtopgm takes the following fixed set of arguments:

outtopgm net-file image-file x y n

This is the same as hidtopgm, for output units instead of input units. Be sure you specify x to
be 1 plus the number of hidden units, so that you get to see the weight w0 as well as weights
associated with the hidden units. For example, to see the weights for output number 2 of a
network containing 3 hidden units, do this:

outtopgm pose.net pose-out2.pgm 4 1 2

net-file is the file containing the network in which the hidden unit weights are to be found.

image-file is the file to which the derived image will be output.

x and y are the dimensions of the hidden units, where x is always 1 + the number of hidden units
specified for the network, and y is always 1.

n is the number of the target output unit. n may range from 1 to the total number of output
units for the network.

12


