
Exploiting Join Cardinality for Faster Hash Joins

Michael Henderson
University of British Columbia

Okanagan

mikeh3@interchange.ubc.ca

Bryce Cutt
University of British Columbia

Okanagan

brycec@interchange.ubc.ca

Ramon Lawrence
University of British Columbia

Okanagan

ramon.lawrence@ubc.ca

ABSTRACT
Hash joins combine massive relations in data warehouses,
decision support systems, and scientific data stores. Faster
hash join performance significantly improves query through-
put, response time, and overall system performance. In this
work, we demonstrate how using join cardinality improves
hash join performance. The key contribution is the devel-
opment of an algorithm to determine join cardinality in an
arbitrary query plan. We implemented early hash join and
the join cardinality algorithm in PostgreSQL. Experimental
results demonstrate that early hash join has an immediate
response time that is an order of magnitude faster than the
existing hybrid hash join implementation. One-to-one joins
execute up to 50% faster and perform significantly fewer
I/Os, and one-to-many joins have similar or better perfor-
mance over all memory sizes.

Categories and Subject Descriptors
H.2.2 [Physical Design]: Access Methods; H.2.4 [Systems]:
Query Processing

Keywords
hybrid hash join, cardinality, response time, symmetric, Post-
greSQL

1. INTRODUCTION
Database sizes are growing, and the demand to process

ever larger data sets and queries is increasing. Applica-
tions such as data warehousing, decision support, and sci-
entific data analysis perform hash joins [3] with massive re-
lations. Improving hash join performance results in signifi-
cantly faster data analysis and processing.

Recently, “early” joins have been proposed that are capa-
ble of producing results before having read and partitioned
the entire build relation. Early join algorithms were devel-
oped primarily for network-based joins in distributed, grid,
and integration systems to compensate for network delays

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

and produce results faster. Despite the potential benefits,
these algorithms have not been implemented in a conven-
tional database management system.

We have implemented early hash join (EHJ) [8] in the
open source database system PostgreSQL. Besides the abil-
ity to generate results early, EHJ has the unique feature
that its join performance improves for one-to-one joins. To
exploit this feature, it is necessary to develop an algorithm
to determine the cardinality of a join in an arbitrary query
plan. To our knowledge, no production system uses join car-
dinalities during cost-based optimization. Experimental re-
sults show that EHJ outperforms PostgreSQL’s hybrid hash
join implementation in terms of response time, I/O opera-
tions, and overall time, especially for one-to-one joins.

The contributions of this paper are:

• An algorithm for determining join cardinalities in ar-
bitrary query plans.

• A modification of the PostgreSQL DBMS to support
early hash join, including new cost formulas for cost-
based optimization.

• Experimental results that show significant benefits of
using join cardinality detection with EHJ.

The organization of this paper is as follows. In Section
2, we briefly overview existing work on hash joins including
early hash join. Our algorithm for determining join cardinal-
ities is in Section 3. The necessary changes to PostgreSQL
are covered in Section 4. Experimental results in Section
5 demonstrate the performance improvements of detecting
join cardinalities and exploiting them using EHJ. Finally,
the paper closes with conclusions and future work.

2. PREVIOUS WORK
A join combines two relations into a single relation. We

will refer to the smaller relation as the build relation, and the
larger relation as the probe relation. A hash join first reads
the tuples of the build relation, hashes them on the join at-
tributes to determine a partition index, and then writes the
tuples to disk based on the partition index. It then repeats
the process for the probe relation. The partitioning is de-
signed such that each build partition is now small enough to
fit in a hash table in available memory. This hash table is
then probed with tuples from the matching probe partition.
Hybrid hash join (HHJ) [3] is the common hash join algo-
rithm implemented in most database systems. Hybrid hash
join selects one build partition to remain memory-resident

1549

before the join begins. Thus, any available memory beyond
what is needed for partitioning can be used to reduce the
number of I/O operations performed. Dynamic hash join
[4, 7] can adapt to memory changes by initially keeping all
build partitions in memory and then flushing on demand as
memory is required. Other optimizations [5] of hash join al-
gorithms such as bit vector filtering, role reversal, and skew
handling are orthogonal to this work.

