Ripple Down Rules

University of New South Wales Sydney, Australia the thing-in-itself noumenon phenomenon insight phenomenon

B. Lonergan "Insight" DTL 1959

Why is Knowledge Acquisition difficult?

- Experts can solve problems.
- They have usually difficulties to provide general rules of their problem solving.
- Experts provide justifications of their decisions, e.g. for a colleague.

Key ideas

- Automatic rule placement
- Expert identifies features that distinguish the case from:
 - A single past case
 - A selection of past cases
 - All seen cases
- Case by case development while in use

constant expert/user cost (?)

Show stored cases to the

expert one by one

Different types of RDR frameworks • Single Classification RDR (SCRDR) Rule 1: If true than If a,b than If h than If k,I than class0 class1 class2 class4 Rule 2: If e,f than If d than class3 class5 False/if-no Rule 3: Rule 7 If a.c than If z.v than class7 A case to be classified starts at the root (default) node and ripples its way down to a leaf node The conclusion returned by the knowledge base is the conclusion of the last satisfied rule in the path to a leaf node. (From "Incremental Knowledge Acquisition for Search Control Heuristics", by Ghassan Beydoun, PhD Thesis, UNSW, 2000)

Different types of RDR frameworks Nested RDR (NRDR): NRDR allows users to define (and if required re-define) new concepts using SCRDR trees, and build an RDR knowledge base using these concepts RDR for the concept: Accept/reject If true than If is_too_heavy If is_too_lean accept than reject than accept If true than If weight > 80 false than true RDR for the concept: is_too_lean If true than If height > 1.8 and weight < 80 than true False/if-not If body_fat < 7% than true

Commercial application

- PKS (Australia)
 - classification tasks
 - Pathology (medical diagnostic testing advice)
- HNK (Korea)
 - classification tasks
 - help desks & document management
- Etc .. Etc ..

Sample report

	Cholesterol	Triglyceride	HDL-C	LDL-C	Notes
range	<5.5	<2.0	>1.1	<3.4	
19.12.02	6.5*	0.8	1.3	4.8*	Zocor 20mg
20.02.03	7.3*	1.8	1.2	5.3*	Zocor 20mg

Raised cholesterol level persists on Zocor treatment. Consider increasing dose of Zocor and repeat lipid profile in 4 weeks. Note that hypothroidism may impair response to Zocor; suggest TSH level at time of next review

14

Study

- Very large private pathology practice
 - Labs across Australia and in Asia
- All activity logged by PKS
- 20 knowledge bases developed by the pathologists
- 7 presented here

Summary

• Cases interpreted 6,302,456

• Rules added 16,558

• Error (?) rate 0.2% (1.3%)

• Total time 353 hours

77 secs per rule

17

Different types of tasks for RDR

- RDRs for building CBR systems
- RDR for image classification

Different types of tasks for RDR

- NLP applications
 - directed web crawlers that search for specific information
 - interactive product recommendation systems for the WWW

Different types of tasks for RDR

- NLP applications
 - cue phrase based systems, such as citation classifiers, automatic summarisation
 - machine translation

RDR Scope

- Single Classification
- Preston, Srinivasan,
- Multiple Classification
- · Kang, Preston
- Configuration
- Preston, Ramadan
- Resource allocation
- Richards
- · Heuristic search
- Beydoun & Hoffman
- Document management
- Kang, Ho, Wobcke
- Information extraction
- Hoffman, Kang, Bao

MIB, HNK, Sricom, Tesco (Ivis), PKS

21

RDR Scope

- · Ontology development
- Cao, Martinez-Bejar
- planning
- Finlayson
- Translation
- Hoffman
- Workflow management
- Hofstade
- Image Processing
- Kerr, Misra
- GA training
- Beckman
- animation
- · Kadous, So

22

Comparison

- Non-incremental approaches
 - assume a perfect system is possible
 - Try to build it again and again
- Incremental approaches
 - Assume there will always be errors
 - Concentrate on fixing the errors
 - Fix error without altering the rest of the system

constant user/expert cost

23

Research problems to be solved:

- What is a suitable set of concepts for expressing justifications?
 - Those concepts have to provide a proper basis for generalisation
 - If unsuitable concepts are used, the KA process will take much longer and will result in much larger RDR trees.
- Future Reseach:
 - An RDR style approach to general Software Engineering