
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Information Systems

Information Systems 34 (2009) 493–510
0306-43

doi:10.1

� Cor

E-m

ramon.l
journal homepage: www.elsevier.com/locate/infosys
Using intrinsic data skew to improve hash join performance
Bryce Cutt, Ramon Lawrence �

Department of Computer Science, University of British Columbia, Okanagan, 3333 University Way Kelowna, British Columbia, Canada V1V 1V7
a r t i c l e i n f o

Article history:

Received 1 April 2008

Received in revised form

14 October 2008

Accepted 4 February 2009
Recommended by: O’Neil
improve the performance of hash join. In this paper, we present histojoin, a join
Keywords:

Hybrid hash join

Skew

Histogram

Partition

Distribution
79/$ - see front matter & 2009 Elsevier B.V. A

016/j.is.2009.02.003

responding author. Tel.: +1250 807 9390.

ail addresses: brycec@interchange.ubc.ca (B. C

awrence@ubc.ca (R. Lawrence).
a b s t r a c t

Hash join is used to join large, unordered relations and operates independently of the

data distributions of the join relations. Real-world data sets are not uniformly

distributed and often contain significant skew. Although partition skew has been

studied for hash joins, no prior work has examined how exploiting data skew can

algorithm that uses histograms to identify data skew and improve join performance.

Experimental results show that for skewed data sets histojoin performs significantly

fewer I/O operations and is faster by 10–60% than hybrid hash join.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Hash join is the standard join used in database systems
to process large join queries. Any performance improve-
ment for hash join is significant due to the cost and
prevalence of hash-based joins, especially in the large
queries present in data warehouses and decision-support
systems.

Hash join divides the two input relations into parti-
tions using a hash function. The smaller relation is called
the build relation and is partitioned first. The larger
relation is called the probe relation. Hash join does not
adapt its operation in response to skew in the join
relations. Real data sets often contain skew. Skew occurs
in data when certain values occur more frequently than
others. Many data sets follow the ‘‘80/20 rule’’ where a
small subset of the data items occur much more
frequently (e.g. top selling items, best customers, etc.).
Prior work has focused on how to maximize the
performance of hash join by using memory efficiently
ll rights reserved.

utt),
and avoiding the negative effects of skew. Hybrid hash
join (HHJ) [4] keeps one build partition in memory to
reduce the number of I/O operations performed. Dynamic
hash join (DHJ) [5,13] allocates more partitions than
needed to subdivide the relation in order to counter the
effects of skew. Build partitions are dynamically de-staged
as memory is required. Avoiding partition skew has also
been considered in distributed databases [7]. However,
there has been no work that detects data skew in the
probe relation in order to maximize the number of in-
memory results produced.

In this paper, we present a modification to hash join
that exploits data skew to improve hash join performance.
The basic idea is to buffer in memory the tuples of the
build relation whose join values occur most frequently in
the probe relation. Keeping tuples in memory that have a
higher probability of joining with other tuples reduces the
number of I/Os performed. Although the general approach
is straightforward, the complexity arises in handling
situations of memory overflow and dealing with inaccu-
rate estimates. The goal is to develop a stable algorithm
that on average outperforms DHJ for skewed data sets and
does not perform significantly worse when no skew is
present or when the skew is estimated incorrectly.

www.sciencedirect.com/science/journal/is
www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2009.02.003
mailto:brycec@interchange.ubc.ca
mailto:ramon.lawrence@ubc.ca

ARTICLE IN PRESS

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510494
Our algorithm implementation uses histograms to
detect skew in the input relations. Histograms [9] are
commonly produced by a database system for query
optimization and can be exploited at no cost by the join
algorithm. Our histojoin algorithm has better performance
than DHJ for skewed data.

The contributions of this paper are:
�
 An analysis of the advantage of exploiting data skew to
improve hash join performance.

�
 A modification of DHJ called histojoin that uses a

histogram to detect data skew and adapts its memory
allocation to maximize its performance.

�
 An experimental evaluation that demonstrates the

benefits of histojoin for TPC-H queries.

The organization of this paper is as follows. In Section 2,
we describe previous and related work. An overview of the
approach is in Section 3. Implementation details of
histojoin are in Section 4. In Section 5 is a discussion of
how to use histojoin in the presence of selections, queries
with multiple joins, and histogram inaccuracies. Experi-
mental results are in Section 6, and Section 7 has future
work and conclusions.

2. Previous work

Consider two relations RðAÞ and SðB;AÞ where attribute
A is the join attribute between R and S. The underlined
attributes are the primary key attributes of the relations.
Assume that the number of tuples of R, denoted as jRj, is
smaller than the number of tuples of S (i.e. jRjojSj).
Assume S:A is a foreign key to R:A.

HHJ [4] is a standard hash-based join algorithm in
database systems. HHJ works by partitioning the inputs
with a hash function on the join attribute(s). Tuples in
each relation will only join if they fall in the same
partition after hashing. HHJ uses any additional memory
beyond what is needed for partitioning to store one
partition in memory of the smaller (build) relation (R).
While the larger (probe) relation (S) is being partitioned,
any tuples that fall into the in-memory partition can be
immediately joined and output. Thus, there is an advan-
tage to keeping as much of the smaller relation in memory
as possible as this avoids writing to disk tuples of the
smaller relation and the matching tuples of the larger
relation. Hash join completes its execution in a cleanup
phase after the probe relation is partitioned. In the
cleanup phase, each build partition on disk is loaded into
a main memory hash table structure and probed with the
corresponding probe partition. This is repeated for all on-
disk partitions.

Most systems have no intelligent way of selecting
which partition remains memory-resident. PostgreSQL
simply selects the first partition. This assumption makes
sense if the data set is uniform. In that case, each tuple in
R is equally likely to join to tuples in S, so it does not
matter what tuples in R are left in memory. If the data are
skewed such that certain tuples in R join to many more
tuples in S than the average, it is preferable that those
tuples of R remain in memory.
DHJ [5,13] is similar to HHJ except that it allows the
partition sizes to vary during execution. Instead of picking
only one partition to remain memory resident before the
join begins, DHJ allows all partitions to be memory resident
initially and then flushes partitions as required when
memory is full. Although DHJ adapts to changing memory
conditions, there has been no research on determining
what is the best partition to flush to maximize perfor-
mance. Various approaches select the largest or smallest
partition, a random partition, or use a deterministic
ordering. No approach has considered using data distribu-
tions to determine the optimal partition to flush.

Skew can be classified [14] as either partition skew or
intrinsic data skew. Partition skew is when the partitioning
algorithm constructs partitions of non-equal size (often
due to intrinsic data skew but also due to the hash
function itself). Minimizing partition skew has been
considered for distributed databases [7] and DHJ [10,13].
Partition skew can be partially mitigated by using
many more partitions than required, as in DHJ, and by
producing histograms on the data when recursive parti-
tioning is required. Handling partition skew is orthogonal
to this work.

Intrinsic data skew is when data values are not
distributed uniformly. Intrinsic data skew may cause
partition skew for hash joins when the join attribute on
the build relation is not the key attribute. Data skew
causes values to occur with different frequencies in the
relations. In our example that joins R:A ¼ S:A (primary-to-
foreign key join), data skew may cause the distribution of
values of S:A (probe relation) to vary dramatically.

Histograms have been previously used during recursive
partitioning [8] to detect data skew and minimize partition
skew. However, no previous work has discussed using
existing histograms in the database system to estimate and
exploit skew during the first partitioning step.

Our histojoin algorithm is designed to use histograms
as currently implemented in the database system. The
algorithm does not assume any histogram method and
will work with any method. Commercial systems typically
implement equi-depth [12] or maxdiff (Microsoft SQL
server) histograms. An overview of histograms can be
found in [9]. The actual construction of the histograms is
orthogonal to this work.

