We can initialize numpy arrays from nested Python lists, and access elements using square brackets:
import numpy as np a = np.array([1, 2, 3]) # Create a rank 1 array print(type(a)) # Prints "Numpy also provides many functions to create arrays:" print(a.shape) # Prints "(3,)" print(a[0], a[1], a[2]) # Prints "1 2 3" a[0] = 5 # Change an element of the array print(a) # Prints "[5, 2, 3]" b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array print(b.shape) # Prints "(2, 3)" print(b[0, 0], b[0, 1], b[1, 0]) # Prints "1 2 4"
import numpy as np a = np.zeros((2,2)) # Create an array of all zeros print(a) # Prints "[[ 0. 0.] # [ 0. 0.]]" b = np.ones((1,2)) # Create an array of all ones print(b) # Prints "[[ 1. 1.]]" c = np.full((2,2), 7) # Create a constant array print(c) # Prints "[[ 7. 7.] # [ 7. 7.]]" d = np.eye(2) # Create a 2x2 identity matrix print(d) # Prints "[[ 1. 0.] # [ 0. 1.]]" e = np.random.random((2,2)) # Create array with random values print(e) # Might print "[[ 0.91940167 0.08143941] # [ 0.68744134 0.87236687]]"You can read about other methods of array creation in the documentation.
Slicing: Similar to Python lists, numpy arrays can be sliced. Since arrays may be multidimensional, you must specify a slice for each dimension of the array:
import numpy as np # Create the following rank 2 array with shape (3, 4) # [[ 1 2 3 4] # [ 5 6 7 8] # [ 9 10 11 12]] a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) # Use slicing to pull out the subarray consisting of # the first 2 rows and columns 1 and 2; # b is the following array of shape (2, 2): # [[2 3] # [6 7]] b = a[:2, 1:3] # A slice of an array is a view into the same data, # so modifying it will modify the original array. print(a[0, 1]) # Prints "2" b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1] print(a[0, 1]) # Prints "77"You can also mix integer indexing with slice indexing. However, doing so will yield an array of lower rank than the original array:
import numpy as np # Create the following rank 2 array with shape (3, 4) # [[ 1 2 3 4] # [ 5 6 7 8] # [ 9 10 11 12]] a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) # Two ways of accessing the data in the middle row of the array. # Mixing integer indexing with slices yields an array of lower # rank, while using only slices yields an array of the same rank # as the original array: row_r1 = a[1, :] # Rank 1 view of the second row of a row_r2 = a[1:2, :] # Rank 2 view of the second row of a print(row_r1, row_r1.shape) # Prints "[5 6 7 8] (4,)" print(row_r2, row_r2.shape) # Prints "[[5 6 7 8]] (1, 4)" # We can make the same distinction when accessing the # columns of an array: col_r1 = a[:, 1] col_r2 = a[:, 1:2] print(col_r1, col_r1.shape) # Prints "[ 2 6 10] (3,)" print(col_r2, col_r2.shape) # Prints "[[ 2] # [ 6] # [10]] (3, 1)"Integer array indexing: When you index into numpy arrays using slicing, the resulting array view will always be a subarray of the original array. In contrast, integer array indexing allows you to construct arbitrary arrays using the data from another array. Here is an example:
import numpy as np a = np.array([[1,2], [3, 4], [5, 6]]) # An example of integer array indexing. # The returned array will have shape (3,) and print(a[[0, 1, 2], [0, 1, 0]]) # Prints "[1 4 5]" # The above example is equivalent to this: print(np.array([a[0, 0], a[1, 1], a[2, 0]])) # Prints "[1 4 5]" # When using integer array indexing, you can reuse the same # element from the source array: print(a[[0, 0], [1, 1]]) # Prints "[2 2]" # Equivalent to the previous integer array indexing example print(np.array([a[0, 1], a[0, 1]])) # Prints "[2 2]"One useful trick with integer array indexing is selecting or mutating one element from each row of a matrix:
import numpy as np # Create a new array from which we will select elements a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) print(a) # prints "array([[ 1, 2, 3], # [ 4, 5, 6], # [ 7, 8, 9], # [10, 11, 12]])" # Create an array of indices b = np.array([0, 2, 0, 1]) # Select one element from each row of a using the indices in b print(a[np.arange(4), b]) # Prints "[ 1 6 7 11]" # Mutate one element from each row of a using the indices in b a[np.arange(4), b] += 10 print(a) # prints "array([[11, 2, 3], # [ 4, 5, 16], # [17, 8, 9], # [10, 21, 12]])Boolean array indexing: Boolean array indexing lets you pick out arbitrary elements of an array. Frequently this type of indexing is used to select the elements of an array that satisfy some condition. Here is an example:
import numpy as np a = np.array([[1,2], [3, 4], [5, 6]]) bool_idx = (a > 2) # Find the elements of a that are bigger than 2; # this returns a numpy array of Booleans of the # same shape as a, where each slot of bool_idx # tells whether that element of a is > 2. print(bool_idx) # Prints "[[False False] # [ True True] # [ True True]]" # We use boolean array indexing to construct a rank 1 array # consisting of the elements of a corresponding to the # True values of bool_idx print(a[bool_idx]) # Prints "[3 4 5 6]" # We can do all of the above in a single concise statement: print(a[a > 2]) # Prints "[3 4 5 6]"For brevity we have left out a lot of details about numpy array indexing; if you want to know more you should read the documentation.
