Graph Computing

Xiaoyang Wang

7
2 My Experience Survey

7

« The UNSW My Experience survey still open, participation is highly
encouraged.

 “Please participate in the my Experience Survey and take the
opportunity to share your constructive thoughts on your 2022 learning
experience.

* Your contributions help your teachers and shape the future of education
at UNSW.”

* More information: https://www.student.unsw.edu.au/myexperience

7
3 What is Graph

7

-9
Objects: nodes, vertices V
Interactions: links, edges E

Systems: networks, graphs G(V, E)

7
4 Graph is a common language

friend
co-worker

Peter

Tom

brothers friend

Albert

Protein 5

Protein 9 .

7
5 Graph is everywhere

7

Common model across different fields:

Road Network Chemical Compound Ontology Graph

7
6 Why graphs

7

* Networks / graphs are everywhere, and we live in a highly-connected world.
* [n many applications, we need analyze in the context of networks, not just

individuals.
Criminal P .
suspect . :dy:“zm-
account X t Card

~ - Actual
4 (t]?@ payment
| ‘ (t2)
R =
I
I

Transfer \ :T o
; ransfer
(t4) J
@ @ Account

Multiple
intermediates

Money laundering detection

Relies on real data and takes account of
disease dynamics and social interactions

The model combines:
a realistic synthetic population
social contact and dlsease models

Venkatramanan, S., et al.: “Using data-driven agent-based models for
forecasting emerging infectious diseases,” Epidemics (2018)

Predict the spread of information

7
7 Why graphs

7

 Event Driven Investment

7
8 Why graphs

7

« Can Computer Do It Automatically

- o il RNALE mn : —_
M S B NANCIAL TIMES |
: 2 Tl - e WA

i e

Yo' N Za . -
Wi > T~ -t = -

7

Why graphs

Can We Do Better

The financial market reaction of events is also influenced by the lead-lag
effect, which is driven by internal relationships.

For example, the event “Microsoft buys LinkedIn” will also influence the stock
movements of upstream and downstream firms and competitors, such as
Salesforce and Meetup.

An event on a raw material will also impact various downstream products in
different propagation speed over industrial chains, such as current energy

crisis and cold weather.

7
10 Why graphs

7

* How News Text: Microsoft officially closes its $26.2B acquisition of LinkedIn

Event Tuple: (A=[Y[ISfeRel P=acquire, O=ERkedin)

Morgan Stanley

'-,‘.’ . yau
‘...//.\ / \I\n ked’(n ,{ / »
Facebook ® et @

\ / \ \ \\\\ !

L KNOWLEDGE ®
\/ Mlqrosoft GRAPH /§é|esf\o\m<

. / \ , °
o /./\ 7
&

/\ @

Google

7
11 Cohesive Subgraphs

Vi
» Clique, k-core, k-truss, k-ECC, k-VCC,

* In some models, a value k can be used to capture the cohesiveness of the
subgraph.

7
12 Hierarchical Graph Decomposition

Vi
« Varying the possible k values (say k4, ko, , ky,) on the graph G

|

* h subgraphs {54, S,, ,Sp} with §; 2 S;forany i < j, where S; = G and S; is a
subgraph containing a set of connected components.

7
13 Hierarchical Graph Decomposition

7

« Decomposition number of a vertex: dn(v) =i,v € S; and v € S; .4

e k-core, k-truss, k-ECC,

7
14 Application Summary

7

* Network modeling and analysis

* Network Visualization

« Reasoning the collapse of a network
* Prevent Network Unraveling
 Discovering Influential Nodes

« Community Discovery

« Anomaly Detection

* Protein function prediction

7
15 Application — Network Modeling and Analysis

7

Biology: a cohesive subgraph as a predictor of structural collapse in mutualistic
ecosystems [Nature Physics 2018]

7
16 Application — Network Modeling and Analysis

7

Biology: the hierarchical decomposition reveals the tipping points of structural
collapse in mutualistic ecosystems [Nature Physics 2018]