In the paper, we will use the TPC-H database benchmark
standard as an example database. TPC-H is a decision-
support and data warehouse benchmark developed by the
Transaction Processing Performance Council (TPC). More
information about the TPC-H benchmark can be found at
[1]. The TPC-H schema diagram is in Fig. 1. The SF in the
diagram represents the scale factor of the relations. We will
use scale factors 1 and 10 which produce total database
sizes of approximately 1 and 10 GB, respectively. The
largest relation, LineItem, has just over 6 million records
for SF ¼ 1 and 60 million records for SF ¼ 10.
3. General approach

The general approach is to use the extra memory
available to the hash join to buffer the tuples that

ARTICLE IN PRESS

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

COMMENT

RETAILPRICE

PARTKEY

SUPPKEY

A VAILQT Y

SUPPLYCOST

COMMENT

SUPPKEY

NAME

A DDRESS

NATIONKEY

PHONE

A CCTBAL

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-
PRIORITY

SHIP-
PRIORITY

CLERK

COMMENT

CUSTKEY

NAME

A DDRESS

PHONE

A CCTBAL

MKTSEGMENT

COMMENT

PART (P_)
SF∗200,000

PARTSUPP (PS_)
SF∗800,000

LINEITEM (L_)
SF∗6,000,000

ORDERS (O_)
SF∗1,500,000

CUSTOMER (C_)
SF∗150,000

SUPPLIER (S_)
SF∗10,000

ORDERKEY

NATIONKEY

EXTENDEDPRICE

DISCOUNT

TAX

QUANTITY

NATIONKEY

NAME

REGIONKEY

NATION (N_)
25

COMMENT

REGIONKEY

NAME

COMMENT

REGION (R_)
5

Fig. 1. TPC-H schema from [1].

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510 495
participate in the most join results. Consider a primary-to-
foreign key join between RðAÞ and SðB;AÞ on A, where R is
the smaller relation and some subset of its tuples are
buffered in memory. Unlike HHJ that selects a random
subset of the tuples of R to buffer in memory, the tuples
buffered in memory will be chosen based on the values of
A that are the most frequently occurring in relation S.

For example, let R represent a Product table, and S

represent a LineItem table. Every company has certain
products that are more commonly sold than others. A
common product may be associated with thousands of
line items and a rare product only a handful. If a single
product tuple ordered thousands of times is kept in
memory when performing the join, every matching tuple
in LineItem does not need to be written to disk and re-read
during the cleanup phase.
Hash partitioning randomizes tuples in partitions. This
is desirable to minimize the effect of partition skew, but
data skew is also randomized. HHJ has no ability to detect
data skew in the probe relation or exploit it by intelligent
selection of in-memory partitions.

Our approach uses two levels of partitioning. The first
level performs range partitioning where ranges of values
of R:A are selected to be memory-resident. Tuples that do
not fall into the ranges are partitioned using a hash
function as usual. The data structures used are shown in
Fig. 2.

In Fig. 2 there are three in-memory partitions (a; b; c)
and 10 hash partitions numbered 0–9. For Level 1
partitions, each partition is defined by one or more join
attribute value ranges. For example, partition a consists of
values from 0 to 39 and 740 to 799. Ideally, these attribute

ARTICLE IN PRESS

Level 1

44

200

110

4799

9

8

7

6

5

4

3

2

1

0

(100−199)

(500−599)

c

b

(0−39,740−799)a

Level 2

Fig. 2. Two level partitioning.

g

f 5% 10% 20% 50% 80% 90% 100%

5% 0 100 300 900 1500 1700 1900

10% -100 0 200 800 1400 1600 1800

20% -300 -200 0 600 1200 1400 1600

50% -900 -800 -600 0 600 800 1000

80% -1500 -1400 -1200 -600 0 200 400

90% -1700 -1600 -1400 -800 -200 0 200

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510496
values are the most frequently occurring in S. The
maximum partition size is bounded by the memory size
available to the join. The Level 2 partitions are regular
hash partitions. If a tuple does not fall into any of the Level
1 partitions, it is placed in a Level 2 partition by hashing
the join attribute value. In general, there may be multiple
Level 1 memory-resident partitions each defined by
multiple ranges of values. The only constraints are that
each partition must fit in the available memory during a
cleanup phase at the end of the join, and the total memory
used by in-memory partitions is always below the
memory available.
Fig. 3. Absolute reduction in total I/Os of skew-aware partitioning versus

random partitioning for various values of f and g and jRj ¼ jSj ¼ 1000.

3.1. Theoretical performance analysis

In this section we provide the theoretical maximum
improvement of skew-aware partitioning using data
distributions versus random partitioning (HHJ). Let f

represent the fraction of the smaller relation (R) that is
memory resident: f ¼ M=jRj (approximately), where M is
the memory size. The number of tuple I/O operations
performed by HHJ is 2 � ð1� f Þ � ðjRj þ jSjÞ. The factor 2
represents the two I/Os performed for each non-memory-
resident tuple: one to flush to disk if not memory-resident
and then one to read again during the cleanup phase of
the join. Note that this does not count the cost to read the
tuple initially.

Let g represent the fraction of the larger relation (S)
that joins with the in-memory fraction f of R.
If the distribution of the join values in S is uniform, then
f ¼ g. Data skew allows g4f if memory-resident tuples
are chosen properly. The number of I/Os performed is
2 � ð1� f Þ � jRj þ 2 � ð1� gÞ � jSj. The absolute difference in
I/Os performed between histojoin and DHJ is 2 � ð1� f Þ �

ðjRj þ jSjÞ � ð2 � ð1� f Þ � jRj þ 2 � ð1� gÞ � jSjÞ which sim-
plifies to 2 � ðg � f Þ � jSj. The percentage difference in
I/Os is ððg � f Þ � jSjÞ=ðð1� f Þ � ðjRj þ jSjÞÞ.

The absolute difference in total I/Os performed given
selected values of f and g is given in Fig. 3. The percentage
difference in total I/Os performed is given in Fig. 4. The
absolute difference is directly proportional to the differ-
ence between f and g. The table shown is for a 1:1 ratio of
R and S where jRj ¼ jSj ¼ 1000. The difference between f
and g is bounded above by the intrinsic skew in the data
set and is limited by how we exploit that skew during
partitioning.

Properly exploiting data skew allows g4f , but if the in-
memory tuples are chosen poorly, it is possible for gof .
This is worse than the theoretical average of the uniform
case for HHJ. Tuples may be chosen improperly if the
statistics used for deciding which tuples to buffer in
memory are incorrect causing the algorithm to buffer
worse than average tuples.

As an example, consider the ‘‘80/20 rule’’ for this data
set. If we can keep 20% of tuples of R in memory (f ¼ 20%)
that join with 80% of the tuples in S (g ¼ 80%), then skew-
aware join will perform 68% fewer tuple I/Os than HHJ.
However, if the data had ‘‘80/20 skew’’, but the 20% of
tuples of R buffered in memory were the least frequently
occurring in S, then it may be possible for g ¼ 5%, result-
ing in skew-aware join performing 17% more I/Os than
hash join.
4. Histojoin algorithm

A low cost technique for performing skew-aware
partitioning is by using histograms. Histograms [9] are
used in all commercial databases for query optimization
and provide an approximation of the data distribution of

ARTICLE IN PRESS

100%

50%

0%

-50%

-100%

-150%

-200%

0

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

0
0.15

0.35
0.55

0.75
0.95

g

f

50%-100%

-50%-0%

-100%-50%

-150%-100%

-200%-150%

0%-50%

Fig. 4. Total I/Os percent difference.

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 25000 50000 75000 100000 125000 150000 175000 200000

Fr
eq

ue
nc

y

Partkey value

Fig. 5. Partkey histogram for LineItem relation TPC-H 1 GB Zipf distribution ðz ¼ 1Þ.

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510 497
an attribute. A histogram divides the domain into ranges
and calculates the frequency of the values in each range.
An example histogram produced by Microsoft SQL Server
2005 for the TPC-H relation LineItem on attribute partkey

is in Fig. 5.
The advantage of using histograms is that they are

readily available, calculated and maintained external to
the join algorithm, and require no modification to the
query optimizer or join algorithm to use. On examination
of the histogram, the query optimizer can determine if the
histojoin algorithm will be beneficial. An imprecise or out-
of-date histogram limits histojoin’s ability to exploit the
data skew.
4.1. Algorithm overview

The histojoin algorithm works by implementing a set
of privileged partitions in addition to the partitions DHJ
would normally use. These privileged partitions are the
last partitions to be flushed from memory to disk and are
arranged so that they are flushed in a specific order,

ARTICLE IN PRESS

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510498
whereas the non-privileged partitions are flushed in a
randomized order. The privileged partitions correspond to
the Level 1 partitions shown in Fig. 2.

