
Term 3 2022
Week 10 (Non-Relational Database Systems)
By Xiaoyang Wang, CSE UNSW

Textbook: Chapters 24 and 25

Disclaimer: the course materials are sourced from
– previous offerings of COMP9311 and COMP3311
– Prof. Werner Nutt on Introduction to Database Systems

(http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/)

COMP9311:
Database Systems

What is in a data model …
An application developer “thinks” in terms of the
real world “things” (people, organisations, actions,
goods, etc.) … and model it as objects/data
structures

2 Designing Data-Intensive Applications, by Martin Kleppmann

When you want to store the objects, you express
them in generic-purpose data model such as
relational model …

Data access layer = translations between the
application model to the data model of the
database …. Only with this translation the objects
to be queried, searched or manipulated (e.g., think
of Python objects of students that are retrieved
from a database)

The need to connect the application objects to your
chosen database’s data model

Database management system …
like PostgreSQL - (based on
relational model). This layer decides
how the data models are physically
stored in memory and disk

What models other than relational models, and why ??

We are Generating Vast Amount of Data …
Air Bus A380:

• Each engine generate
10 TB every 30 min

Twitter:
http://www.internetlives
tats.com/twitter-
statistics/

• Generate approximately
12 TB of data per day.

Facebook:

• Facebook data grows
by over 500 TB daily.

New York Stock:

• Exchange 1TB of data
everyday.

3 https://www.brandwatch.com/2016/03/96-amazing-social-media-statistics-and-facts-for-2016/

Different applications, different data
requirements

E-Commerce website

• Data operations are mainly
transactions (buying, paying, etc.)

• Read/write

• Response time should be quick
and important to maintain
reliability/integrity of the
transactions – database wide.

• i.e., ACID properties are important

4

Image serving website (or many social network
types sites in general)

• Data operations are mainly fetching
information (posts)

• Ready heavy.
• High bandwidth requirement (fast

loading)

• Getting up-to-date read or consistent data
at all time is less critical …

• ACID requirements to achieve strict
serialisability can be relaxed in favour of
allowing more transactions to access
data

5

Different applications, different data
requirements

6

Fan-out effect …

Designing Data-Intensive Applications, by Martin Kleppmann

A user can see tweets posted by the people they follow …
• also creates a lot of ‘writing’ work … On average 75 followers, but can vary widely

(some users have 30 million followers), a lot of ‘reading’ work generated from a
proportionally smaller number of ‘posts’

• A new post –> look up the followers and ‘write’ to each follower’s timeline ahead of
time -> makes reading easy (note: write/read do not have to be “synchronised”)

Different applications, different data
requirements

Relational Model vs. “NoSQL” Models

7

Relational Model and RDBMS (more or so synonymous with SQL)

• The best known, probably the most successful data model which has proven itself in
many aspects to be the data model of choice in many applications

• Data is organised into relations (table) and relationships + constraints

Based on solid theory and well engineered
implementation -> many competing models
have been proposed, but never managed
to take over SQL

Built for business data processing

• Typical business transactions (airline
reservations, stock keeping, etc.)

• Also generically effective in many
modern Web applications as well

Image: http://gnosis.cx/publish/programming/xml_matters_8.html
Designing Data-Intensive Applications, by Martin Kleppmann

But new types of applications à different data requirements à new types of
data model and new database systems.

Relational Model vs. “NoSQL” Models

8

The rise of NoSQL … (since 2010 or so)

• NoSQL = Not Only SQL models

• Refers to a host of technologies that implement distributed, “non-relational” databases

Why NoSQL?

• A need for greater scalability – very
large datasets or very high read and
write throughput

• A need for more expressive and
flexible data model (à less formal)

• Usually do not require a fixed
table schema nor do they use the
concept of joins

• All NoSQL offerings relax one or
more of the ACID properties

Image: https://www.slideshare.net/Dataversity/trends-in-data-modeling
Designing Data-Intensive Applications, by Martin Kleppmann

One of the problems with Relational Models

9

Normalisation … 3NF

* many fragments -> leading to many joins -> scalability for BIG data applications?