Symmetric hash joins were proposed for network-based
joins in distributed and integration systems. Symmetric
hash join has a dual hash table structure that partitions
and buffers in memory tuples from both inputs. This allows
the algorithm to generate results faster and compensate for
network-induced delays in tuple arrival rates. The main-
memory version of symmetric hash join [6, 11] was extended
to handle relations larger than main memory in XJoin [10]
and early hash join (EHJ) [8]. We focus on EHJ since it
is the fastest algorithm and has the unique feature that its
performance differs based on join cardinality.

Early hash join uses the dual hash table structure that
allows a tuple to be processed from either input at any time.
When a tuple is processed, its join attributes are passed
through a hash function to determine a bucket index. Each
bucket index stores a linked list of tuples that hash to that
location. The arriving tuple first probes the bucket index in
the other side of the hash table to generate results. Then,
it is inserted in its side of the hash table. When memory is
required, a partition (a group of buckets), is chosen to be
flushed to disk. In EHJ, once a bucket of a partition has
been flushed to disk, it can no longer receive new tuples in
memory. Any tuples arriving to that partition are directly
flushed to disk. This has been referred to as being frozen.
During the cleanup phase of the join, partitions that were
flushed to disk are joined together to produce remaining
results. For this work, we ignore the background processing
feature of EHJ that is not relevant in a centralized system.

An early join algorithm must have a duplicate detection
strategy to guarantee that a join result cannot be generated
twice (once in the initial in-memory phase and later dur-
ing the cleanup phase). EHJ’s duplicate detection strategy
depends on the join cardinality. The join cardinality may
be one-to-one (1:1), one-to-many (1:N), or many-to-many
(M:N). In a one-to-many join (common with primary key
to foreign key joins), when a tuple in the many input finds
its only match in the one input, it can be discarded. A tu-
ple discard occurs when a tuple currently in the hash table
produces a join result and then is removed from the hash
table. An insert avoided occurs when the tuple was being
used as a probe tuple, generated a match, then is discarded
and never inserted in the hash table. In a one-to-one join,
when any tuple generates an output, it can be discarded.
Discarding tuples saves memory and gives the potential to
generate more results than hybrid hash join. In the many-
to-many case, timestamps are needed to track when tuples
arrived in order to avoid duplicate results.

PostgreSQL was chosen as the experimental database sys-
tem because its open source implementation closely follows
conventional practice. PostgreSQL has a heuristic and cost-
based optimizer, iterator-based query execution model, and
implementations of all joins including hybrid hash join. In
comparison, MySQL has a limited optimizer and no hash
join implementation. The hybrid hash join implementation
in PostgreSQL is almost identical to [3] and has a form of

dynamic partitioning to handle poor estimates. PostgreSQL
has no support for determining join cardinality. This is ex-
pected as hybrid hash join always functions the same re-
gardless of join cardinality.

3. DETERMINING JOIN CARDINALITIES
Our recursive algorithm for determining the cardinality of

a join in a query plan is in Figure 1. The join cardinality
algorithm relies on an algorithm (Figure 2) to determine the
candidate keys of a relation produced by an operator.

int getJoinCard(JoinOperator J)
// Returns 0 if 1:1, 1 if 1:N, 2 if N:1, 3 if M:N
{

Set JK1 = set of join attributes for build relation (input 1) (1)
Set JK2 = set of join attributes for probe relation (input 2) (2)
Set K1 = getCandidateKeys(J.getChild(1)); (3)
Set K2 = getCandidateKeys(J.getChild(2)); (4)
if (in(JK1,K1) and in(JK2,K2)) (5)

return 0; // 1:1 (one-to-one) (6)
if (in(JK1,K1)) (7)

return 1; // 1:N (one-to-many) (8)
if (in(JK2,K2)) (9)

return 2; // N:1 (many-to-one) (10)
return 3; // M:N (many-to-many) (11)

}

boolean in(Set target, Set keys)
// Returns true if the target set of attributes is a superset of any
// of the keys (sets of attributes) in the Set keys
{

for (all sets S in keys) (1)
if (target ⊇ S) (2)

return true; (3)
return false; (4)

}

Figure 1: Join Cardinality Algorithm

For example, consider four relations (primary keys under-
lined): A(a), B(b, a), C(c, b), and D(a, b, d). Two different
query plans are given in Figure 3. In these diagrams, the
join cardinality is displayed beside each join, and the candi-
date keys of each operator are also displayed. Since all joins
are equi-joins, only the common join attribute is displayed
under the join rather than the full join clause. For example,
the join of B and D in the first plan would have a join clause
of B.b = D.b but only the common attribute b is displayed.