The differences between histojoin and DHJ are isolated
in the hash table. Histojoin’s hash table is a two layered
table that is aware of which partitions are privileged, how
to determine if tuples fall in the privileged partitions, and
how to optimally flush the partitions by first randomly
flushing non-privileged partitions and then flushing the
privileged partitions in order of worst to best.

The key difference between histojoin and DHJ is that
histojoin attempts to isolate frequently occurring tuples in
the privileged partitions which are the last ones flushed.
DHJ spreads out frequently occurring tuples across all
partitions and provides no special handling for frequent
tuples.

A flowchart describing the histojoin algorithm is in
Fig. 6. The first step is to load the histogram and
determine which tuple value ranges are in the privileged
partitions. At this point, if insufficient skew is detected or
there is limited confidence in the histogram, a decision is
made on the maximum size of the privileged partitions. If
no skew is detected, histojoin will allocate no memory to
the privileged partitions, and the algorithm behaves
identically to DHJ. Determining the privileged partitions
is discussed in Section 4.2.

Given sufficient detected skew, the privileged partition
ranges are organized into efficient data structures to allow
rapid determination of privileged tuples. Each build and
probe tuple requires a range check to determine if they
belong in a privileged partition. The range check operation
is discussed in Section 4.3.

Histojoin processes the join in a similar manner
to DHJ. Tuples are read from the build relation. When a
PARTITION BUILD RELATION

Start

Load Histogram and Select Privileged Ranges

Build Tuples Left?

Is Tuple Privileged?

Yes

Create ChainHash Tables For

No

Insert Into Privileged Partitions

Yes

Insert Into Non-Privileged Partitions

No

Memory Used < Memory Available ?

Yes

Freeze Next Partition

No

Probe T

Tuple Matches To

Output Result Tuple

Yes

Write Tuple

Fig. 6. Histojoin
tuple is read, the range check is performed. If the tuple
falls into a privileged partition, it is placed there.
Otherwise, the tuple’s partition is determined using a
hash function similar to DHJ. Whenever memory
is full while the build relation is being read, a partition
flush is performed. Non-privileged partitions are flushed
first. If all non-privileged partitions are flushed, the
privileged partitions are flushed in reverse order of
benefit. When flushing the non-privileged partitions, we
flush in random order. Once a partition is flushed,
a single disk buffer is allocated to the partition to make
writing tuples to the disk file more efficient. A flushed
partition cannot receive any new tuples in memory.
This has been referred to as a frozen [5,11] partition in
previous work.

Once the build relation is completely read, there will
be some build partitions in memory and others in disk
files. Partitions that are memory-resident have main
memory (chained) hash tables constructed to store their
tuples. These hash tables will be probed using tuples from
the probe relation.

The probe relation tuples are then read. The range
check is performed on each tuple. If the tuple corresponds
to an in-memory build partition (privileged or not), it
probes the chained hash table for that partition to
potentially generate results. If the corresponding build
partition is not in memory, the probe tuple is written to
the probe partition file on disk. Once all probe relation
tuples are read, there will be pairs of build and probe
partitions on-disk. Main memory is cleared, and each
partition pair is read from disk and processed. Typically,
the build relation partition is read, a chained hash table
produced, and then results are generated by probing using
probe relation tuples. However, common practices like
PARTITION PROBE RELATION

In-Memory Partitions

uples Left?

 In-Memory Partition?

Yes

Frozen Partitions Left?

No

To On-Disk Partition File

No

Load Frozen Partition Into Memory And Create ChainHash Table

Yes

End

No

Probe Partition Using On-Disk Probe Tuples

flowchart.

ARTICLE IN PRESS

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510 499
processing multiple partitions at the same time during
this cleanup phase and role reversal can be applied.

In summary, histojoin behaves like DHJ except that its
hash table structure allows for the identification and
prioritization of frequently occurring tuples in the probe
relation. The differences between DHJ and histojoin are
embedded in the distribution of tuples between the two
layers of the hash table and the order in which partitions
are frozen to disk to free up memory. All other hash join
techniques including bit vector filters, role reversal, etc.
are unaffected by these modifications.

4.2. Selecting in-memory tuples

Given a histogram that demonstrates skew, histojoin
must determine a set of join attribute range(s) that
constitute the most frequently occurring values in S.
Tuples of R with these frequently occurring values are the
ones in the privileged partitions. For instance in Fig. 5
there are several ranges of part keys that occur frequently
in LineItem. The challenge is that the join partition size is
determined independently from histogram partitioning.
For example, let jRj ¼ 1000 and M ¼ 100. Thus, at least 10
partitions of R are required. The in-memory partition can
have 100 tuples. It may require multiple independent
ranges in the histogram to define a set of attribute ranges
that contain up to 100 distinct values of R and have high
frequency in S.

Our greedy algorithm reads the histogram for S on the
join attribute, sorts its buckets by frequency, and selects
as many buckets that fit into memory in the order of
highest frequency first. The detailed steps are:
�
 Assume each histogram bucket entry is a 6-tuple of the
form (MINVAL, MAXVAL, ROWCOUNT, EQROWS, DISTINC-

T_ROWS, ROWS_R). MINVAL and MAXVAL are the lower
and upper (inclusive) values defining the bucket range.
ROWCOUNT is the number of rows in S with a value in
the range of ½MINVAL;MAXVALÞ. EQROWS is the number
of rows in S whose value is exactly equal to MAXVAL.
DISTINCT_ROWS is the distinct number of values in S in
the bucket range. ROWS_R is a derived value (not
present in the histogram) that is the estimate of the
number of rows in R that have a value in the histogram
bucket range. The estimation of ROWS_R is given in
Section 4.2.1.
MINVAL MAXVAL ROWCOUNT EQROW

1 100 300 5

101 200 300 10

201 350 150 100

351 500 200 40

501 750 244 6

751 1000 650 500

Fig. 7. Histogram parti
�

S

tion
A bucket frequency is calculated as

ðROWCOUNT þ EQROWSÞ=ROWS_R.
�
 Sort the buckets in decreasing order by frequency.

�
 The sorted list is traversed in order. Assume the

size of memory in tuples is M, and count is the number
of tuples currently in the in-memory partition. A
histogram bucket range is added to the in-memory
partition if

count þ ROWS_Ro ¼ M.
�
 The previous step is repeated until the histogram is
exhausted, there is no memory left to allocate, or the
current bucket does not fit entirely in memory.
Consider the histogram in Fig. 7, and a join memory size of
400 tuples. The first histogram bucket added has range
751–1000 (250 tuples) as its frequency is 4.6. The second
histogram bucket added has range 101–200 with fre-
quency 3.1. The remaining memory available can be
allocated in various ways: leave as overflow, find next
bucket that fits, or divide a bucket. With integer values, it
is possible to take the next best bucket and split the range.
In this case, the range from 1 to 100 can be divided into a
subrange of 1–50.

Not all histograms will separate out the frequency of a
boundary value (such as EQROWS) in that case the
frequency is calculated as ROWCOUNT=ROWS_R. When a
histogram does separate out the frequency of a boundary
value (such as with maxdiff histograms), these values can
be used as separate bucket ranges as they typically have
very high frequencies. These single, high-frequency values
are referred to as premium values. Premium values have a
high payoff as they occupy little memory (one tuple each)
and match with many rows in the probe relation.
Premium values tend to be good values to keep in
memory even when the accuracy in the histogram is
low, especially when they are significantly more common
than the average value.

Note in the example that value 350 occurs 100 times
even though on average the other values in the range of
201–349 only occur once. Tuple with key 350 should be
memory resident. Our algorithm creates separate one
value ranges for each separation value. When sorted, these
DISTINCT ROWS ROWS R FREQ

100 100 3.05

100 100 3.1

150 150 1.67

150 150 1.6

250 250 1

250 250 4.6

ing example.