import numpy as np x = np.array([1, 2]) # Let numpy choose the datatype print(x.dtype) # Prints "int64" x = np.array([1.0, 2.0]) # Let numpy choose the datatype print(x.dtype) # Prints "float64" x = np.array([1, 2], dtype=np.int64) # Force a particular datatype print(x.dtype) # Prints "int64"You can read all about numpy datatypes in the documentation.
import numpy as np x = np.array([[1,2],[3,4]], dtype=np.float64) y = np.array([[5,6],[7,8]], dtype=np.float64) # Elementwise sum; both produce the array # [[ 6.0 8.0] # [10.0 12.0]] print(x + y) print(np.add(x, y)) # Elementwise difference; both produce the array # [[-4.0 -4.0] # [-4.0 -4.0]] print(x - y) print(np.subtract(x, y)) # Elementwise product; both produce the array # [[ 5.0 12.0] # [21.0 32.0]] print(x * y) print(np.multiply(x, y)) # Elementwise division; both produce the array # [[ 0.2 0.33333333] # [ 0.42857143 0.5 ]] print(x / y) print(np.divide(x, y)) # Elementwise square root; produces the array # [[ 1. 1.41421356] # [ 1.73205081 2. ]] print(np.sqrt(x))Note that * is elementwise multiplication, not matrix multiplication. We instead use the
dot
function to compute inner products of vectors, to multiply a vector by a matrix, and to multiply matrices. dot
is available both as a function in the numpy module and as an instance method of array objects:
import numpy as np x = np.array([[1,2],[3,4]]) y = np.array([[5,6],[7,8]]) v = np.array([9,10]) w = np.array([11, 12]) # Inner product of vectors; both produce 219 print(v.dot(w)) print(np.dot(v, w)) # Matrix / vector product; both produce the rank 1 array [29 67] print(x.dot(v)) print(np.dot(x, v)) # Matrix / matrix product; both produce the rank 2 array # [[19 22] # [43 50]] print(x.dot(y)) print(np.dot(x, y))Numpy provides many useful functions for performing computations on arrays; one of the most useful is
sum
:
import numpy as np x = np.array([[1,2],[3,4]]) print(np.sum(x)) # Compute sum of all elements: "10" print(np.sum(x, axis=0)) # Compute sum of each column: "[4 6]" print(np.sum(x, axis=1)) # Compute sum of each row: "[3 7]"You can find the full list of mathematical functions provided by numpy in the documentation.
Apart from computing mathematical functions using arrays, we frequently need to reshape or otherwise manipulate data in arrays. The simplest example of this type of operation is transposing a matrix; to transpose a matrix, simply use the T
attribute of an array object:
import numpy as np x = np.array([[1,2], [3,4]]) print(x) # Prints "[[1 2] # [3 4]]" print(x.T) # Prints "[[1 3] # [2 4]]" # Note that taking the transpose of a rank 1 array does nothing: v = np.array([1,2,3]) print(v) # Prints "[1 2 3]" print(v.T) # Prints "[1 2 3]"Numpy provides many more functions for manipulating arrays; you can see the full list in the documentation.
For example, suppose that we want to add a constant vector to each row of a matrix. We could do it like this:
import numpy as np # We will add the vector v to each row of the matrix x, # storing the result in the matrix y x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) v = np.array([1, 0, 1]) y = np.empty_like(x) # Create empty matrix with same shape as x # Add vector v to each row of matrix x with an explicit loop for i in range(4): y[i, :] = x[i, :] + v # Now y is the following # [[ 2 2 4] # [ 5 5 7] # [ 8 8 10] # [11 11 13]] print(y)This works; however when the matrix
x
is very large, computing an explicit loop in Python could be slow. Note that adding the vector v
to each row of the matrix x
is equivalent to forming a matrix vv
by stacking multiple copies of v
vertically, then performing elementwise summation of x
and vv
. We could implement this approach like this:
import numpy as np # We will add the vector v to each row of the matrix x, # storing the result in the matrix y x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) v = np.array([1,0,1]) vv = np.tile(v,(4,1)) # Stack 4 copies of v on top of each other print(vv) # Prints "[[1 0 1] # [1 0 1] # [1 0 1] # [1 0 1]]" y = x + vv # Add x and vv elementwise print(y) # Prints "[[ 2 2 4 # [ 5 5 7] # [ 8 8 10] # [11 11 13]]"Numpy broadcasting allows us to perform this computation without actually creating multiple copies of
v
. Consider this version, using broadcasting:
import numpy as np # We will add the vector v to each row of the matrix x, # storing the result in the matrix y x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) v = np.array([1, 0, 1]) y = x + v # Add v to each row of x using broadcasting print(y) # Prints "[[ 2 2 4] # [ 5 5 7] # [ 8 8 10] # [11 11 13]]"The line
y = x + v
works even though x
has shape (4, 3)
and v
has shape (3,)
due to broadcasting; this line works as if v
actually had shape (4, 3)
, where each row was a copy of v
, and the sum was performed elementwise.
Broadcasting two arrays together follows these rules:
Here are some applications of broadcasting:
# Another solution is to reshape w to be a column vector # of shape (2, 1); we can then broadcast it directly # against x to produce the same output. print(x + np.reshape(w, (2, 1))) # Multiply a matrix by a constant: x has shape (2, 3). # Numpy treats scalars as arrays of shape (); # these can be broadcast together to shape (2, 3), # producing the following array: # [[ 2 4 6] # [ 8 10 12]] print(x * 2)Broadcasting typically makes your code more concise and faster, so you should strive to use it where possible.