In the first plan, the bottom join of B and D has cardinal-
ity 1:N because with the join clause B.b = D.b, only input
1 (B) has the join attributes as a superset of its candidate
key. The output relation candidate key is (a, b). The join
above with A is also 1:N for the same reason. Finally, the
join with C is M:N because the join attribute b is not a su-
perset of the candidate keys of either input relation. The
candidate key (a, c) of the top output relation is the result
of combining the candidate key of the first input, (c), with
the candidate key of the second input, (a, b), while remov-
ing the join attribute (b). This result can also be seen using
functional dependencies. In input 1, c → b and in input 2,
a, b → a, b, d. Combining the functional dependencies gives
a, b, c → a, b, c, d which simplifies to a, c → a, b, c, d as c → b.

In the second join plan, the join of B and D is on (a, b)
and is a 1:1 join. The join attributes are a superset of the
candidate key attributes of B, and the output candidate keys
are (b), (a, b). The join with C is N:1 as the join attribute b is
a superset of one of the keys in the probe relation. Finally,
the join with A is also N:1 as the join attribute a is the
candidate key of A.

1550

Set getCandidateKeys(Operator op)
// Returns a set of candidate (unique) keys in the output relation
// produced by Operator op
{

Set K1, K2; (1)
if (op.numChildren ≥ 1) (2)

K1 = getCandidateKeys(op.getChild(1)); (3)
if (op.numChildren == 2) (4)

K2 = getCandidateKeys(op.getChild(2)); (5)
if (op is a base relation scan on Relation R) (6)

return set of all unique indexes on R; (7)
if (op is a projection) (8)
{ (9)

Set P = project attributes in op (10)
return {k|k ∈ K1 and k ⊆ P}; (11)

} (12)
if (op is a duplicate elimination/grouping) (13)

return new Set of grouping attributes; (14)
if (op is a join with a non-equijoin condition) (15)

return ∅; (16)
if (op is join with only equi-join conditions) (17)
{ (18)

Set JK1 = set of join attributes for input 1 (19)
Set JK2 = set of join attributes for input 2 (20)
if (in(JK1,K1) and in(JK2,K2)) // 1:1 (21)

return K1 ∪ K2; (22)
if (in(JK1,K1)) // 1:N (23)

return K2; (24)
if (in(JK2,K2)) // N:1 (25)

return K1; (26)
if (K1 is null or K2 is null) (27)

return ∅; (28)
return {(k1 − JK1) ∪ (k2 − JK2)|k1 ∈ K1 (29)

and k2 ∈ K2}; (30)
} (31)
return K1; // Selection, other operators (31)

}

Figure 2: Candidate Key Determination Algorithm

The B and D join in query plan 2 demonstrates an is-
sue in the algorithm implementation. The candidate keys
of the output relation listed as (b), (a, b) are more precisely
(B.b), (D.a, D.b). With equality on the attributes, this ex-
pands to {(B.b), (D.b), (D.a, D.b), (D.a, B.b)} and then
condenses to {(B.b), (D.b)} as the last two are superkeys.
At the implementation level each candidate key is repre-
sented as a set of attribute indexes in the output relation.
For example, the last set would be represented as {(1), (4)}
(B.b is the first attribute in output relation, and D.b is the
fourth attribute).

1:1

B
(a,b)
D

b

a

(a)
A 1:N

(a,b)

1:N
(a,b)

b

(c)
C

M:N
(a,c)

a

D
(a,b)

a,b

B
(b)

C
(c)

b (a)
A

(b), (a,b)

(c)
N:1

N:1
(c)

Query Plan 1 Query Plan 2

(b)

Figure 3: Example Join Plans with Cardinalities

4. SYSTEM MODIFICATIONS
The modifications performed are in three categories: early

hash join implementation, changes to the query execution
system, and modification of the cost-based optimizer.