A Net10 b T .
: . * e ® Commensalists
Andes 3 sameS, O Extinct species
e A
Sme et kﬁ. '.ao
' » . . o ,5, ;n ;cc:ﬂj’%), . - . =
Plant Pollinator Voo | | 1\ P o
o o Wt | ° i
690@ ° ot
%b ﬂoo;%(g k3=1 1 Nn 53, . . ‘]
W Yoo %%
:e%%}
R ° 0.8 7‘*’&%

06_kS=1 2

*>< ? | collapse
(<] 0’ o ° >~ | o
£ { o [} ~—
& /0 M =3 0.4 |-
° %% o® s
o o) B
® o °)
0.2 | -
00 @0 o i a 7
o® ps = ks _4
"4 Sk =4 = k™ 0]] 1 | | | system collapse
) o & @ Rg=F=Reore ! ,
o ¢ O 1 2 3 4

7
17 Application — Network Modeling and Analysis

7

Brain connectivity networks: mapping the Structural Core of Human Cerebral
Cortex [PLoS Bio 2008]

scan 1 scan 2
participant A participant B participant C participant D participant E

7
18 Application — Network Modeling and Analysis

7

Software systems: analyzing the static structure of large-scale software systems
[J Supercomput 2010]

wady e et " AbiWord

7
19 Application — Network Modeling and Analysis

7

Internet networks: modeling Internet topology using k-shell decomposition [PNAS
2007] [NHM 2008]

7
20 Application — Network Modeling and Analysis

7

Message networks: analysing the large instant-messaging network (Microsoft
Messenger system) [WWW 2008]

10° ¢ :
8107 - TR -
S 6T
210° 1 =
o 10° k=20 =
210° & D
10% | k=60-68, N=79 —= =
1T . o . L]
10
10° 10" 102

Core of order K

7
21 Application — Network Modeling and Analysis

7

Social networks: modeling engagement dynamics in social graphs [CIKM 2013]
[Social Networks 1983]

0
10 6 I 10 & T
~ == - AS 2004/1 2 - 2005/1 2 “Q\ - - Oregon: May 31 - Apr 07
q = =0~ - AS: 2005/12 — 2006/12 \\\\ = = = Oregon: Apr 07 — Apr 14
o o ' - -@ = AS: 2006/12 — 2007/11 o % - ¥ - Oregon: Apr 14 — Apr 21
=) s E 5 W — =4 — Oregon: Apr 21 — Apr 28
b . y= N = == = Oregon: Apr 28 — May 05
Q Q g N Oregon: May 05 — May 12
8 RN O] “_'_\ Oregon: May 12 — May 19
“— -2 1) a 1 B\ = =@ = Oregon: May 19 — May 26
o 10 3 ' N ° b \\\
\ o 10
= o\‘& = \\‘\\\\
= - = \
% \{\ﬂ_ a, % ‘\:‘
g -3 L) () a Q W
g 10 ~ O: }‘ ~ - B -0 [e) R
-0 - a L [
Wik x
) ,/
10—4 » ﬂ’ o0
i 5 10 15 10 10
Core Number Core Number

(a) CAIDA (b) OREGON

7
22 Application — Network Modeling and Analysis

Vi
Social networks: the anatomy of the Facebook social graph [Corr 2011]

Q
O -
3 == |\lean
— | --- 5/95th Pct
> Degree-1
O —
T o
O O —
c 0
)
(o N
S ©
o ©]
U)_
E —
> o
< N
0
(@) |

I I I I I I L
2 5 20 50 200 1000 5000
Degree

7
23 Application — Network Modeling and Analysis

7

Complex networks: pattern and anomaly analysis using k-core analysis [[CDM
2016] [KAIS 2018]

2: 5
10 (SQ? 10 - ‘@ Real-world data)
o 4 3 |~ Empirical relation = 4 Core-D
g 10 8 10°{-- Theoretical ® g3‘ A (Proposed):
QC) , 00()0 ® 103 6 relation a 9 L”z- 01 O Overall
010 S sCEO of th 2 OC) 2] o o /\ Triangle
o107 & W 102 810 é 2 0 Bas
8 O e company 8’ . L ° asic
e 00 o 1 01 a . 5 A 2XI LogPass:
il ; 101170 tan 6 =1/3 r0{Fe O _ex | V=8 As
1 - : - 1 ' ; ' : z s @2
%00 10'_ 102 10° 10° 0 10° 107 _10° 10" 100_ 200 300
Degree Number of Triangles Wall- Clock Time (sec)
(a) PI: MIRROR PATTERN (b) P2: CORE-TRIANGLE PATTERN (¢) A2: CORE-D Algorithm