ARTICLE IN PRESS

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510500
ranges may be selected independently of the rest of their
histogram bucket. For example, with a memory size of 400
tuples, our algorithm selects the following ranges: 1000,
350, 500, 200, 750, 100, 751–999, 101–199, and 1–46.
(The last range is a partial range of 1–100.) A tuple is in
the in-memory partition if it falls in one of these ranges.

4.2.1. Estimating cardinality of value ranges

A histogram estimates the number of distinct values
and number of tuples in a histogram bucket (DISTINC-

T_ROWS and ROWCOUNT, respectively). If the histogram is
on the probe relation S, then the histogram provides the
number of tuples in each bucket for relation S. However,
histojoin also requires an estimate of the number of tuples
in R that have a value in a histogram bucket. This estimate
is used to determine approximately how many histogram
buckets can be memory-resident for the build relation R.
This value is also used to determine the relative value of
each bucket. Histogram buckets with few rows in R and
numerous rows in S are prime candidates for privileged
partitions.

Given the number of distinct values in S,
DISTINCT_ROWS, the estimate of the number of rows in
R with values in that range, ROWS_R, is determined as
follows:
�
 For integer values, it is calculated using the bucket low
and high range values. That is, ROWS_R ¼ MAXVAL�

MINVALþ 1.

�
 For non-integer values, it is estimated as ROWS_R ¼

DISTINCT_ROWS.

There will be inaccuracy in estimating ROWS_R for non-
integer values. For one-to-many joins, ROWS_R will be
underestimated due to primary key values not appearing
in the foreign key relation. For many-to-many joins, it is
impossible to determine exactly how many rows in R will
have values in the range without having a histogram on R

as well. Some heuristics can be used based on the size of
relation R, but in general, the estimate may be imprecise.
Thus, it is critical that histojoin adapts its memory
management to flush even privileged partitions in case
of inaccurate estimates. This is discussed further in
Section 4.3.

4.3. Partitioning

Histojoin partitions tuples in two layers. The first layer
contains privileged partitions with join attribute ranges
that are defined as described in Section 4.2. A tuple is
placed in a privileged partition if its join attribute value
falls into one of the privileged partition ranges. This is
performed using a range check function. A range check is
performed for each tuple by comparing its join attribute
value with the ranges calculated in Section 4.2. In our
example, the ranges are 1000, 350, 500, 200, 750, 100,
751–999, 101–199, 1–46.

For efficiency, the range check is implemented in two
steps. The first step uses a hash table to record all ranges
of size one. Each hash table entry maps the join attribute
to a partition number. This step is used for very frequently
occurring values such as premium values. The size of this
hash table is very small, usually less than 200 entries, as
the number of premium values is limited based on the
number of histogram buckets. The second step processes
all ranges of size greater than one by storing them in a
sorted array. This sorted array is searched using a binary
search to detect if a value is in one of the ranges.

When a range check is performed the value is first
tested against the hash table. If it is in the hash table then
the mapped partition is returned. If not then a binary
search is performed on the sorted array, and if the correct
range is found the related partition is returned. If the
value is not found in either of these two structures then it
does not fall in a privileged partition, and the value is
hashed to find which non-privileged partition it belongs
in. For tuples with join values that do not fall into
privileged partition ranges, the tuples are placed in hash
partitions using a hash function. This hash partitioning
works exactly the same as in DHJ.

This hash table and search array method works for all
types and combinations of values. A further speed
optimization for integer values is to enter every value
that falls in a range into the hash table and not use the
binary search. This works for integer values because the
possible values in a range can be discretely enumerated.

5. Using histojoin

In this section, we discuss some of the issues in using
histojoin. These issues include handling different join
cardinalities, tolerating inaccuracy in histograms, and
supporting joins where the input relations are from
selection or other join operators.

5.1. Join cardinality

Although the previous examples considered primary-
to-foreign key joins, histojoin works for all join cardinal-
ities. Histojoin is useful when there is a histogram on the
join attribute of the probe relation, and the probe relation
has skew. If due to filtering the foreign key relation is the
smaller (build) relation, histojoin is not usable because
the probe (primary key) relation is uniform, and there is
no skew to exploit. However, it may be possible to reverse
the roles and still make the larger foreign key relation the
probe relation if there is skew to exploit that improves
performance.

Histojoin adds no benefit over DHJ for one-to-one joins
due to the uniform distribution of the probe relation. In
this case, histojoin behaves exactly as DHJ and allocates no
privileged partitions.

For many-to-many joins, histojoin only requires the
histogram on the probe relation. The algorithm behaves
exactly as in the one-to-many case, but execution of the
algorithm may result in flushing privileged partitions as
the size estimates of the privileged build partitions are
less accurate. For example, a histogram may indicate that
the values from 5 to 10 have high frequency in the probe
relation. Histojoin will estimate that there are six tuples in

ARTICLE IN PRESS

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510 501
the build relation in that range. However, there may be
multiple occurrences of each value such that there are
actually 30 tuples in the build relation with values in that
range. This may force histojoin to flush some privileged
partitions to compensate for the over-allocation of
memory. A histogram on the build relation may mitigate
some of these estimation concerns, but may be hard to
exploit as independently produced histograms may have
widely differing bucket ranges. Even when histojoin over-
allocates privileged partition ranges, dynamic flushing
based on frequency improves performance over DHJ while
avoiding memory overflows.

The join cardinality cases are enumerated in Fig. 8.
5.2. Histogram inaccuracies

In the ideal case, the join algorithm would know the
exact distribution of the probe relation and be able to
determine exactly the skew and the frequently occurring
values. Without pre-sampling the inputs, this requires a
pre-existing summary of the distribution as provided by
histograms. Histograms are not perfect because they
summarize the information, which results in lack of
precision. Also, the histogram may be inaccurate as it
may be constructed by only using a sample of the data or
was constructed before some modifications occurred on
the table.

Note that skew-aware partitioning, as implemented by
histojoin, can be used with a sampling approach as well as
with pre-defined histograms. The advantage of using
histograms is that there is no overhead during join
processing as compared to sampling. The disadvantage is
the accuracy of the distribution estimation may be lower.
Histograms are valuable because they require no pre-
processing for the join as they are pre-existing and are
kept reasonably up-to-date for other purposes by the
optimizer. We have experimented with non-random
sampling by examining the first few thousand tuples of
the probe relation before processing the build relation.
Although it is sometimes possible to determine very
frequent values using this approach, in general, most
relational operators produce a set of initial tuples that is
far from a random sample. True random sampling incurs
cost that is too high for the potential benefit.

There are two key histogram issues. First, the histo-
gram may not be a precise summary of a base relation
distribution due to issues in its construction and main-
tenance in the presence of updates. Second, if the join is
Type Larger Side Approach Sp

1-1 Either behave like DHJ No

1-M 1 behave like DHJ No

Ev

1-M M use probe histogram Sk

M-N M or N use probe histogram Sk

Fig. 8. Join cardin
performed on relations that are derived from other
relational operators (selection, other joins), then a
histogram on the base relation may poorly reflect the
distribution of the derived relation. Without an approach
to derive histograms through relational operators, we
must decide on our confidence in the histogram when
allocating memory in the operator.

Without rebuilding or sampling to improve the
accuracy of the histogram, which in general would
increase the cost of the join operator, our approach
assigns a confidence value to the histogram. The confidence
value reflects the confidence in the accuracy of the
histogram in relation to the data it is designed to
represent. Histograms derived after selections have
lower confidence than those recently built on the base
relation.

The confidence value is used to determine how many
privileged partitions are used. With a high confidence
value, privileged partition ranges are defined such that
almost all of the memory is allocated to the privileged
partitions, as we are reasonably certain that the best
tuples in the histogram are actually the best tuples in the
relation. For a low confidence value, only the absolute best
values as determined by the histogram are used as the
range partitions. The result is that we can control our
benefit or penalty as compared to DHJ based on the
confidence of the estimates. This improves the stability,
robustness, and overall performance of the algorithm.