4.1 Early Hash Join Implementation
The early hash join algorithm [8] was provided by the

authors as a standalone Java implementation. PostgreSQL
is written in C, so the algorithm was ported from Java to
C. Some features not relevant to the project, such as the
background processing thread, were not ported. The major
challenge was that a production DBMS has specific APIs for
accessing the buffer, reading and writing from temporary
files, performing hashing, and allocating and deallocating
memory. This resulted in major changes from the origi-
nal Java code. Further, the dual hash table structure used
by early hash join was implemented from scratch using the
same APIs as used by PostgeSQL’s current hybrid hash join
table. These changes resulted in the creation of two files in
the backend/executor package nodeEarlyHashJoin.c (EHJ
algorithm) and dualHashTable.c (dual hash table struc-
ture). The new functions to determine join cardinality were
added to the file selfuncs.c. Similar to the existing HHJ
implementation, partition skew is handled by dynamic re-
partitioning if a partition becomes too large to fit in memory.

4.2 Query Execution
Another challenge was that early join algorithms are im-

plicitly “push” algorithms as they process tuples as they ar-
rive at either input. This implies that the inputs are produc-
ing tuples as a separate process or thread. An iterator-based
DBMS, such as PostgreSQL, is inherently “pull” based as
an operator requests a tuple from an input below it in the
tree and blocks until that tuple arrives. Although EHJ was
designed for a centralized system, its iterator implementa-
tion was based on the ability to dynamically change inputs
when an input was blocked, which is not possible without
major modifications to the query execution system.

The compromise implemented is that EHJ has the ability
to request tuples from either input, but is forced to block if
the iterator below takes time to produce that tuple. This
solution was chosen as there has been a conscious effort in
the PostgreSQL implementation to avoid creating multiple
threads and/or processes within a query execution. To avoid
random I/O costs, the EHJ implementation reads multiple
pages (e.g. 1000 tuples) at a time from one input before
switching to the other. EHJ uses the optimal alternating
reading strategy [9] until memory is full. For one-to-one
joins, EHJ continues alternating between inputs. For the
other joins, EHJ switches to reading all the build relation
first then the probe relation (like HHJ). The cost formulas
in Section 4.3 are based on these reading strategies.

4.3 Cost-based Optimizer
PostgreSQL has a sophisticated cost-based optimizer that

generates and evaluates alternative query plans and selects
the plan of lowest cost. The optimizer was modified to allow
it to cost plans consisting of early hash join operators in ad-
dition to nested loop, sort, and hybrid hash joins. We added
an environment variable that allows the user to dynamically
turn off EHJ similar to how current join algorithms can be
enabled or disabled as desired.

Although a cost function was provided for many-to-many

1551

joins for EHJ [8], this cost function does not accurately
model the cost of one-to-one and one-to-many joins. We
created cost functions to be consistent with the cost of hy-
brid hash join in PostgreSQL, which considers CPU time as
well as I/O cost. PostgreSQL computes both a startup cost
and overall cost. EHJ’s startup cost is considerably less than
HHJ’s since it does not need to partition the whole build re-
lation, hence it will be selected over HHJ if the overall costs
are the same. The overall cost for EHJ is higher than HHJ
for many-to-many joins, about the same for one-to-many
joins, and significantly lower for one-to-one joins.

Figure 4 shows simplified cost functions that only consider
the number of I/Os performed. |R| is the size of the build
relation R (in tuples). |S| is the size of the probe relation S.
M is the join memory size. f = M/|R| and is the fraction
of the build relation that can remain memory resident. σ
is the join selectivity. N is the number of tuples read in
total from both inputs before memory is full for the first
time. The many-to-many formula is derived from [8]. All
formulas do not include input reading costs and were verified
by simulations and experiments in PostgreSQL.

