
Graph Computing
Xiaoyang Wang

2 My Experience Survey

• The UNSW My Experience survey still open, participation is highly
encouraged.

• “Please participate in the my Experience Survey and take the
opportunity to share your constructive thoughts on your 2022 learning
experience.

• Your contributions help your teachers and shape the future of education
at UNSW.”

• More information: https://www.student.unsw.edu.au/myexperience

3 What is Graph

¡ Objects: nodes, vertices
¡ Interactions: links, edges
¡ Systems: networks, graphs

V
E
G(V, E)

4 Graph is a common language

Peter Mary

Albert

Tom

co-worker

friendbrothers

friend

Protein 1 Protein 2
Protein 5

Protein 9

Movie 1

Movie 3
Movie 2

Actor 3

Actor 1 Actor 2

Actor 4

|V|=4
|E|=4

5 Graph is everywhere

Common model across different fields:

Ontology Graph

Protein Interaction NetworkSocial Network

Chemical Compound

Web Graph

Road Network Ontology Graph

6

• Networks / graphs are everywhere, and we live in a highly-connected world.
• In many applications, we need analyze in the context of networks, not just

individuals.

Money laundering detection Predict the spread of information

Why graphs

7 Why graphs

• Event Driven Investment

8 Why graphs

• Can Computer Do It Automatically

9 Why graphs

• Can We Do Better

• The financial market reaction of events is also influenced by the lead-lag

effect, which is driven by internal relationships.

• For example, the event “Microsoft buys LinkedIn” will also influence the stock

movements of upstream and downstream firms and competitors, such as

Salesforce and Meetup.

• An event on a raw material will also impact various downstream products in

different propagation speed over industrial chains, such as current energy

crisis and cold weather.

10 Why graphs

• How

11 Cohesive Subgraphs

• Clique, 𝑘-core, 𝑘-truss, 𝑘-ECC, 𝑘-VCC, ……

• In some models, a value 𝑘 can be used to capture the cohesiveness of the
subgraph.

12 Hierarchical Graph Decomposition

• Varying the possible 𝑘 values (say 𝑘!, 𝑘",……, 𝑘#) on the graph 𝐺

• ℎ subgraphs {𝑆!, 𝑆", …… , 𝑆#} with 𝑆$ ⊇ 𝑆% for any 𝑖 < 𝑗, where 𝑆! = 𝐺 and 𝑆$ is a
subgraph containing a set of connected components.

13 Hierarchical Graph Decomposition

• Decomposition number of a vertex: 𝑑𝑛 𝑣 = 𝑖, 𝑣 ∈ 𝑆$ and 𝑣 ∉ 𝑆$+1

• 𝑘-core, 𝑘-truss, 𝑘-ECC, ……

14 Application Summary

• Network modeling and analysis

• Network Visualization

• Reasoning the collapse of a network

• Prevent Network Unraveling

• Discovering Influential Nodes

• Community Discovery

• Anomaly Detection

• Protein function prediction

• ……

15 Application – Network Modeling and Analysis

Biology: a cohesive subgraph as a predictor of structural collapse in mutualistic
ecosystems [Nature Physics 2018]

16 Application – Network Modeling and Analysis

Biology: the hierarchical decomposition reveals the tipping points of structural
collapse in mutualistic ecosystems [Nature Physics 2018]

17 Application – Network Modeling and Analysis

Brain connectivity networks: mapping the Structural Core of Human Cerebral
Cortex [PLoS Bio 2008]

18 Application – Network Modeling and Analysis

Software systems: analyzing the static structure of large-scale software systems
[J Supercomput 2010]

19 Application – Network Modeling and Analysis

Internet networks: modeling Internet topology using k-shell decomposition [PNAS
2007] [NHM 2008]

20 Application – Network Modeling and Analysis

Message networks: analysing the large instant-messaging network (Microsoft
Messenger system) [WWW 2008]

21 Application – Network Modeling and Analysis

Social networks: modeling engagement dynamics in social graphs [CIKM 2013]
[Social Networks 1983]

22 Application – Network Modeling and Analysis

Social networks: the anatomy of the Facebook social graph [Corr 2011]

23 Application – Network Modeling and Analysis

Complex networks: pattern and anomaly analysis using k-core analysis [ICDM
2016] [KAIS 2018]

24 Application – Network Modeling and Analysis

Complex networks: pcore-periphery network structure [Scientific reports 2013]

world trade network

25 Application – Network Visualization

Large scale networks fingerprinting and visualization using hierarchical
decomposition [NIPS 2006] [VLDB 2012] [ICDE 2012] [KDD 2012]

26 Application – Reasoning the collapse of a social network

Friendster network: revealing the mechanism of collapse [SNAM 2017] [COSN
2013]

27 Application – Prevent Network Unraveling

The Anchored Core and Truss Problems [SIAM J Discrete Math 2015]. The
algorithms [VLDB 2017] [ICDE 2018].

28 Application – Discovering Influential Nodes

The most effective spreaders are located in the core of the network, fairly
independent of their degree. [Nature Physics 2010]

29 Application – Discovering Influential Nodes

The widely-used degree and PageRank fail in ranking users’ influence.
The best spreaders are consistently located in the k-core across dissimilar
social platforms. [Scientific Reports 2014]

30 Application – Evaluating Node Influence

The H-index of a network node and its relation to degree and coreness [Nature
Com 2016]

31 Application – Social Contagion

Evaluating social contagion based structural diversity [PNAS 2012]

32 Application – Community Discovery

Online social streams: a context-aware story-teller [CIKM 2014]

33 Application – Community Discovery

Social networks: persistent community search [ICDE 2018], spatial community
search [ICDE 2018], attributed community detection [VLDB 2017] [VLDB 2017]
[VLDB 2018] , influential community search [VLDB 2015]

Blogosphere in US Communities in Gowalla

34 Application – Community Discovery

Protein interaction networks: finding molecular complexes [BMC Bio 2003]

35 Application – Protein Function Prediction

Protein interaction networks: prediction of protein functions based on k-cores of
the networks and amino ccid sequences [Genome Info 2003]

36 More Applications
• Graph clustering

Giatsidis, Christos, et al. "Corecluster: A degeneracy based graph clustering
framework." AAAI. 2014.

