
Inside the PostgreSQL Shared Buffer Cache

Greg Smith

Truviso

07/07/2008

Greg Smith Inside the PostgreSQL Shared Buffer Cache

About this presentation

I The master source for these slides is

http://www.westnet.com/∼gsmith/content/postgresql

I You can also find a machine-usable version of the source code
to the later internals sample queries there

I This presentation comes from research done while rewriting
the background writer for PostgreSQL 8.3

I There’s very little information about PostgreSQL buffer cache
internals available anywhere outside of the source code

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Database organization

I Databases are mainly a series of tables

I Each table gets a subdirectory

I In that directory are a number of files

I A single files holds up to 1GB of data (staying well below the
32-bit 2GB size limit)

I The file is treated as a series of 8K blocks

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Buffer cache organization

I shared buffers sets the size of the cache (internally, NBuffers)

I The buffer cache is a simple array of that size

I Each cache entry points to an 8KB block (sometimes called a
page) of data

I In many scanning cases the cache is as a circular buffer; when
NBuffers is reached things scanning the buffer cache start
over at 0

I Initially all the buffers in the cache are marked as free

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Entries in the cache

I Each buffer entry has a tag

I The tag says what file (and therefore table) this entry is
buffering and which block of that file it contains

I A series of flags show what state this block of data is in

I Pinned buffers are locked by a process and can’t be used for
anything else until that’s done.

I Dirty buffers have been modified since they were read from
disk

I There are several other flags and fields such as locks used for
internal purposes; you can ignore those.

I The usage count estimates how popular this page has been
recently

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Buffer Allocation

I When a process wants a buffer, it calls BufferAlloc with what
file/block it needs

I If the block is already in the cache, it gets pinned and then
returned

I Otherwise, a new buffer must be found to hold this data
I If there are no buffers free (there usually aren’t) BufferAlloc

selects a buffer to evict to make space for the new one
I If that page is dirty, it is written out to disk. This can cause

the backend trying to allocate that buffer to block as it waits
for that write I/O to complete.

I The block on disk is read into the page in memory
I Pages all start out pinned until the process that requested the

data releases (unpins) them.
I The pinning process, whether the buffer was found initialy or

it had to be read from disk, also increases the usage count of
the buffer. This is the only way that count increases.

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Basic Buffer Eviction Theory

I Deciding which entry should be removed from a cache to
allocate a new one is a classic computer science problem

I The usual first implementation people build is Least Recently
Used (LRU): always evict the buffer that has gone the longest
since it was last used for something.

I One implementation stores the timestamp when the page was
last used in order to determine the LRU bufer

I Another way keeps pages sorted in order of recent access

I Both of these “perfect LRU” approaches are complicated to
build

I A simple LRU has no memory, so a page that been accessed
many times in the past and then not for a while is
indistinguishable from one that was accessed once only at that
same time.

Greg Smith Inside the PostgreSQL Shared Buffer Cache

From LRU to Clock Sweep

I Sequential scans of things bigger than memory are an example
of a problem area for a pure LRU. Such a scan will replace
everything else in the cache with data that is only needed
once. These are very common in database applications.

I A design that doesn’t have this problem is “scan resistant“

I The simplest such design is a “second chance” algorithm,
where each time a page is referenced it is marked as
unsuitable for eviction. When page that is up for eviction, the
reference is cleared and it goes to the back of the list of
eviction candiates.

I A way to implement this is the “clock sweep”, where the
buffer cache is treated as a circular list. Each time the
eviction scanner gets to the end it starts back over at the
beginning again.

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Improving eviction with usage counts

I To further sort popular pages that should be kept in memory
from ones that are safer to evict, the usage count that’s
incremented by BufferAlloc is used

I The eviction “Strategy” continuously does a circular scan of
the buffer cache

I Any page that has a non-zero usage count is safe from eviction

I Pinned pages obviously can’t be evicted either

I When the Strategy considers a buffer, if it’s not evicted the
usage count is decreased

I The maximum usage count any buffer can get is set by
BM MAX USAGE COUNT, currently fixed at 5

I This means that a popular page that has reached
usage count=5 will survive 5 passes over the entire buffer
cache before it’s possible to evict it.

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Optimizations for problem areas

I Version 8.3 adds some ”buffer ring” features to lower buffers
used by activity like sequential scans and VACUUM.