Al: Anomaly Detection

7
24 Application — Network Modeling and Analysis

Vi
Complex networks: pcore-periphery network structure [Scientific reports 2013]

1.0 4 1.0
c—x 0.8 C‘S« 0.8
Q@ L)
= =
S o
g 0.6 1 S 0.6
> Py
(3] []
Ny <
o a
5 0.4 5 0.4 A
o &
o o
Q Q
O 0.2 S 02
00 T T T T 00 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(number of nodes of P,) / n (number of nodes of P,) / n

world trade network

7
25 Application — Network Visualization

7

Large scale networks fingerprinting and visualization using hierarchical
decomposition [NIPS 2006] [VLDB 2012] [ICDE 2012] [KDD 2012]

— & © /@

&0 Vequ@i\ffairs

N &
N

e
Baraclg_@b“é‘iﬁa@ngefqn 5 O
“Fhe VWHiSEHouse HUM

Feddral {fif@Bsit Admn | USAifForce

= _:n\l___.:.;:‘.- t\l o v . ".' it : PP ¢ .
I + a 115{ .. il L _. L @S olis

000000000000

>

womensﬁ(e/élthgov

7
26 Application — Reasoning the collapse of a social network

Vi
Friendster network: revealing the mechanism of collapse [SNAM 2017] [COSN

201 3] Number of nodes in each core
4000000 2000000 0
B 05
.
T E 15
5-core EEEEEE R 4N ,
To-core e — 13
All nodes 15-core T BN W 35
[B E
e BN OEEE 45
e E 3
I IHEEY BT S5 o
[e EE e ~
[BN Em | 65
[EEE B Q
T . N W 75
T B
[I EEE BN | 35
: | BT I e |
! EEE BT EEEEE 05
i} ; [N e
We draw the cross-section e S 10,5
[. EEE N
T N N 115

7
27 Application — Prevent Network Unraveling

7

The Anchored Core and Truss Problems [SIAM J Discrete Math 2015]. The
algorithms [VLDB 2017] [ICDE 2018].

7
28 Application — Discovering Influential Nodes

7

The most effective spreaders are located in the core of the network, fairly
independent of their degree. [Nature Physics 2010]

0.8

e 1<k<10
- ma 10 < k< 20
|+ 20 <k.<30
a4 30 <k,<40
40 < ky< 50

50< k;<60
= 047y 60<k <70

. = Average

0.6

0.2

7
29 Application — Discovering Influential Nodes

Vi
The widely-used degree and PageRank fail in ranking users’ influence.

The best spreaders are consistently located in the k-core across dissimilar
social platforms. [Scientific Reports 2014]

a

(%) ¢ :
© ©
M °
C ()
. ©
—Q
D
200
d k-shell
Node A 100 Node B

k=6902 k=6902
k-shell=230 k-shell=97

7
30 Application — Evaluating Node Influence

7

The H-index of a network node and its relation to degree and coreness [Nature
Com 2016]

12-17
18-25
26-38
39-57
58-86
87-106

7
31 Application — Social Contagion

Vi
Evaluating social contagion based structural diversity [PNAS 2012]

s

>
®
N
o
I

—
o
I

=
\\
“
S\
\
\.1§
P4

- -
s -

[

e CC o k=1 k=2 k=3

_JComponents in 2-core (I) é AI, é EI; 1|0

,Components in 1-brace Components in k—core

Relative engagement rate
(@) —_
o o
I I

ol
\
’—-Q‘
)
!
\
\‘\-)/

o
I

7
32 Application — Community Discovery

7

Online social streams: a context-aware story-teller [CIKM 2014]

AN

..