Join Cost Function
HHJ 2 ∗ (|R| + |S| − f ∗ |R| − σ ∗ M ∗ |S|)

EHJ 1:1

2 ∗ (|R| + |S| − f ∗ |R| − 2 ∗ gen)
gen = gen1 + gen2 + gen3
N = (1 − sqrt(1 − 2 ∗ σ ∗ M))/σ

gen1 = σ N2

4

gen2 = σ ∗ [M ∗ N
4

+ M ∗ (N
2

+ M)

+M ∗ (gen1 + gen2) ∗ (|R| − M)]
gen3 = σ ∗ M ∗ (|S| − |R|)

EHJ 1:N

2 ∗ (|R| + |S| − f ∗ |R| − gen)
gen = gen1 + gen2 + gen3
N = (1 − sqrt(1 − σ ∗ M))/(σ/2)

gen1 = σ N2

4

gen2 = σ(
M+ N

2
2

)(N
2

) − gen1

gen3 = σ ∗ M ∗ (|S| − N
2

)
EHJ M:N 2 ∗ (|R| + |S| − f ∗ |R| − σ ∗ M ∗ (|S| − 0.5M))

Figure 4: EHJ Cost Functions

Briefly, the standard HHJ cost function is two times the
size of the input relations minus the fraction (f) of the build
relation (R) that is memory-resident and the fraction of the
probe relation (S) that matches with the in-memory par-
tition of size M . The EHJ many-to-many cost is slightly
higher because the initial alternate reading results in half
of memory (0.5M) being filled with probe tuples that must
always be flushed to disk and thus do not have the potential
of being discarded when matching with the in-memory build
tuples. The EHJ one-to-many and one-to-one costs depend
on the number of tuples generated before the cleanup phase
as a generated tuple results in tuples being discarded and
not flushed to disk. One-to-one joins discard two tuples for
every one generated compared to one for one-to-many joins.

The total tuples generated (gen) are divided into three
parts: tuples generated before memory is full (gen1), tuples
generated until the build relation is completely read (gen2),
and tuples generated until the probe relation is completely
read (gen3). N used in gen1 is a quadratic function that
is derived from calculating the point when memory is full
considering discards: M = N

2
+ N

2
− σ ∗ N

2
∗ N

2
(one-to-

many version). For one-to-many joins, gen2 multiples how
many build tuples a probe tuple is expected to see before it

is flushed by the N
2

build tuples currently in the hash table.
gen3 is the matches found by comparing the remainder of
the probe relation not yet read with the complete fraction
of the build relation in memory.

For one-to-one joins, the situation is more complicated
because the algorithm alternates throughout and discards
can occur on the build relation as well. gen2 consists of three
terms. The first term is the expected tuples generated when
probing with R tuples. This tends to be a smaller value as
biased flushing will eventually flush all of S and only leave R
tuples in memory. The second term calculates for the first M
tuples of S, the average number of tuples of R matched with.
The third term estimates the effective number of tuples seen
by the next R − M tuples of S. gen3 estimates the results
produced by probing with the remainder of S.

5. EXPERIMENTAL RESULTS
The experiments were conducted on an Intel Core 2 Quad

Q6600 at 2.4GHz (4 core processor) with 8GB of RAM and a
7200 RPM HDD running 64-bit Debian Linux. PostgreSQL
version 8.3.1 was used, and the source code modified as de-
scribed. The data set was TPC-H benchmark [1] scale fac-
tor 1 GB (see Figure 5) generated using Microsoft’s TPC-H
generator [2], which supports generation of skewed data sets
with a Zipfian distribution. The results are for a skewed data
set with z=1, although the relative difference between the al-
gorithms is unaffected by skew (especially for 1:1 joins which
have no skew). Non-skewed data sets gave similar results.
All experiments are the average of five runs. In addition
to the default tuple ordering, relations were also randomly
permuted in some experiments to test different relation or-
derings.1 Experiments tested different join memory sizes
configured using the work mem parameter. The charts show
memory fractions (relative size of work mem/build rel size

(f in cost functions) as it is the relative size of the build re-
lation to memory that is important, not the absolute sizes.2

Relation Avg. Tuple Size #Tuples Relation Size
Customer 196 B 150,000 28 MB
Supplier 184 B 10,000 1.8 MB

