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2 My Experience Survey

• The UNSW My Experience survey still open, participation is highly
encouraged.

• “Please participate in the my Experience Survey and take the
opportunity to share your constructive thoughts on your 2022 learning
experience.

• Your contributions help your teachers and shape the future of education
at UNSW.”

• More information: https://www.student.unsw.edu.au/myexperience



3 What is Graph

¡ Objects: nodes, vertices
¡ Interactions: links, edges
¡ Systems: networks, graphs

V
E
G(V, E)



4 Graph is a common language
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5 Graph is everywhere

Common model across different fields:

Ontology Graph

Protein Interaction NetworkSocial Network

Chemical Compound

Web Graph

Road Network Ontology Graph
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• Networks / graphs are everywhere, and we live in a highly-connected world.
• In many applications, we need analyze in the context of networks, not just 

individuals.

Money laundering detection Predict the spread of information

Why graphs



7 Why graphs

• Event Driven Investment



8 Why graphs

• Can Computer Do It Automatically 



9 Why graphs

• Can We Do Better

• The financial market reaction of events is also influenced by the lead-lag 

effect, which is driven by internal relationships.

• For example, the event “Microsoft buys LinkedIn” will also influence the stock 

movements of upstream and downstream firms and competitors, such as 

Salesforce and Meetup.

• An event on a raw material will also impact various downstream products in 

different propagation speed over industrial chains, such as current energy 

crisis and cold weather. 



10 Why graphs

• How



11 Cohesive Subgraphs

• Clique, 𝑘-core, 𝑘-truss, 𝑘-ECC, 𝑘-VCC, ……

• In some models, a value 𝑘 can be used to capture the cohesiveness of the 
subgraph.



12 Hierarchical Graph Decomposition

• Varying the possible 𝑘 values (say 𝑘!, 𝑘",……, 𝑘#) on the graph 𝐺

• ℎ subgraphs {𝑆!, 𝑆", …… , 𝑆#} with 𝑆$ ⊇ 𝑆% for any 𝑖 < 𝑗, where 𝑆! = 𝐺 and 𝑆$ is a 
subgraph containing a set of connected components.



13 Hierarchical Graph Decomposition

• Decomposition number of a vertex: 𝑑𝑛 𝑣 = 𝑖, 𝑣 ∈ 𝑆$ and 𝑣 ∉ 𝑆$+1

• 𝑘-core, 𝑘-truss, 𝑘-ECC, ……



14 Application Summary

• Network modeling and analysis

• Network Visualization

• Reasoning the collapse of a network

• Prevent Network Unraveling

• Discovering Influential Nodes

• Community Discovery

• Anomaly Detection

• Protein function prediction

• ……



15 Application – Network Modeling and Analysis

Biology: a cohesive subgraph as a predictor of structural collapse in mutualistic 
ecosystems [Nature Physics 2018] 



16 Application – Network Modeling and Analysis

Biology: the hierarchical decomposition reveals the tipping points of structural 
collapse in mutualistic ecosystems [Nature Physics 2018] 



17 Application – Network Modeling and Analysis

Brain connectivity networks: mapping the Structural Core of Human Cerebral 
Cortex [PLoS Bio 2008] 



18 Application – Network Modeling and Analysis

Software systems: analyzing the static structure of large-scale software systems 
[J Supercomput 2010] 



19 Application – Network Modeling and Analysis

Internet networks: modeling Internet topology using k-shell decomposition [PNAS 
2007] [NHM 2008] 



20 Application – Network Modeling and Analysis

Message networks: analysing the large instant-messaging network (Microsoft 
Messenger system) [WWW 2008]



21 Application – Network Modeling and Analysis

Social networks: modeling engagement dynamics in social graphs [CIKM 2013] 
[Social Networks 1983] 



22 Application – Network Modeling and Analysis

Social networks: the anatomy of the Facebook social graph [Corr 2011] 



23 Application – Network Modeling and Analysis

Complex networks: pattern and anomaly analysis using k-core analysis [ICDM 
2016] [KAIS 2018] 



24 Application – Network Modeling and Analysis

Complex networks: pcore-periphery network structure [Scientific reports 2013] 

world trade network



25 Application – Network Visualization

Large scale networks fingerprinting and visualization using hierarchical 
decomposition [NIPS 2006] [VLDB 2012] [ICDE 2012] [KDD 2012]



26 Application – Reasoning the collapse of a social network

Friendster network:  revealing the mechanism of collapse [SNAM 2017] [COSN 
2013] 



27 Application – Prevent Network Unraveling

The Anchored Core and Truss Problems [SIAM J Discrete Math 2015]. The 
algorithms [VLDB 2017] [ICDE 2018].