SOPA, SOPA SOHA

Hug/hope
PIPA blackout

nepy year

tgoFﬁ'orro court GPS changes

esigns
dedision CEO

CES tomorrov :
CES

Tweet Frequency

y Ta! . : S - |aI =G o
¥ a oE =i 42 B E
AT ﬁ b +—>ilpu ogie L g aker
.- L (N c E-}-o-cge anti- Wikj anfi- YaHoo Jerry Yang ~ Supfreme RIM 8

1 2 3 4 > 6 ¥ & 8 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

7

7

33 Application — Community Discovery

Social networks: persistent community search [ICDE 2018], spatial community

search [ICDE 2018], attributed community detection [VLDB 2017] [VLDB 2017]
[VLDB 2018] , influential community search [VLDB 2015]

Mussia

|||||

vvvvvvv

sotewata’ | Midagaicar

.......

Blogosphere in US Communities in Gowalla

7
34 Application — Community Discovery

Vi
Protein interaction networks: finding molecular complexes [BMC Bio 2003]

mMRNA)
Cleavage/ /%
Polyadenylation [Rgz

Lsm Complex

Lsmé

A% Complex

V Genb
\'

ares ANAphase

Rpt6 Rpn3 Apci A5 “cacar Promoting
19S Proteasome Complex

7
35 Application — Protein Function Prediction

7

Protein interaction networks: prediction of protein functions based on k-cores of
the networks and amino ccid sequences [Genome Info 2003]

7

7

36 More Applications

Graph clustering

Giatsidis, Christos, et al. "Corecluster: A degeneracy based graph clustering
framework." AAAI. 2014.

Graph similarity
Nikolentzos, Giannis, et al. "A Degeneracy Framework for Graph Similarity." [/CAI. 2018.

Community evaluation

Giatsidis, Christos, Dimitrios M. Thilikos, and Michalis Vazirgiannis. "Evaluating
cooperation in communities with the k-core structure." ASONAM, 2011.

Influence maximization

Elsharkawy, Sarah, et al. "Effectiveness of the k-core nodes as seeds for influence
maximisation in dynamic cascades." International Journal of Computers 2 (2017).

Graph generating

Baur, Michael, et al. "Generating graphs with predefined k-core structure." Proceedings of
the European Conference of Complex Systems. 2007.

VI

K-CORE

7
38 K-Core Model

7

K-core is a maximal subgraph in which each vertex has at least k neighbors in
the subgraph.

Erdés, Paul, and Andras Hajnal. "On chromatic number of graphs and set-systems." Acta
Mathematica Hungarica 17.1-2 (1966): 61-99.

7
39 Computing the k-Core

7

lteratively remove every vertex whose degree is less than k.

O(m+n)

Algorithm : ComputeCore(G, k)

Input : G :agraph, k£ : degree constraint
Output : Cr(G)
1 while exists v € G with deg(v, G) < k do
2 | G+« G\{vUE(w,G)};

3 return G

7
40 Computing the k-Core

7

lteratively remove every vertex whose degree is less than k.

O(m+n)

Algorithm : ComputeCore(G, k)

Input : G :agraph, k : degree constraint
Output : Cr(G)
1 while exists v € G with deg(v, G) < k do
2 | G+« G\{vUE(w,G)};

3 return G

7
41 Computing the k-Core

7

lteratively remove every vertex whose degree is less than k.

O(m+n)

Algorithm : ComputeCore(G, k)

Input : G :agraph, k : degree constraint
Output : Cx(G)
1 while exists v € G with deg(v, G) < k do
2 | G+« G\{vUE(w,G)};

3 return G

7
42 Computing the k-Core

7

lteratively remove every vertex whose degree is less than k.

O(m+n)

Algorithm : ComputeCore(G, k)

Input : G :agraph, k : degree constraint
Output : Cx(G)
1 while exists v € G with deg(v, G) < k do
2 | G+« G\{vUE(w,G)};

3 return G

7
43 Core Number of a Vertex v

7

k(v) = the largest k such that the k-core contains v

7
44 Core Decomposition

7

Compute the core number of every vertex.

7
45 Core Decomposition

7

The following algorithms are optional, as long as you know how to
compute the core number of a given graph.

Global-view: peel low-degree vertices iteratively from the whole graph.