Part 173 B 200,000 33 MB
Orders 147 B 1,500,000 210 MB

PartSupp 182 B 800,000 139 MB
LineItem 162 B 6,000,003 926 MB

Figure 5: TPC-H 1 GB Relation Sizes

5.1 Join Cardinality Algorithm
We verified the join cardinality algorithm by testing it

with the standard 22 TPC-H queries. These queries contain
complex subqueries, aggregation, ordering, and joins. The

1A randomly permuted relation is physically materialized
and appropriate indexes and keys are created.
2Note that a feature of the HHJ implementation is that it
can only have a number of partitions that is a power of 2.
Thus, memory percentages tested were 6.4, 12.8, 25.6, 51.2,
and 100% and also 40, 60 and 80%. For a memory fraction of
40%, PostgreSQL’s HHJ will allocate 4 partitions (1

0.4
= 2.5

rounded up to the nearest power of 2). This wastes the
extra memory (as only 1 partition is memory-resident) and
causes similar performance to the 25.6% case. This is visible
in the figures as periods of flat performance for HHJ. EHJ
does not suffer from this issue as it dynamically manages its
partitions based on the memory allocated.

1552

join cardinality algorithm successfully determined the join
cardinalities in all cases. All joins were either one-to-one or
one-to-many in these queries.

5.2 EHJ vs. HHJ Performance
The experiments tested the performance of EHJ versus

hybrid hash join (HHJ) and merge join (MJ). The one-to-one
join is a self-join of LineItem with itself on its primary key
(l ordernum, l linenumber). LineItem is sorted on these at-
tributes and EHJ performs the join in-memory for all mem-
ory sizes (see Figure 6) as it generates all tuples by alternate
reading the inputs. HHJ is considerably slower, and even
MJ is slower as Postgres forces a sort on the relations as its
sequential scan does not guarantee sorted output.3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

Ti
m

e
(s

ec
)

Memory Fraction (%)

HHJ
EHJ
MJ

Figure 6: Time for Lineitem Self Join

We created two randomly permuted versions of LineItem
and performed the self-join (see Figure 7). EHJ produces
the first 1000 results in 0.15 to 0.20 sec., compared with 6
to 10 sec. for HHJ and 40 to 60 sec. for MJ. EHJ has an
immediate response time whereas HHJ must partition the
build relation and MJ must sort both relations. Figure 8
shows the difference in I/Os between EHJ and HJ.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

Ti
m

e
(s

ec
)

Memory Fraction (%)

HHJ
EHJ
MJ

Figure 7: Time for LineItem Self Join (random)

3By forcing the optimizer to select index scans over the de-
fault sequential scans, merge join has similar performance
to EHJ as it does not sort the input relations.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

HHJ
EHJ

Figure 8: Join I/Os for Lineitem Self Join (random)

The one-to-many join tested is Orders and LineItem on
orderkey. EHJ is faster for both the default (sorted) order-
ing (Figure 9) and when randomizing LineItem (Figure 10).
EHJ produces the first 1000 results in 0.02 to 0.06 sec. com-
pared with 1.5 to 2 sec. for HHJ and 20 to 30 sec. for MJ.
EHJ is faster than HHJ as it performs fewer probes due to
its hash table organization.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Ti
m

e
(s

ec
)

Memory Fraction (%)

HHJ
EHJ
MJ

Figure 9: Time for Orders-LineItem Join

The many-to-many join was LineItem self-join on orderkey
(see Figure 11) with randomly permuted relations. EHJ has
a faster response time, but is now performing slightly more
I/Os than HHJ. Its overall time remains competitive.

For the TPC-H query set, EHJ is slightly faster than HHJ
for queries with one-to-many joins that are larger than main
memory. EHJ’s response time is noticeably faster for queries
without ordering and aggregation. The most dramatic effect
is for queries with 1:1 joins. Query number 18 (below) of
the standard 22 queries contains a 1:1 join between Orders
and LineItem aggregated on l orderkey.