For example, consider M ¼ 1000 (1000 tuples can fit
into memory). Let the join attribute value range be
1–2000. With a high confidence histogram, the algorithm
would define privileged partition ranges to occupy all
1000 tuples of memory available. For instance, it may
allocate four ranges 100–199, 300–599, 1000–1199, and
1500–1899 that would correspond to 1000 tuples in the
build relation. With a low confidence histogram, the
algorithm only allocates the very best ranges, which may
result in only two ranges such as 100–199 and 1000–1199
(300 total tuples). Our algorithm determines the ranges to
allocate based on the frequency of occurrence and the
confidence value. With the low confidence histogram, the
range 100–199 must have been significantly more com-
mon than average. The number of privileged partitions is
reduced with a low confidence histogram to reduce the
penalty of error. For instance, the range of values 100–199
may turn out to be very infrequently occurring in the
probe relation. Buffering build tuples in the range
100–199 then would produce fewer results than buffering
random tuples.
ecial Notes

skew in relations.

skew in probe.

aluate role reversal if skew on many-side.

ew can be exploited.

ew can be exploited.

ality cases.

ARTICLE IN PRESS

Fig. 9. Example multiple join plans. (a) Part Supplier LineItem; (b)

Customer Order LineItem.

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510502
There are multiple possibilities for determining how
many tuples to put in the privileged partition based on the
histogram confidence level. One approach is to select
ranges whose frequencies are one or more standard
deviations better than the mean frequency of all ranges.
The amount that the ranges must be better than the mean
is increased for lower confidence histograms. A high
confidence histogram will fill up memory with histogram
buckets that are above the mean. A low confidence
histogram will only accept buckets that are multiple
standard deviations better than the mean.

The approach chosen to measure the quality of the
histogram depends on the database system and its
optimizer. Our two experimental implementations (see
Section 6) use different approaches to selecting ranges
based on the confidence level. The stand-alone Java
implementation that only performs the joins and does
not have an optimizer operates in two modes. Histograms
on base relations with or without a selection operator are
considered high confidence and all privileged ranges
better than the average are selected. A low confidence
histogram is when a base relation histogram is used to
estimate the distribution of a relation produced by an
intermediate join operator. In this case, only single
premium values are used and no ranges. The PostgreSQL
implementation exploits PostgreSQL’s statistics that cap-
ture the most common values (MCVs) of an attribute. All
MCVs are kept regardless of the histogram confidence and
the equi-depth histogram is not used to select ranges. This
is an effective approach as the penalty for being incorrect
with MCVs is minimal, the payoff is potentially very
high, and there is a high probability that MCVs of a base
relation remain MCVs in derived relations. More details
are in Section 6.

There are two potential ‘‘costs’’ in using this approach.
The first is a lost opportunity cost that occurs when due to
low confidence in the histogram we do not select ranges
with frequently occurring values as privileged partitions.
In this case, the performance of the algorithm could have
been improved had it been more aggressive on selecting
privileged partition ranges. However, the performance
would be no worse than DHJ as any tuples that are not
privileged get flushed randomly as in DHJ. The second
cost, inaccuracy cost, is much more important. Inaccuracy
cost occurs when a value range is selected as privileged
and turns out to be less frequently occurring than average.
For example, if the 100 build tuple values in the range
100–199 map to two tuples on average in the probe
relation, and the average build tuple maps to three tuples
on average, then skew-aware partitioning will have worse
average performance than DHJ. For low confidence
histograms, it is better to be conservative in selecting
privileged ranges, as there is a penalty for being too
aggressive. By selecting no privileged ranges, histojoin
behaves exactly as DHJ.

5.2.1. Handling selections

The discussion so far has considered joins where both
inputs are base relations. It is common that a selection is
performed before a join. A selection on the probe relation
may change the distribution of join values and result in
lower confidence in the histogram. The confidence can be
changed based on the attribute correlation. If the selection
attributes are highly correlated with the join attribute,
then the histogram will most likely be very inaccurate. If
there is low correlation, then the histogram is more usable
and the uniform assumption can be applied. For example,
the uniform assumption assumes that if a selection
reduces the cardinality of the entire relation by 90%, then
the cardinality of each histogram bucket is also reduced
by 90%. If present, multi-dimensional histograms on both
the selection and join attributes may be used to estimate
the distribution after selection. It is also possible to use
SITs (Statistics on Intermediate Tables) [2] to more
accurately estimate the distribution.

Selections on the build relation are less problematic. A
selection on the build relation may affect the number of
build tuples in a privileged partition range. For instance, if
the algorithm determines that the range 100–199 is
valuable, it expects 100 unique values in the build
relation. However, a selection may cause the actual
number of build tuples to be 50. This is another example
of a lost opportunity cost because given this knowledge,
the algorithm may have been able to select more
privileged partitions (since memory is available) or select
different ones because the value of the partition range
may be lowered since not all of its build tuples participate
in the join. Note that since we do not allocate a static
amount of memory to privileged partitions, the extra
memory for the 50 tuples is available for other partitions
(most likely non-privileged hash partitions) to use. The
algorithm will still outperform DHJ if the build tuples
actually in the privileged partition range join with more
probe tuples than the average build tuple.
5.2.2. Multiple join plans

When a query consists of multiple joins, histojoin can
be used with each join as long as a histogram is available
or can be estimated for the probe relations. Histojoin can
be used for star joins which are very common in data
warehouses.

For example, consider a star join of the tables Part,
Supplier, and LineItem as shown in Fig. 9a. With histograms
on LineItem.partkey and LineItem.suppkey and no selection
operations, histojoin will have high confidence histograms
for both joins. The bottom join of LineItem and Supplier

will use the histogram on LineItem.suppkey. The second
join will use the histogram on LineItem.partkey which will
accurately reflect the distribution of LineItem.partkey in

ARTICLE IN PRESS

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510 503
the intermediate join result LineItem–Supplier as the
intermediate result was produced using a primary-to-
foreign key join. In general, star joins with no selections
and histograms on all join attributes of the fact table are
accurately estimated and result in large performance
improvements for skewed data.

In contrast, consider a join of the tables Customer,
Orders, and LineItem as shown in Fig. 9b. The join of
LineItem and Orders can exploit the histogram on Line-

Item.orderkey. However, the top join has no base histo-
gram that can model the distribution of custkey in the
intermediate relation LineItem-Orders. It is possible to
estimate the histogram from one on Orders.custkey,
but it would be a low confidence histogram. When
selections are added with joins, the confidence of the
histograms decreases, especially with selections on the
probe relations.
5.3. Query optimizer modifications

There are minimal query optimizer modifications
required to use histojoin. Histojoin can be used as a
drop-in replacement to hybrid or DHJ, or the concepts
used to modify an existing hash join implementation. If
histojoin is implemented separately from HHJ, then when
costing a potential join, histojoin will return a high, not-
applicable cost for joins where a histogram does not exist
or cannot be estimated for the probe relation. As a drop in
replacement for HHJ the cost for histojoin when it cannot
make use of histograms would be exactly equal to that of
HHJ. The cost of histojoin will be the same formula as
given in Section 3.1. In estimating the term g in the
formula from the histogram we first calculate which
histogram buckets will be in the privileged partitions. The
histogram tells us how many probe tuples are related to
each histogram bucket so using this we can estimate the
number of results we will get from the in memory build
tuples. In practice this can be done in one step as the
estimate of result tuples can be calculated while choosing
privileged build tuple ranges.

Given the list of privileged partitions, g is estimated by
summing up the FREQ � ROW_R or alternatively
ROWCOUNT þ EQ_ROWS (see Section 4.2) then dividing
by S. That is, g ¼ ð

P
ROWCOUNT þ EQ_ROWSÞ=jSj.

Using the example histogram given in Fig. 7, without
separating out the max values, the ranges in sorted order
are 751–1000 ðW ¼ 4:6Þ, 101–200 ðW ¼ 3:1Þ, 1–100
ðW ¼ 3:05Þ, 201–350 ðW ¼ 1:67Þ, 351–500 ðW ¼ 1:6Þ,
and 501–750 ðW ¼ 1Þ. In the example, the build relation
R has 1000 tuples, and the probe relation S has 2505
tuples. With 350 tuples of memory (f ¼ 35%) the first
two ranges 751–1000 and 101–200 would be selected
as privileged and E ¼ 250 � 4:6þ 100 � 3:1 ¼ 1460.
g ¼ E=jSj ¼ 1460=2505 ¼ 58%. Using the formulas in
Section 3.1 we expect DHJ to perform 4556 I/Os during
this join and histojoin to perform 3405 I/Os (25% less).