Local-view 1: update the upper bound of core number for each vertex
until converge

7
46 Core Decomposition: Global-view (Peeling)

7

lteratively delete the vertex with the lowest degree. O(m+n)

Algorithm : CoreDecomposition

Input : G = (V,E) :agraph

Output : {cn(u) | v € V'}: core number of every vertex in G
d(u) < deg(u, G) forevery u € V;

order the vertices in V' in increasing order of their degrees;

for each v € V in the order do

en(u) < d(u);

for each v € N (u) with d(v) > d(u) do

L d(v) «+ d(v) — 1;

reorder V' accordingly;

N SN B W N -

return cn(u) of every u € V

o

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks."” arXiv preprint cs/0310049 (2003).

7
47 Core Decomposition: Global-view (Peeling)

7

lteratively delete the vertex with the lowest degree. O(m+n)

Algorithm : CoreDecomposition

Input : G = (V,E) :agraph

Output : {cn(u) | u € V'}: core number of every vertex in G
d(u) < deg(u, G) forevery u € V;

order the vertices in V' in increasing order of their degrees;

for each v € V in the order do

en(u) < d(u);

for each v € N (u) with d(v) > d(u) do

L d(v) <+ d(v) — 1;

reorder V' accordingly;

N A B W N -

8 return cn(u) of every u € V

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks."” arXiv preprint cs/0310049 (2003).

7
48 Core Decomposition: Global-view (Peeling)

7

lteratively delete the vertex with the lowest degree. O(m+n)

Algorithm : CoreDecomposition

Input : G = (V,E) :agraph

Output : {cn(u) | u € V'}: core number of every vertex in G
d(u) < deg(u, G) forevery u € V;

order the vertices in V' in increasing order of their degrees;

for each v € V in the order do

en(u) < d(u);

for each v € N (u) with d(v) > d(u) do

L d(v) <+ d(v) — 1;

reorder V' accordingly;

N A B W N -

8 return cn(u) of every u € V

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks."” arXiv preprint cs/0310049 (2003).

7
49 Core Decomposition: Global-view (Peeling)

7

lteratively delete the vertex with the lowest degree. O(m+n)

Algorithm : CoreDecomposition

Input : G = (V,E) :agraph

Output : {cn(u) | v € V'}: core number of every vertex in G
d(u) < deg(u, G) forevery u € V;

order the vertices in V' in increasing order of their degrees;

for each v € V in the order do

en(u) < d(u);

for each v € N (u) with d(v) > d(u) do

L d(v) <+ d(v) — 1;

reorder V' accordingly;

N A B W N -

8 return cn(u) of every u € V

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks."” arXiv preprint cs/0310049 (2003).

7

7
50 Core Decomposition: Global-view (Peeling)

lteratively delete the vertex with the lowest degree. O(m+n)

— — — —
e —

Algorithm : CoreDecomposition - ~ <
Input : G = (V,E) :agraph k=1 k=2 — < -
. . . 7/ -~ - 2 - ~
Output : {cn(u) | u € V'}: core number of every vertex in G y - 2 ~
1 d(u) < deg(u,G) forevery u € V; / // e TN =~ ;\
2 order the vertices in V' in increasing order of their degrees; / /2 \Y 2/ N\
3 for each u € V in the order do [{ (k=3 \
4 en(u) < d(u); \ \ /l \ |
5 | foreachv € N(u)with d(v) > d(u) do \ LB), N PRIV,
6 d(v) <+ d(v) — 1; \ N 2 "~__~- , T /
: . \ ~N -~
7 reorder V' accordingly; N ~ < 5 -
— \ = e — -
8 return cn(u) of every u € V N - -
By -

— —
e e ———

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks."” arXiv preprint cs/0310049 (2003).

7
51 Core Decomposition: Global-view (Peeling)

7

lteratively delete the vertex with the lowest degree. O(m+n)

Algorithm : CoreDecomposition

Input : G = (V,E) :agraph

Output : {cn(u) | v € V'}: core number of every vertex in G
d(u) < deg(u, G) forevery u € V;

order the vertices in V' in increasing order of their degrees;

for each v € V in the order do

en(u) < d(u);

for each v € N (u) with d(v) > d(u) do

L d(v) <+ d(v) — 1;

reorder V' accordingly;

N A B W N -

8 return cn(u) of every u € V

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks."” arXiv preprint cs/0310049 (2003).