SELECT c name, c custkey, o orderkey, o orderdate, o totalprice,
sum(l quantity) FROM customer, orders, lineitem
WHERE c custkey = o custkey and o orderkey = l orderkey and
o orderkey IN (SELECT l orderkey FROM lineitem

GROUP BY l orderkey HAVING sum(l quantity) > 50)
GROUP BY c name, c custkey, o orderkey, o orderdate, o totalprice
ORDER BY o totalprice desc, o orderdate

1553

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Ti
m

e
(s

ec
)

Memory Fraction (%)

HHJ
EHJ
MJ

Figure 10: Time for Orders-LineItem Join (random)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

Ti
m

e
(s

ec
)

Memory Fraction (%)

HHJ
EHJ

Figure 11: Time for LineItem M:N Join (random)

EHJ is 5 to 30% faster than HHJ (see Figure 12).4

In summary, EHJ has an immediate response time for
all join cardinalities that is an order of magnitude faster
than HHJ. One-to-one joins are considerably faster for all
memory sizes due to the ability to discard matching tuples
which reduces I/Os. EHJ has similar or better performance
for one-to-many joins. EHJ excels for relations that are
in sorted or near sorted order as it can exploit alternate
reading between inputs to generate more results in memory.
For many-to-many joins, the overhead of timestamps and
more I/Os result in marginally slower performance. How-
ever, many-to-many joins are very rare in practice.

6. CONCLUSIONS
This paper described the implementation of early hash

join in PostgreSQL. We developed a new join cardinality
algorithm and EHJ cost formulas in addition to implement-
ing the EHJ algorithm. EHJ is faster and more efficient
for one-to-one and one-to-many joins, and nicely integrates
into the cost-based optimizer. Detecting join cardinality has
other benefits in query optimization (such as for selectivity
and join size estimation) that can also be exploited. Future

4Absolute memory sizes are shown as memory fraction is
undefined for queries with multiple joins.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

%
 T

im
e

Im
pr

ov
em

en
t o

f E
H

J
vs

. H
H

J

Join Memory Size (work_mem) in MB

% EHJ faster than HHJ

Figure 12: Time for TPC-H Query 18

work includes submitting the code to the PostgreSQL com-
munity for potential inclusion into a future release. We are
also examining how the ability to read from any input may
allow EHJ to improve performance by pro-actively request-
ing pages that have been buffered by other queries.

7. REFERENCES
[1] TPC-H Benchmark. Technical report, Transaction

Processing Performance Council.

[2] S. Chaudhuri and V. Narasayya. TPC-D data
generation with skew. Technical report, Microsoft
Research, Available at:
ftp.research.microsoft.com/users/viveknar/tpcdskew.

[3] D. DeWitt, R. Katz, F. Olken, L. Shapiro,
M. Stonebraker, and D. Wood. Implementation
Techniques for Main Memory Database Systems. In
ACM SIGMOD, pages 1–8, 1984.

[4] D. DeWitt and J. Naughton. Dynamic Memory
Hybrid Hash Join. Technical report, University of
Wisconsin, 1995.

[5] G. Graefe. Five Performance Enhancements for
Hybrid Hash Join. Technical Report CU-CS-606-92,
University of Colorado at Boulder, 1992.

[6] W. Hong and M. Stonebraker. Optimization of
Parallel Query Execution Plans in XPRS. Distributed
and Parallel Databases, 1(1):9–32, 1993.

[7] M. Kitsuregawa, M. Nakayama, and M. Takagi. The
Effect of Bucket Size Tuning in the Dynamic Hybrid
GRACE Hash Join Method. In VLDB, pages 257–266,
1989.

[8] R. Lawrence. Early Hash Join: A Configurable
Algorithm for the Efficient and Early Production of
Join Results. In VLDB, pages 841–842, 2005.

[9] R. Lawrence, R. P. Russo, and N. D. Shyamalkumar.
The Effect of Reading Policy on Early Join Result
Production. Information Sciences, 177(19):3939–3956,
Oct. 2007.

[10] T. Urhan and M. Franklin. XJoin: A Reactively
Scheduled Pipelined Join Operator. IEEE Data
Engineering Bulletin, 23(2):7–18, 2000.

[11] A. N. Wilschut and P. M. G. Apers. Dataflow Query
Execution in a Parallel Main-Memory Environment.
In PDIS, pages 68–77, 1991.

1554