28 Application – Discovering Influential Nodes

The most effective spreaders are located in the core of the network, fairly 
independent of their degree. [Nature Physics 2010] 



29 Application – Discovering Influential Nodes

The widely-used degree and PageRank fail in ranking users’ influence. 
The best spreaders are consistently located in the k-core across dissimilar 
social platforms. [Scientific Reports 2014] 



30 Application – Evaluating Node Influence

The H-index of a network node and its relation to degree and coreness [Nature 
Com 2016]



31 Application – Social Contagion

Evaluating social contagion based structural diversity [PNAS 2012] 



32 Application – Community Discovery

Online social streams: a context-aware story-teller [CIKM 2014] 



33 Application – Community Discovery

Social networks: persistent community search [ICDE 2018], spatial community 
search [ICDE 2018], attributed community detection [VLDB 2017] [VLDB 2017] 
[VLDB 2018] , influential community search [VLDB 2015]

Blogosphere in US Communities in Gowalla



34 Application – Community Discovery

Protein interaction networks: finding molecular complexes [BMC Bio 2003] 



35 Application – Protein Function Prediction

Protein interaction networks: prediction of protein functions based on k-cores of 
the networks and amino ccid sequences [Genome Info 2003] 



36 More Applications 
• Graph clustering

Giatsidis, Christos, et al. "Corecluster: A degeneracy based graph clustering 
framework." AAAI. 2014.

• Graph similarity
Nikolentzos, Giannis, et al. "A Degeneracy Framework for Graph Similarity." IJCAI. 2018.

• Community evaluation
Giatsidis, Christos, Dimitrios M. Thilikos, and Michalis Vazirgiannis. "Evaluating 
cooperation in communities with the k-core structure." ASONAM, 2011.

• Influence maximization
Elsharkawy, Sarah, et al. "Effectiveness of the k-core nodes as seeds for influence 
maximisation in dynamic cascades." International Journal of Computers 2 (2017).

• Graph generating
Baur, Michael, et al. "Generating graphs with predefined k-core structure." Proceedings of 
the European Conference of Complex Systems. 2007.



////////////////////

K-CORE



38 K-Core Model

Erdős, Paul, and András Hajnal. "On chromatic number of graphs and set-systems." Acta 
Mathematica Hungarica 17.1-2 (1966): 61-99.

K-core is a maximal subgraph in which each vertex has at least k neighbors in 
the subgraph.



39 Computing the k-Core

Iteratively remove every vertex whose degree is less than k.

𝑂(𝑚 + 𝑛)
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41 Computing the k-Core
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42 Computing the k-Core

Iteratively remove every vertex whose degree is less than k.

𝑂(𝑚 + 𝑛)



43 Core Number of a Vertex 𝑣

𝑘 𝑣 = the largest k such that the k-core contains 𝑣



44 Core Decomposition

Compute the core number of every vertex.



45 Core Decomposition

The following algorithms are optional, as long as you know how to 
compute the core number of a given graph.

Global-view: peel low-degree vertices iteratively from the whole graph.

Local-view 1: update the upper bound of core number for each vertex 
until converge



46 Core Decomposition: Global-view (Peeling)

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of 
networks." arXiv preprint cs/0310049 (2003).

Iteratively delete the vertex with the lowest degree.   O(m+n)
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54 Core Decomposition: Global-view (Peeling)

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of 
networks." arXiv preprint cs/0310049 (2003).

Using bin-sort -> O(m+n)



55 Core Decomposition: Local-view (Converging)

Montresor, Alberto, Francesco De Pellegrini, and Daniele Miorandi. "Distributed k-core 
decomposition." IEEE Transactions on parallel and distribuated systems 24.2 (2013): 288-300.

Locality Theorem: 
Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

4
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4

v6
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ID

Core Decomposition: Local-view (Converging)
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v3
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Initialize the core number by degree Iteration 1 isContinue

: 

True

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.
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Core Decomposition: Local-view (Converging)
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v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

: 

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

3

True

3 3 2

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.



64

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

: 

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

3

True

3 3 2

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.



65

ID
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Core Decomposition: Local-view (Converging)
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Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.