Image: https://www.slideshare.net/Dataversity/trends-in-data-modeling
Designing Data-Intensive Applications, by Martin Kleppmann

Artist

Artist ID
Artist Name

Song
Song ID
Song Name
Song Length

CD

CD ID
CD Title

Record Label

Record Label ID
Label Name
Address
City
Postcode

State

State Code
State Name

e.g., Key Value Store (a NoSQL data model)
Friendship of Facebook

as a Relational Database:
• relations and FKs
• People (Pid, Name, ...)

• Friend (Pid1, Pid2, Date)

as a Key-Value Store:
• Key-Value pairs
• A Person KV: <Id; Name>

• Friendship KV: <Id; All_Friends>

• E.g., <0001; {(Id1, Date1), (Id2, Date2), ...}>

When we want to get all friends
• Relational Database: Join People with Friend (costly)
• Key-Value Store: Get directly from the Friendship KV of a given Person Id (i.e.,

one read).

10

RDBMS Performance

11 Image: https://www.slideshare.net/Dataversity/trends-in-data-modeling
Designing Data-Intensive Applications, by Martin Kleppmann

Alternative Data Models?

12 Designing Data-Intensive Applications, by Martin Kleppmann (Chapter 2)

Relational Modelling
of a resume (e.g., LinkedIn Profile)

Typical normalised form
would put multi-values in
separate tables with user_id
as foreign key … also uses look-up

tables (e.g., regions, industry)

Fragmented tables -> join

Alternative Data Models?

13 Designing Data-Intensive Applications, by Martin Kleppmann

Document-based option:

• Encodes jobs, education,
contact info as a
document (expressed
using JSON or XML
syntax)

Document-based databases

14 https://www.tutorialspoint.com/mongodb/mongodb_overview.htm

MongoDB (the most well-known example)

Notable points:
• Collections do not enforce a schema. Documents within a collection can have different

fields. Typically, all documents in a collection are of similar or related purpose
• No joins (everything embedded in a single object)

Document-based databases

15 Designing Data-Intensive Applications, by Martin Kleppmann

Embedded objects normally are
the result of One-to-Many
relationships

Improved “locality”
• a single retrieval request

is enough to get all
necessary into on “User”

Document model is not good with …

16 Designing Data-Intensive Applications, by Martin Kleppmann

Lookup situations?

The relational model based solution of these “look-up tables” are useful:
• Consistent style and spelling across Users
• Avoiding ambiguity (e.g., if several cities with the same name)
• Ease of updating (the name is stored in only one place)

Storing ID vs Text -> NOT duplicating text is more flexible and keeps data consistent – reason for normalising in RDB

Document model is not good with …
The single “documents” tend to become more interconnected as more features are added

17 Designing Data-Intensive Applications, by Martin Kleppmann

The company – linking it as a
full entity by itself (i.e., another document)

The recommendations – linking it to other Users
(Many-to-Many Relationships)

In Document-based model, join support could be weak, the application code might have to resolve these
relationships as needed (i.e., more hand-coding by the application developer)

Relational vs. Document
Which data model leads to simpler application code?

• If the application data objects looks more like a tree (i.e., document-like) à it can be
loaded at once using the document-based model

• If M-M relationships are central to the application data à since the relational model is
efficient in joins, relational DB may be advantageous. If document model is used,
some of the ‘join’ logic will have to done by the application developers themselves
(e.g., via for-loops)

Consider the kinds of relationships between data items. If they are highly interconnected
data (e.g., social network)

• document model is not so good,
• relational model is OK …
• graph models would be natural (to be seen later)

18 Designing Data-Intensive Applications, by Martin Kleppmann

Relational vs. Document
Convergence of document and relational databases

19 Designing Data-Intensive Applications, by Martin Kleppmann
https://www.zdnet.com/article/the-emergence-of-nosql-and-convergence-with-relational-databases/

• PostgreSQL (since v.9.3), MySQL (since v.5.7). IBM DB2 (since v.10) support JSON
documents.