• Graph similarity
Nikolentzos, Giannis, et al. "A Degeneracy Framework for Graph Similarity." IJCAI. 2018.

• Community evaluation
Giatsidis, Christos, Dimitrios M. Thilikos, and Michalis Vazirgiannis. "Evaluating
cooperation in communities with the k-core structure." ASONAM, 2011.

• Influence maximization
Elsharkawy, Sarah, et al. "Effectiveness of the k-core nodes as seeds for influence
maximisation in dynamic cascades." International Journal of Computers 2 (2017).

• Graph generating
Baur, Michael, et al. "Generating graphs with predefined k-core structure." Proceedings of
the European Conference of Complex Systems. 2007.

////////////////////

K-CORE

38 K-Core Model

Erdős, Paul, and András Hajnal. "On chromatic number of graphs and set-systems." Acta
Mathematica Hungarica 17.1-2 (1966): 61-99.

K-core is a maximal subgraph in which each vertex has at least k neighbors in
the subgraph.

39 Computing the k-Core

Iteratively remove every vertex whose degree is less than k.

𝑂(𝑚 + 𝑛)

40 Computing the k-Core

Iteratively remove every vertex whose degree is less than k.

𝑂(𝑚 + 𝑛)

41 Computing the k-Core

Iteratively remove every vertex whose degree is less than k.

𝑂(𝑚 + 𝑛)

42 Computing the k-Core

Iteratively remove every vertex whose degree is less than k.

𝑂(𝑚 + 𝑛)

43 Core Number of a Vertex 𝑣

𝑘 𝑣 = the largest k such that the k-core contains 𝑣

44 Core Decomposition

Compute the core number of every vertex.

45 Core Decomposition

The following algorithms are optional, as long as you know how to
compute the core number of a given graph.

Global-view: peel low-degree vertices iteratively from the whole graph.

Local-view 1: update the upper bound of core number for each vertex
until converge

46 Core Decomposition: Global-view (Peeling)

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks." arXiv preprint cs/0310049 (2003).

Iteratively delete the vertex with the lowest degree. O(m+n)

47 Core Decomposition: Global-view (Peeling)

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks." arXiv preprint cs/0310049 (2003).

Iteratively delete the vertex with the lowest degree. O(m+n)

48 Core Decomposition: Global-view (Peeling)

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks." arXiv preprint cs/0310049 (2003).

Iteratively delete the vertex with the lowest degree. O(m+n)

49 Core Decomposition: Global-view (Peeling)

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks." arXiv preprint cs/0310049 (2003).

Iteratively delete the vertex with the lowest degree. O(m+n)

50 Core Decomposition: Global-view (Peeling)

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks." arXiv preprint cs/0310049 (2003).

Iteratively delete the vertex with the lowest degree. O(m+n)

51 Core Decomposition: Global-view (Peeling)

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks." arXiv preprint cs/0310049 (2003).

Iteratively delete the vertex with the lowest degree. O(m+n)

52 Core Decomposition: Global-view (Peeling)

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks." arXiv preprint cs/0310049 (2003).

Iteratively delete the vertex with the lowest degree. O(m+n)

53 Core Decomposition: Global-view (Peeling)

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks." arXiv preprint cs/0310049 (2003).

Iteratively delete the vertex with the lowest degree. O(m+n)

54 Core Decomposition: Global-view (Peeling)

Batagelj, Vladimir, and Matjaz Zaversnik. "An O (m) algorithm for cores decomposition of
networks." arXiv preprint cs/0310049 (2003).

Using bin-sort -> O(m+n)

55 Core Decomposition: Local-view (Converging)

Montresor, Alberto, Francesco De Pellegrini, and Daniele Miorandi. "Distributed k-core
decomposition." IEEE Transactions on parallel and distribuated systems 24.2 (2013): 288-300.

Locality Theorem:
Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

4

1

v6

3

3

2

Core(V) = 3

4

v6

3

3
4 neighbors with core number at least 3

Core(V) = 4 Only 2 neighbors with core number at least 4

4

v6

56

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:

True

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

57

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

58

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

3

True

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

59

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

3

True

3

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

60

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

Fals

3

True

3

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

61

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

3

True

3 3

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

62

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

3

True

3 3 2

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

63

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

3

True

3 3 2

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

64

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

3

True

3 3 2

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

65

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 13 3 3 2

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

66

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:

True

0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

3 3 3 2

2

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

67

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:
0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 1

False

3 3 3 2

2

2

True

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

68

True

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:
0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 13 3 3 2

2

2

3

2

FalsTrue

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

69

True

ID

Core Decomposition: Local-view (Converging)

v0

v1

v6

v3

v2
v4

v7

v5

v8

Initialize the core number by degree Iteration 1 isContinue

:
0 1 2 3 4 5 6 7 8

Core 3 3 4 6 3 5 3 2 13 3 3 2

2

2

3

2

FalsTrueFalse4

Given a vertex and its core number k:
There exists at least k neighbors with core number k;
There does not exist k+1 neighbors with core number k+1.