Using histojoin this way will allow a query optimizer to
only use the algorithm when histojoin indicates that it
will have a performance benefit (by exploiting the skew it
potentially sees). A major benefit is that no major changes
to the optimizer are required. The only issue is the DBMS
must make the histograms available to the histojoin
operator when costing and initializing.

Histojoin’s performance and applicability are increased
according to the database system support for statistics
collection. For instance, histojoin works best when
provided with a list of the most frequent values and their
frequencies. It is this list of values and their associated
tuples that must remain memory-resident. Some statistics
systems collect this data explicitly either separate from
the histogram (PostgreSQL’s MCVs) or as part of the
histogram (end-biased histograms). Note that histogram
bucket ranges are a less accurate approximation to the
most frequent value list.

The challenge of using histojoin on derived operators
(selections, joins, etc.) can also be mitigated by better
statistics collection. For example SITs [2] and statistics
collection on views allow the optimizer to have improved
distribution estimates for relations of intermediate op-
erators. Instead of base histograms and uniform assump-
tions, these approaches can provide histojoin with more
accurate data when deciding on privileged ranges/values.
Any technique to improve the histogram accuracy will
improve histojoin’s performance. In summary, histojoin
will always produce a correct result that is robust in
the case of poor estimates and optimal according to the
distribution estimate given. The more accurately the
histogram reflects the actual data distribution, the better
actual performance histojoin will have.
6. Experimental results

We present two separate experimental evaluations for
histojoin. The first evaluation is a stand-alone Java
application performing the joins. The second evaluation
is an implementation of the algorithm in PostgreSQL. The
histojoin algorithm was tested with the TPC-H data set.
We used the TPC-H generator produced by Microsoft
Research [3] to generate skewed TPC-H relations. Skewed
TPC-H relations have their attribute values generated
using a Zipf distribution, where the Zipf value ðzÞ controls
the degree of skew. The data sets we tested were of scale 1
and 10 GB and labeled as skewed ðz ¼ 1Þ and high skew
ðz ¼ 2Þ.
6.1. Stand-alone evaluation

The dynamic version [5] of HHJ [4] (DHJ) was
compared to histojoin. Both algorithms were implemen-
ted in Java and used the same data structures and hash
algorithms. The only difference between the implementa-
tions is that histojoin allocated its in-memory partitions
using a histogram and DHJ flushed partitions to free
memory without regard to the data distribution. DHJ
typically flushes partitions in a deterministic ordering, but
our implementation flushes randomly such that a more
accurate average case is found. For instance, a determi-
nistic ordering may always flush the exact worst partition
for a join first. A random ordering will flush the worst

ARTICLE IN PRESS

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510504
partition first with probability 1=P (where P is the number
of partitions).

The data files were loaded into Microsoft SQL Server
2005, and histograms were generated. The histograms
were exported to disk, and the data files converted to
binary form. Data files were loaded from one hard drive
and a second hard drive was used for temporary files
produced during partitioning. The experimental machine
was an Athlon 64 3700þ (2.2 GHz) with 1.5 GB RAM
running Windows XP Pro and Java 1.6. All results are the
average of 10 runs. These results use TPC-H scale 1 GB and
demonstrate the applicability of the algorithm in various
scenarios.
6.1.1. Primary-to-foreign key joins

The joins tested were LineItem–Part on partkey and
LineItem–Supplier on suppkey for z ¼ 1 and 2. Memory
fractions, f, were tested ranging from 10% to 100%.
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
Histojoin

Ti
m

e
(s

ec
)

Fig. 10. LineItem–Part join ðz ¼ 1Þ.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
Histojoin

Ti
m

e
(s

ec
)

Fig. 11. LineItem–Part join ðz ¼ 2Þ.
Histojoin performs approximately 20% fewer I/O
operations with the z ¼ 1 data set which results in it
being about 20% faster overall. This is a major improve-
ment for a standard operation like hash join. An
improvement occurs over all memory sizes until full
memory is available for both joins (Fig. 10).

For the z ¼ 2 data set, the performance difference is
even more dramatic. In the 10% memory case histojoin
performs 60% fewer I/Os resulting in 60% faster execution.
The results by total I/Os and by time are in Figs. 11a and b,
respectively.

DHJ is slower because random partitioning causes the
most important tuples to be distributed across all
partitions. Regardless what partitions are flushed
(or conversely what partition(s) remain in memory), hash
join is guaranteed to not keep in memory all of the most
beneficial tuples. Even worse, for highly skewed data sets,
it is very likely that it will evict the absolute best partition.
For instance, with 10% memory and 10 partitions, hash
 0

 50

 100

 150

 200

 250

0 20 40 60 80 100
Memory Fraction (%)

DHJ
Histojoin

(a) Total I/Os; (b) total time.

 0

 20

 40

 60

 80

 100

 120

0 20 40 60 80 100
Memory Fraction (%)

DHJ
Histojoin

(a) Total I/Os; (b) total time.

ARTICLE IN PRESS

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510 505
join has only a 10% probability of keeping the partition in
memory with the key value that is most frequently
occurring. The performance of DHJ is unpredictable for
skewed relations and is highly dependent on the partition
flushing policy. For highly skewed relations and low
memory percentages the likelihood of DHJ flushing the
best values is very high.

For the z ¼ 1 data set and LineItem–Supplier, histojoin
performs about 10–20% fewer total I/Os and executes
10–20% faster. For the z ¼ 2 data set, histojoin performs
between 20 and 60% fewer total I/Os and executes 20–60%
faster. A summary of the percentage total I/O savings of
histojoin versus DHJ for all joins is in Fig. 12.

Experiments with uniform data show that the perfor-
mance of histojoin and hash join is identical, as there are
no tuples that occur more frequently than any other, and
the performance is independent of the tuples buffered in
memory. For totally uniform data, histojoin selects no
privileged partitions. For mostly uniform data, such as
generated by the standard TPC-H generator, there are still
some join attribute ranges that are marginally better and
are used by histojoin to improve performance slightly.

6.1.2. Many-to-many joins

The many-to-many join tested combined a randomized
version of the Wisconsin relation [6] with a randomized
and Zipfian skewed ðz ¼ 1Þ version of the Wisconsin
relation on the tenPercent column. Both relations
contained 1,000,000 tuples. The tenPercent column
has a domain that is 10% the size of the relation. For
1,000,000 tuple relations, the domain of tenPercent is
100,000. Memory fractions, f, were tested ranging from
10% to 100%.

For this test, the build relation (randomized Wisconsin)
contains 1,000,000 tuples, and the tenPercent column
contains values in the range 0–99,999, each value being
shared by 10 tuples. The probe relation has a domain of
0–99,999 as well with a Zipfian distribution of the values.
In the generated Zipfian relation, the top two values occur
in 127,380 of the 1,000,000 tuples (12.7%) and 31,266 of
the 1,000,000 tuples (3.7%), respectively. Beyond the top
200 values, the average value occurs in approximately 5.7
of the 1,000,000 tuples. A histogram on the probe relation
 0

 10

 20

 30

 40

 50

 60

 70

0 20 40 60 80 100

%
 I/

O
 Im

pr
ov

em
en

t o
f H

is
to

jo
in

vs
. D

H
J

Memory Fraction (%)

LI-P Z1
LI-P Z2
LI-S Z1
LI-S Z2

Fig. 12. Percentage improvement in total I/Os of histojoin vs. hash join.
column is misleading because it shows an integer domain
of 100,000 tuples which underestimates the size of each
privileged relation partition by a factor of 10.

This underestimation causes histojoin to allocate too
much memory for privileged partitions because it thinks
the partitions contain far fewer tuples than they really do.
However, these privileged partitions are dynamically
flushed as required with no harm to the performance.
The Wisconsin results by total I/Os (includes cost of
reading each relation) for this join are in Fig. 13. For all
memory sizes, histojoin performs approximately 10%
fewer IO operations than DHJ.