• RethinkDB, MongoDB (document-based) support relational-like joins in its query
language

• The two models can complement each other -> A hybrid model seems like a trend in
these two systems

PostgreSQL and JSON document type
https://www.postgresqltutorial.com/postgresql-json/
CREATE TABLE orders (

id serial NOT NULL PRIMARY KEY,

info json NOT NULL

);

INSERT INTO orders (info)

VALUES('{ "customer": "Lily Bush", "items": {"product": "Diaper","qty": 24}}'),

('{ "customer": "Josh William", "items": {"product": "Toy Car","qty": 1}}'),

('{ "customer": "Mary Clark", "items": {"product": "Toy Train","qty": 2},
{“product”: “A Kitty Doll”, “qty”:1}}’);

SELECT info ->> 'customer' AS customer

FROM orders

WHERE info -> 'items' ->> 'product' = 'Diaper’;

Customer

Lily Bush

https://www.postgresqltutorial.com/postgresql-json/

Graph-like Models

M-M relationships are an
important factor in deciding
which data model to go with

1-M (tree/doc), self-contained ->
Document model

M-M -> either relational or graph

Highly M-M, complicated
connections -> graph …

Graph:

• Vertices/nodes: represent
entities

• Edges/arcs: represent
relationships

21 Designing Data-Intensive Applications, by Martin Kleppmann

The recommendations – linking it to other Users
(Many-to-Many Relationships)

User User

Graph-like Models

Many kinds of data can be
modelled as a graph

• Social Graph – vertices are
people, edges indicate which
people know each other

• The Web Graph – vertices are
web pages and edges indicate
HTML links to other pages

• Road or Rail networks –
vertices are junctions and
edges represent the
roads/railways between them

Well-known algorithms on the
model

22
Designing Data-Intensive Applications, by Martin Kleppmann

http://www.supplychain247.com/article/why_supply_chains_should_be_more_socially_engaged
http://canacopegdl.com/single.php?id=http://www-inst.eecs.berkeley.edu/~cs61bl/r//cur/graphs/web.graph.png

https://visualign.wordpress.com/2012/07/11/london-tube-map-and-graph-visualizations/

Graph-like Models

Vertices are not limited to the same type of data.

23 Designing Data-Intensive Applications, by Martin Kleppmann

So graphs are “very” flexible … (cf. RDB)

• Different kinds of regional structures in different countries

• Type country “within” a type country

• Varying granularity (e.g., born_in “type:city”, born_in “type:state”)

24 Designing Data-Intensive Applications, by Martin Kleppmann

Graph-like Models Facebook, TAO system (2013)

25
Designing Data-Intensive Applications, by Martin Kleppmann

(https://www.usenix.org/system/files/conference/atc13/atc13-bronson.pdf)

Storing and Querying Graph-like Models

26 Designing Data-Intensive Applications, by Martin Kleppmann

Cypher Query - declarative query language for graphs

27 Designing Data-Intensive Applications, by Martin Kleppmann

“Find the names
of all the
people who
emigrated
from the
United States
to Europe"

“Declarative”
language ->
the execution
details
hidden

28 Designing Data-Intensive Applications, by Martin Kleppmann

XML data model and query language

• A simple, very flexible and extensible text data format

• “extensible” because the markup format is not fixed like HTML
• It lets you design your own customised markup

• XML is a language that describes data
• It separates presentation issues from the actual data

XML – separating content/presentation

29

XML – many applications …

Chemical Markup Language (CML)

30

XML – many applications …

31

Data Feeds (RSS and ATOM)

SVG
- https://pixabay.com/en/photos/svg/

Many more … (e.g., system configuration files, XML-based APIs)

https://pixabay.com/en/photos/svg/

Accessing/Querying XML files

XQuery is a declarative language in which a query is represented as an expression

32

Can you “read” it?

Accessing/Querying XML files

33

Join two documents

If/else conditions

XML data model and query language

Benefits of using XML in document

• Self-describing, modular and portable data

• A common, widely accepted data representation language for the Web

• Standard support for checking validity of data (XML can have a schema)

• Efficient search and query language

• Standard support for querying XML docs
• Quick and simple search (XPath)
• More comprehensive keyword + structure based search possible as well

(XQuery)

34

Advantages/Disadvantages of NoSQL

Which available data model to use should be decided on your data requirements.

Not all NoSQL solutions are equal – i.e., document-based model and graph-
based model serve different data requirements

Generally, NoSQL solutions are considered lightweight and easy to implement
(e.g., no schema required) – and could have high read/write throughput due
to the relaxation in data consistency requirement

However, NoSQL technologies are relatively new still – not as well
optimised/developed as RDBMS

Schema-less data storage could lead to less manageable database overtime.

35