7
52 Core Decomposition: Global-view (Peeling)

7

lteratively delete the vertex with the lowest degree. O(m+n)

Algorithm : CoreDecomposition

Input : G = (V,E) :agraph

Output : {cn(u) | v € V'}: core number of every vertex in G
d(u) < deg(u, G) forevery u € V;

order the vertices in V' in increasing order of their degrees;

for each u € V' in the order do

en(u) < d(u);

for each v € N (u) with d(v) > d(u) do

\\ d(v) < d(v) — 1;

reorder V' accordingly;

N A B W N -

8 return cn(u) of every u € V

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks."” arXiv preprint cs/0310049 (2003).

7
53 Core Decomposition: Global-view (Peeling)

7

lteratively delete the vertex with the lowest degree. O(m+n)

— — — —
— — — —

Algorithm : CoreDecomposition - ~ <
Input : G = (V,E) :agraph k=1 k=2~ ~ <
Output : {cn(u) | v € V'}: core number of every vertex in G y, - PR - AN

1 d(u) < deg(u,G) forevery u € V; / / //'_\3\ ——<

2 order the vertices in V' in increasing order of their degrees; / / / 3 . /3 3\

3 for each v € V in the order do | ((k=3" \

4 cen(u) < d(u); \ \ 3 3/' \ 3 |

5 for each v € N (u) with d(v) > d(u) do \ \ \\ / \\ 3//

6 d(v) < d(v) — 1; \ N ~_3_~- —

7 L reorder V" accordingly; N\ S ad

N ~S - — - -
8 return cn(u) of every u € V RS - -
S~ - — -

~—— =
T e—— e — —

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks."” arXiv preprint cs/0310049 (2003).

7
54 Core Decomposition: Global-view (Peeling)

7
Using bin-sort -> O(m+n)

Algorithm : CoreDecomposition

Input : G = (V,E) :agraph

Output : {cn(u) | u € V'}: core number of every vertex in G
d(u) < deg(u, G) forevery u € V;

order the vertices in V' in increasing order of their degrees;

for each v € V in the order do

en(u) < d(u);

for each v € N (u) with d(v) > d(u) do

L d(v) «+ d(v) — 1;

reorder V' accordingly;

N SN B W N -

return cn(u) of every u € V

e}

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks."” arXiv preprint cs/0310049 (2003).

7

55 Core Decomposition: Local-view (Converging)

7

Locality Theorem:

Given a vertex and its core number k:

There exists at least k neighbors with core number K;
There does not exist k+1 neighbors with core number k+1.

Core(V) =3 4 neighbors with core number at least 3
Core(V)=4 Only 2 neighbors with core number at least 4

Montresor, Alberto, Francesco De Pellegrini, and Daniele Miorandi. "Distributed k-core
decomposition.” IEEE Transactions on parallel and distribuated systems 24.2 (2013): 288-300.

7
56 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 71 isContinue False
ID 0 1 2 3 4 5 6 7 8
Core 3 3 4 6 3 5 3 2 1

7
57 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 71 isContinue False
ID 0 1 2 3 4 5 6 7 8
Core 3 3 4 6 3 5 3 2 1

7
58 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 71 isContinue True
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 6 3 5 3 2 1

7
59 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 71 isContinue True
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 3 3 5 3 2 1

7
60 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 71 isContinue True
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 3 3 5 3 2 1

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 71 isContinue True
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 3 3 3 3 2 1

7
62 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 71 isContinue True
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 3 3 3 2 2 1

7
63 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 71 isContinue True
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 3 3 3 2 2 1

7
64 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 71 isContinue True
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 3 3 3 2 2 1

7
65 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 71 isContinue True
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 3 3 3 2 2 1

7
66 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 2 isContinue False
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 3 3 3 2 2 1

7
67 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 2 isContinue True
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 3 3 2 2 2 1

7
68 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 3 isContinue True
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 3 2 2 2 2 1

7
69 Core Decomposition: Local-view (Converging)

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

Initialize the core number by degree lteration 4 isContinue False
ID 0 1 2 3 4 5 6 7 8
Core 3 3 3 3 2 2 2 2 1