6.1.3. Histogram inaccuracies

To demonstrate the effect of histogram inaccuracies on
join performance, a modified TPC-H LineItem relation was
created to show the worst case scenario for histojoin and
how the use of histogram confidence mitigates this
scenario. The new LineItem relation contains only every
10,000th partkey (1;10;000;20;000; . . . ;200;000) and
each of these values occurs as often as the others. A
histogram was created that indicates to histojoin that
these 10,000th values never occur in LineItem so that in all
cases except the 100% memory case histojoin will not
store any of the corresponding build tuples from the Part

relation in memory but will instead fill memory with
build tuples whose partkey values never occur within
LineItem.

Histojoin was compared to DHJ using the join Line-

Item–Part on partkey. Memory fractions, f, were tested
ranging from 10% to 100%. Histojoin executed the join
under two confidence levels. In the high confidence level,
it assumed the histogram was very accurate and fully
allocated privileged partitions to memory. In Fig. 14, this
corresponds to the HJ Bad histogram plot. Histojoin does
considerably worse than DHJ by trusting a totally wrong
histogram. In comparison, when executed under a low
confidence level, histojoin only selects premium values
from the histogram (in the diagram as HJ Bad Premium
Values). Since the histogram is completely inaccurate, the
premium values give no performance improvement, but
also result in little cost compared to DHJ due to the
minimal amount of memory occupied. If the histogram is
 0

 1000

 2000

 3000

 4000

 5000

 6000

0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
Histojoin

Fig. 13. Total I/Os for Wisconsin M–N Join ðz ¼ 1Þ.

ARTICLE IN PRESS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
Histojoin

Fig. 15. Total I/Os for LineItem–Supplier join on string key ðz ¼ 1Þ.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
HJ Bad Histogram

HJ Bad Premium Values
HJ 10% Good Premium Values

Fig. 14. Total I/Os for LineItem–Part join with histogram inaccuracies.

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510506
only 10% correct (10% of the premium values are good),
histojoin in low confidence mode outperforms DHJ. In
summary, executing histojoin in low confidence mode has
little risk and considerable reward if the histogram is even
marginally accurate.

6.1.4. Joins on string keys

With string keys histojoin is less accurate in predicting
the size of build partition ranges for privileged partitions.
To test joining on string keys, versions of the LineItem and
Supplier relations were generated with the suppkey

replaced by randomly generated strings. Once again
memory fractions, f, were tested ranging from 10% to
100%. Much like the join of LineItem–Part on partkey

using integer keys histojoin performs around 20% fewer
Total I/Os than DHJ for the z ¼ 1 data set. The results are in
Fig. 15.

6.1.5. Multi-way joins

As described in Section 5.2.2, histojoin can be used on
multi-way star joins when a histogram exists on the join
attributes of the fact relation. A star join of the tables Part,
Supplier, and LineItem as shown in Fig. 9a falls into this
category.

If the memory for the entire query is split evenly
between the two joins then for a memory percentage
above 10% the first join of LineItem–Supplier would be
done completely in memory as Supplier is quite small in
comparison to Part. For this reason histojoin was com-
pared to DHJ using memory fractions ranging from 3% to
10%. The total I/Os for the entire join using a z ¼ 1 data set
are shown in Fig. 16a. For all memory sizes histojoin
performs about 20% fewer I/Os than DHJ. For memory
sizes above 10%, histojoin is faster than DHJ but only one
join requires disk I/Os. Results for the z ¼ 2 data set are
shown in Fig. 16b. Due to the high skew, histojoin
dramatically improves on the performance of DHJ.

6.2. PostgreSQL implementation

Histojoin was implemented in PostgreSQL 8.4 to test its
performance for large-scale data sets in a production
system. PostgreSQL implements HHJ. Its HHJ implementa-
tion requires that the number of partitions be a power of
two, and it always keeps the first partition in memory.
Thus, our experimental data only collect data for memory
fractions: 3.1% ð 1

32Þ, 6.2% ð 1
16Þ, 12.5% ð18Þ, 25% ð14Þ, 50% ð12Þ,

and 100%.
PostgreSQL collects statistics on its tables. Statistics on

an attribute of a table include the MCVs and an equi-depth
histogram. The user is able to control on a per table basis
the number of MCVs. The user can also initiate statistics
re-calculations. The query optimizer has access to the
histograms and a list of MCVs that are automatically
generated for foreign key columns.

Histojoin was added to the PostgreSQL HHJ implemen-
tation. Using environment flags that PostgreSQL uses to
control which joins are available, histojoin can be turned
on and off from the standard HHJ implementation. Thus,
we altered the existing HHJ implementation instead of
implementing two hash join algorithms for the optimizer
to choose between.

Histojoin requires the ability to use the existing
statistics which were available in the planner. Our code
used the join attributes of the probe relation to find
statistics for that attribute. If no statistics were available,
histojoin would not be used. If statistics are available, we
only used the MCVs (not the histogram) as the MCVs are
more precise. However, this means that the privileged
partitions did not occupy very much of the memory
available for build relation tuples. The MCVs were
determined and allocated into an in-memory hash table
when the join operator was initialized. The default
number of MCVs is 10, so the size of the hash table is
small (less than 1–4K). Our hash table size is at least
four times the size of the number of MCVs (load factor is
less than 25%) and collisions are resolved using open
addressing.

During the partitioning of the build relation, a build
tuple’s join attributes are hashed according to the small
MCV hash table to determine if its value is one of the
MCVs. If it is, then the tuple is put into the hash table,
otherwise it is processed using the regular hash function
as usual. While partitioning the probe relation, a probe

ARTICLE IN PRESS

 0

 5000

 10000

 15000

 20000

 25000

 30000

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
Histojoin

 0

 5000

 10000

 15000

 20000

 25000

 30000

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
Histojoin

Fig. 16. Total I/Os for LineItem–Supplier–Part join. (a) z ¼ 1; (b) z ¼ 2.

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510 507
tuple’s join attribute is hashed and a lookup performed in
the MCV table. If there is a match, the tuple is joined
immediately, otherwise it proceeds through the hash join
as normal. In effect, the MCV lookup table is a small mini-
hash table for the most frequent values. Its size and cost
would be less than or comparable to bit vector filtering.

The equi-depth histograms are not used as it is
preferable to increase the number of MCVs rather than
allocate ranges from the histogram. The experiments all
use the default of 10 MCVs unless otherwise specified.
Results are improved when MCVs are set to 100 or more.

The experimental machine for the PostgreSQL imple-
mentation was an Intel Core 2 Quad Q6600 (2.4 GHz) with
8 GB RAM running 64bit Debian Linux with a 2.6.25-2-
amd6 kernel. These results use TPC-H scale 10 GB. Note
that even for machines with large main memories, a join
operator is allocated only a small fraction of the memory
available as it must compete with other operators and
other queries for system resources. The default join
memory size for PostgreSQL is 1 MB. The experiments
alter that memory size to produce the desired memory
fraction based on the build table size.

There are a couple of differences from the Java
experiments that should be noted. First, the execution
times more accurately reflect the number of I/Os
performed. This is due to increased stability and perfor-
mance of PostgreSQL on Linux versus a Java implementa-
tion on Windows. The Java I/O counts are exact, but the
execution times are more variable. There is less I/O
performance improvement for the PostgreSQL implemen-
tation compared to the Java implementation because the
PostgreSQL implementation only has very small privileged
partitions (just the MCVs) where the Java implementation
uses all available memory for privileged partitions by
filling them with valuable histogram bucket ranges.

6.2.1. Primary-to-foreign key joins

The LineItem–Part results by total I/Os (includes cost of
reading each relation) and by time for the z ¼ 1 data set
are in Figs. 17a and b, respectively. Histojoin is around 10%
faster and performs 10% less I/Os than HHJ. With the z ¼ 2
data set, histojoin performs approximately 50% faster
(Figs. 18a and b). The percentage improvement of histojoin
is shown in Fig. 19. Note that the sudden improvement of
HHJ for the z ¼ 2 50% memory case is because HHJ
manages to get the best tuples from the build partition in
its in-memory partition by chance.