I This re-uses a subset of the buffers continuously rather than
allocating and evicting the way everything else does

I If you are doing a VACUUM or a scan where the table is
larger than (shared buffers/4), you get a ring list to keep track
of requested buffers

I The ring size is normally 256K, as you request pages they get
added to the list of ones in the ring

I Once the ring is full and you circle around to a page that’s
already been used, if nobody else has used it since it was put
in there (usage count=0,1) that page is evicted and re-used
rather than allocating a new one

I If someone else is using the buffer, a new one is allocated
normally, replacing the original ring entry

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Monitoring buffer activity with pg stat bgwriter

I A new view in 8.3 allows tracking gross statistics about how
things move in and out of the buffer cache

I select * from pg stat bgwriter
I buffer alloc is the total number of calls to allocate a new

buffer for a page (whether or not it was already cached)
I buffers backend says how may buffer clients and other

backends had to write to fulfill those allocations, which can
cause a wait for I/O that disrupts them

I buffers clean tells you how many buffers the background
writer cleaned for you in advance of that

I maxwritten clean tells you if the background writer isn’t being
allowed to work hard enough

I buffers checkpoint gives a count of how many buffers the
checkpoint process had to write for you

I Comparing checkpoints timed and checkpoints req shows
whether you’ve set checkpoint segments usefully

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Interaction with the Operating System cache

I PostgreSQL is designed to rely heavily on the operating
system cache, because portable sotware like PostgreSQL can’t
know enough about the filesystem or disk layout to make
optimal decisions about how to read and write files

I The shared buffer cache is really duplicating what the
operating system is already doing: caching popular file blocks

I In many cases, you’ll find exactly the same blocks cached by
both the buffer cache and the OS page cache

I This makes is a bad idea to give PostgreSQL too much
memory to manage

I But you don’t want to give it too little because the OS is
probably using a simpler LRU scheme rather than a database
optimized clock-sweep approach

I Recent research suggests you can spy on the OS if it supports
the right APIs; see
http://www.kennygorman.com/wordpress/?p=250

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Recommended shared buffers sizing

I With a modern system where there’s typically 2GB or more of
total RAM, anecdotal testing suggests a dedicated database
server should get 1/4 to 1/3 of total RAM

I Smaller memory configurations need to be more careful about
considering overhead for the OS, database, and applications

I The remaining RAM after OS+database+applications should
be used for disk caching, and effective cache size should be
updated with a useful estimate of that amount

I Larger systems with more static, read-only applications might
utilize a higher percentage

I Reports on the point of diminishing returns where increasing
shared buffers further is ineffective in PostgreSQL 8.3 are
usually in the range of 2 to 10GB of dedicated RAM

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Exceptions to sizing rules

I Some applications might prefer having more work mem for
sorting instead

I Windows platforms do not perform well with large
shared buffers settings. The effective maximum size is
somewhere around 10,000-50,000 buffers even if you have
much more RAM than that available.

I This is why I recommended this talk was more appropriate for
UNIX-like platforms, you can’t really take full advantage of
the buffer cache on Windows

I Older PostgreSQL versions (before 8.1) did not use the current
clock-sweep algorithm. They also had locking issues that kept
managing large amounts of memory here problematic. Around
10,000 is as large as you want to go in 8.0 or earlier.

I 8.1 removed the single BufMgrLock that was another
bottleneck on having too much happen in shared buffers. In
8.2 that was further split into NUM BUFFER PARTITIONS

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Checkpoint considerations

I Systems doing heavy amounts of write activity can discover
checkpoints are a serious problem

I Checkpoint spikes can last several seconds and essentially
freeze the system.

I The potential size of these spikes go up as the memory in
shared buffers increases.

I There is a good solution for this in 8.3 called
checkpoint completion target, but in 8.2 and before it’s hard
to work around.

I Since only memory in shared buffers participates in the
checkpoint, if you reduce that and rely on the OS disk cache
instead, the checkpoint spikes will reduce as well.

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Increase or decrease shared buffers?

I Since there are different trade-offs in either direction, how can
you tell whether your current buffer cache is too small or too
big?

I You want to balance the space used by the smarter
clock-sweep algorithm against the larger OS cache, and
perhaps get some benefit from synergy between the two
different approaches

I Traditional approach is to look at system stats tables like
pg stat all tables, pg stat all index, pg statio all tables, etc.
to note hit percentages

I If you also collect data from inside the buffer cache, you can
improve estimation here by comparing the amount of a table
or index that is cached by the database with the size on disk

I Don’t forget that there’s normally nothing tracking what the
OS is caching for you

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Looking inside the buffer cache: pg buffercache

cd contrib/pg buffercache

make

make install

psql -d database -f pg buffercache.sql

I You can take a look into the shared buffer cache using the
pg buffercache module

I The 8.3 version includes the usage count information, earlier
versions did not. The patch to add usage count is
simple and applies easily to 8.2 and possibly earlier versions. See
http://archives.postgresql.org/pgsql-patches/2007-03/msg00555.php

I for the patch, apply before doing the above

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Limitations of pg buffercache

I While the cache is shared among the entire cluster, the
module gets installed into one database and can only decode
table names in that database

I The select that grabs this information takes many locks inside
the database and is very disruptive to activity

I As Murphy predicts, the time you’d most like to collect this
information (really busy periods) is also the worst time to run
this inspection

I While it can be helpful to collect this information regularly via
cron or pgagent, frequent snapshots will impact system load.

