
Recap …
Transaction is …

dirty read …

1



Recap …
Transaction

An execution of a user program that performs some action that is treated as atomic 
according to the semantics of some database application. The DBMS sees the 
transaction as a sequence of actions that can include read and write operations on the 
database, as well as computations.

dirty read

When a transaction reads an object that has been modified by another not-yet-committed 
transaction. See Week 9 lecture slides on Temporary update problem for illustrations.

2



Recap …
serializable schedule is …

conflict-serializable schedule

view-serializable schedule

3



Recap …
serializable schedule

A schedule over a set of transactions that produces a result that is the same as some serial 
execution of the transactions.

conflict-serializable schedule

A schedule is conflict-serializable if it is conflict-equivalent to some serial schedule. Two 
schedules are conflict-equivalent if they involve the same set of actions and they order 
every pair of conflicting actions in the same way.

view-serializable schedule

A schedule is view-serializable if it is view-equivalent to some serial schedule. Two 
schedules are view-equivalent if they satisfy:

• the initial value of any object is read by the same transaction in both schedules, and

• the final value of any object is written by the same transaction in both schedules, and

• any shared object is written-then-read by the same pair of transactions in both 
schedules.

4



Recap …
two-phase locking protocol is …

5



Recap …
two-phase locking protocol

The two-phase locking protocol is a way of ensuring that only serializable schedules occur 
when transactions execute concurrently. Under this protocol each transaction must:

• acquire a shared lock on an object before reading it

• acquire an exclusive lock on an object before writing it

• not acquire any new locks once it has released a lock

6



Exercises …
Draw a precedence graph for the following schedule (C means commit)

7



Answer …
Draw a precedence graph for the following schedule (C means commit)

8

It has an edge from T3 to T1 (because of A) and an edge from 
T2 to T3 because of B.

This gives: T2 --> T3 --> T1



Exercises …
Consider the following Schedule S:

9

A. Determine (by using a precedence graph) whether the schedule is 
serializable

B. Modify S to create a complete schedule that is conflict-serializable



Answer …

10

a. Determine (by using a precedence graph) whether the schedule is serializable

The precedence graph has an edge, from T1 to T3, because of the conflict 
between T1:R(Y) and T3:W(Y). It also has an edge, from T2 to T3, because of the 
conflict between the first T2:R(Y) andT3:W(Y). It also has an edge, from T3 to T2, 
because of the conflict between T3:W(Y) and the second T2:R(Y).

b. Modify S to create a complete schedule that is conflict-serializable

Trick question. It is not possible. Since the precedence graph is cyclic, we know that 
it's not conflict-serializable. If we are allowed to add abort actions (which was not 
mentioned in the question), we could simply abort either T2 or T3 and the schedule 
would become conflict-serializable.



Exercises …
For each of the following schedules, state whether it is conflict-serializable and/or view-

serializable. If you cannot decide whether a schedule belongs to either class, explain 
briefly. The actions are listed in the order they are scheduled, and prefixed with the 
transaction name.

a. T1:R(X) T2:R(X) T1:W(X) T2:W(X)

b. T1:W(X) T2:R(Y) T1:R(Y) T2:R(X)

c. T1:R(X) T2:R(Y) T3:W(X) T2:R(X) T1:R(Y)

d. T1:R(X) T1:R(Y) T1:W(X) T2:R(Y) T3:W(Y) T1:W(X) T2:R(Y)

e. T1:R(X) T2:W(X) T1:W(X) T3:W(X)

11



Answer …

The methods used to determine these solutions:
• for conflict-serializablility, draw precedence graph and look for cycles
• for view-serializablility, apply the definition from lecture notes.

You can short-circuit the view serializability check. As soon as you know that the schedule 
is conflict-serializable, it must also be view serializable.

Solutions:

a. not conflict-serializable, not view-serializable

b. conflict-serializable, view-serializable

c. conflict-serializable, view-serializable

d. not conflict-serializable, not view-serializable

e. not conflict-serializable, view-serializable (view equivalent to the serial schedule T1, T2, 
T3)

12



Exercise …
Is the following schedule serializable? Show your working.

13



Answer …
Is the following schedule serializable? Show your working.

14

When we talk about serializability and don't specifically say what kind, 
we usually mean conflict-serializable. As above, the "working" for this 
question involves constructing a precedence graph, based on 
conflicting operations, and looking for cycles.

In this case there's a conflict between T1:R(X) and T2:W(X), giving a 
graph edge from T1 to T2. There's also a conflict 
between T2:R(Y) and T1:W(Y), giving a graph edge from T2 to T1. This 
means the graph has a cycle, so the schedule is not serializable.



Exercise …
Consider the following two transactions:

15

a.Write versions of the above two transactions that use two-phase 
locking.

b.Can a schedule for T1 and T2 result in deadlock? If so, give an example 
schedule. If not, explain why not.



Answer …

16

a.Write versions of the above two transactions that use two-phase 
locking.

The basic idea behind two-phase locking is that you take out all the locks 
you need, do the processing, and then release the locks. Thus two-phase 
implementations of T1 and T2 would be:



Answer …

17

b. Can a schedule for T1 and T2 result in deadlock? If so, give an 
example schedule. If not, explain why not.

Yes. Consider the following (where L(X) denotes taking a lock on object X):