6.2.2. Multi-way joins

When performing a star join of the tables Part, Supplier,
and LineItem any memory size above 10% of the size of the
Part table will run the smaller join of LineItem and Supplier

completely in memory. This multi-way join was tested
with memory fractions (sizes) of 0.78% (2770 KB), 1.56%
(5440 KB), and 3.12% (10880KB). Fig. 20a shows that for
the z ¼ 1 data set Histojoin performs around 6% fewer IOs
than HHJ and for the z ¼ 2 data set Histojoin performs
around 40% fewer IOs than HHJ.

6.2.3. Effect of number of MCVs

By increasing the number of MCVs from the default 10,
the performance of histojoin increases as histojoin is able
to capture more of the most valuable tuples. The join of
LineItem and Part was performed with a memory size of
6.2% and various amounts of MCVs. The results by total
I/Os and by time are in Figs. 21a and b, respectively. The
query was run with 10, 100, 300, 500, 700, and 1000 MCVs
on partkey. Histojoin’s performance with the z ¼ 1 data set
can be increased by adding more MCV statistics as this
data set has many relatively good MCVs. As more MCVs
are added the benefit per new MCV is much less.

6.3. Results summary

For skewed data sets, histojoin dramatically outper-
forms DHJ by 10–60%. This is significant because DHJ is a
very common operator used for processing the largest

ARTICLE IN PRESS

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

0 20 40 60 80 100 0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

HHJ
Histojoin

 0

 100

 200

 300

 400

 500

 600

Ti
m

e
(s

ec
)

Memory Fraction (%)

HHJ
Histojoin

Fig. 17. 10 GB LineItem–Part join ðz ¼ 1Þ. (a) Total I/Os; (b) total time.

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

0 20 40 60 80 100 0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

HHJ
Histojoin

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

Ti
m

e
(s

ec
)

Memory Fraction (%)

HHJ
Histojoin

Fig. 18. Ten GB LineItem–Part join ðz ¼ 2Þ. (a) Total I/Os; (b) total time.

 0

 10

 20

 30

 40

 50

 60

0 20 40 60 80 100

%
 I/

O
 Im

pr
ov

em
en

t o
f H

is
to

jo
in

 v
s.

 H
H

J

Memory Fraction (%)

LI-P Z1
LI-P Z2
LI-S Z1
LI-S Z2

Fig. 19. Percentage improvement in total I/Os of histojoin vs. hash join

(10 GB).

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510508
queries. As the amount of skew increases, the relative
performance improvement of histojoin increases.

Histojoin introduces no performance penalty com-
pared to DHJ for uniform data sets or data sets where the
skew is undetected due to selection conditions or stale
histograms. Histojoin’s performance improvement de-
pends on the amount of skew detected (as given by the
formula in Section 3.1). Histojoin has better performance
with a more accurate estimate of the distribution of the
probe relation. When the confidence in the histogram
approximation of the distribution is low, histojoin allo-
cates fewer privileged partitions which must be signifi-
cantly better than the average. Thus, histojoin will exploit
whatever skew is detectable and fall back to DHJ behavior
otherwise. Even with low accuracy histograms, histojoin
will improve join performance over hash join for skewed
data sets.

ARTICLE IN PRESS

 0

 50000

 100000

 150000

 200000

 250000

 300000

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

I/O
s

(x
 1

00
0)

Memory Fraction (%)

HHJ
Histojoin

 0

 50000

 100000

 150000

 200000

 250000

 300000

I/O
s

(x
 1

00
0)

Memory Fraction (%)

HHJ
Histojoin

Fig. 20. Total I/Os for LineItem–Supplier–Part join (10 GB). (a) ðz ¼ 1Þ; (b) ðz ¼ 2Þ.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

0 200 400 600 800 1000 0 200 400 600 800 1000

I/O
s

(x
 1

00
0)

of MCVs

HHJ
Histojoin

 0

 100

 200

 300

 400

 500

Ti
m

e
(s

ec
)

of MCVs

HHJ
Histojoin

Fig. 21. Ten GB LineItem–Part join with various amounts of MCVs ðz ¼ 1Þ. (a) Total IOs; (b) total time.

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510 509
The implementation of histojoin in PostgreSQL uses
only premium values determined from pre-generated
MCV lists to determine its privileged partitions. Histojoin
is minimally affected by bad estimates as the MCV lists are
small and represent only a minimal memory overhead. In
the experiments this implementation shows a large
improvement over the standard HHJ operator used for
all large unsorted joins in PostgreSQL while adding no
noticeable overhead when skew cannot be exploited.
Histojoin is especially valuable for smaller memory
fractions as its relative benefit over HHJ is higher.
7. Conclusions

Intrinsic data skew is prominent in databases, and hash
join does not handle it well. By using pre-existing
histograms on join attributes of the probe relation, it is
possible to improve performance by using knowledge of
the data distribution to identify which tuples of the build
relation should be memory-resident. Histojoin has sig-
nificantly better performance than DHJ (from 10% to 60%)
for skewed data.

Future work includes submitting the histojoin mod-
ifications to PostgreSQL and investigating how approaches
like statistics on views can be used in conjunction with
histojoin.
References

[1] TPC-H Benchmark, Technical report, Transaction Processing Perfor-
mance Council, available at: hhttp://www.tpc.org/tpch/i.

[2] N. Bruno, S. Chaudhuri, Exploiting statistics on query expressions
for optimization, in: ACM SIGMOD, 2002, pp. 263–274.

[3] S. Chaudhuri, V. Narasayya, TPC-D data generation with skew,
Technical Report, Microsoft Research, available at: hftp.research.
microsoft.com/users/viveknar/tpcdskewi.

[4] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, D. Wood,
Implementation techniques for main memory database systems,
in: ACM SIGMOD, 1984, pp. 1–8.

[5] D. DeWitt, J. Naughton, Dynamic memory hybrid hash join,
Technical Report, University of Wisconsin, 1995.

http://www.tpc.org/tpch/
http://ftp.research.microsoft.com/users/viveknar/tpcdskew
http://ftp.research.microsoft.com/users/viveknar/tpcdskew

ARTICLE IN PRESS

B. Cutt, R. Lawrence / Information Systems 34 (2009) 493–510510
[6] D.J. DeWitt, The Wisconsin Benchmark: Past, Present, and Future,
1993.

[7] D.J. DeWitt, J.F. Naughton, D.A. Schneider, S. Seshadri, Practical skew
handling in parallel joins, in: VLDB, 1992, pp. 27–40.

[8] G. Graefe, Five performance enhancements for hybrid hash join,
Technical Report CU-CS-606-92, University of Colorado at Boulder,
1992.

[9] Y.E. Ioannidis, The history of histograms abridged, in: VLDB, 2003,
pp. 19–30.

[10] M. Kitsuregawa, M. Nakayama, M. Takagi, The effect of bucket size
tuning in the dynamic hybrid GRACE hash join method, in: VLDB,
1989, pp. 257–266.
[11] R. Lawrence, Early hash join: a configurable algorithm for the
efficient and early production of join results, in: VLDB 2005, 2005,
pp. 841–842.

[12] M. Muralikrishna, D.J. DeWitt, Equi-depth histograms for estimating
selectivity factors for multi-dimensional queries, in: H. Boral, P.-Å.
Larson (Eds.), ACM SIGMOD, ACM Press, New York, 1988, pp. 28–36.

[13] M. Nakayama, M. Kitsuregawa, M. Takagi, Hash-partitioned
join method using dynamic destaging strategy, in: VLDB, 1988,
pp. 468–478.

[14] C.B. Walton, A.G. Dale, R.M. Jenevein, A taxonomy and performance
model of data skew effects in parallel joins, in: VLDB, 1991,
pp. 537–548.

	Using intrinsic data skew to improve hash join performance
	Introduction
	Previous work
	General approach
	Theoretical performance analysis

	Histojoin algorithm
	Algorithm overview
	Selecting in-memory tuples
	Estimating cardinality of value ranges

	Partitioning

	Using histojoin
	Join cardinality
	Histogram inaccuracies
	Handling selections
	Multiple join plans

	Query optimizer modifications

	Experimental results
	Stand-alone evaluation
	Primary-to-foreign key joins
	Many-to-many joins
	Histogram inaccuracies
	Joins on string keys
	Multi-way joins

	PostgreSQL implementation
	Primary-to-foreign key joins
	Multi-way joins
	Effect of number of MCVs

	Results summary

	Conclusions
	References