I Consider caching the information into a temporary table if
you’re doing more than one pass over it

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Simple pg buffercache queries: Top 10

SELECT c.relname,count(*) AS buffers

FROM pg class c INNER JOIN pg buffercache b

ON b.relfilenode=c.relfilenode INNER JOIN pg database d

ON (b.reldatabase=d.oid AND d.datname=current database())

GROUP BY c.relname

ORDER BY 2 DESC LIMIT 10;

I You must join against pg class to decode the file this buffer is
caching a block from

I Top 10 tables represented in the cache and how much
memory they have:

I Remember: we only have the information to decode tables in
the current database

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Sample internals output

I To show some samples, we start by using pgbench to generate
some simulated activity

I Running ’pgbench -S’ does a simple benchmark that runs
SELECT on an accounts table with an account number as its
primary and only key

I The ability to cache most of the index information on a
popular table is often the key to good database performance

I We size the database so it just barely fits in RAM, but not the
shared buffers cache

I The queries to generate these more complicated samples are
too large for these slides; see the web page referenced at the
beginning for their source code

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Creating a pgbench database and running a test - 2GB of
RAM in server

pgbench -i -s 100 pgbench

pg ctl stop ; pg ctl start

select pg size pretty(pg database size(’pgbench’));

1416 MB

select pg size pretty(pg relation size(’accounts’));

1240 MB

select pg size pretty(pg relation size(’accounts pkey’));

171 MB

show shared buffers

60000 (469MB)

pgbench -S -c 8 -t 10000 pgbench
Greg Smith Inside the PostgreSQL Shared Buffer Cache

Buffer contents summary

relname |buffered| buffers % | % of rel

accounts | 306 MB | 65.3 | 24.7

accounts pkey | 160 MB | 34.1 | 93.2

usagecount | count | isdirty

0 | 12423 | f

1 | 31318 | f

2 | 7936 | f

3 | 4113 | f

4 | 2333 | f

5 | 1877 | f

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Usage count summary and the background writer

select usagecount,count(*),isdirty from pg buffercache

group by isdirty,usagecount order by isdirty,usagecount;

I This gives you an idea the balance of popular pages versus
probably transient ones

I Useful for tuning the pre-8.3 background writer (if you’ve
applied the usage count patch)

I The LRU scan will only write pages with a usage count of 0,
this tells you if that will be effective

I If you have many pages that get dirty with a usage count of 4
or 5, tuning the all scan too aggressively will result in lots of
wasted I/O as the popular pages get written repeatedly

I High counts of dirty pages means the next checkpoint will be
a big one

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Usage count distribution

relname | buffers | usage

accounts | 10223 | 0

accounts | 25910 | 1

accounts | 2825 | 2

accounts | 214 | 3

accounts | 14 | 4

accounts pkey | 2173 | 0

accounts pkey | 5392 | 1

accounts pkey | 5086 | 2

accounts pkey | 3747 | 3

accounts pkey | 2296 | 4

accounts pkey | 1756 | 5

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Integrating usage counts into resizing: decreasing size

I The balance of popular (high usage count) versus transient
(low usage count) pages tells you a lot about whether your
cache is sized appropriately

I If most of your pages have low usage counts (0,1), but you’re
still getting good hit rates, you can probably decrease the size
of the buffer cache.

I Even the simplest operating system LRU algorithm is capable
of usefully caching in situations where there aren’t popular
pages to prioritize.

I A smaller buffer cache means shorter checkpoints and might
speed up allocations of new pages. Usage counts can’t get as
high if you’re constantly passing over the pages with the clock
sweep.

Greg Smith Inside the PostgreSQL Shared Buffer Cache

Integrating usage counts: increasing size

I If a high percentage of the pages have high usage count (4,5),
you likely aren’t caching as many popular pages as you should
and the buffer cache would benefit from being increased in
size.

I You need to carefully consider how many of those pages are
dirty though before doing that, as lots of dirty and popular
pages means big checkpoints (especially before 8.3)

I This situation is less clear than the low count case
I If the cache is too small, it will be hard for any usage counts

to grow large when all pages are constantly being passed over
by the clock sweep hand.

I Be sure to combine this with a look at the traditional stat hit
percentages

I It’s very useful if you can put together a benchmark
representative of your application to quantify whether an
increase helped.

Greg Smith Inside the PostgreSQL Shared Buffer Cache

