Recap ...

Transaction is ...

dirty read ...




Recap ...

Transaction

An execution of a user program that performs some action that is treated as atomic
according to the semantics of some database application. The DBMS sees the
transaction as a sequence of actions that can include read and write operations on the

database, as well as computations.

dirty read

When a transaction reads an object that has been modified by another not-yet-committed
transaction. See Week 9 lecture slides on Temporary update problem for illustrations.



Recap ...

serializable schedule is ...

conflict-serializable schedule

view-serializable schedule



Recap ...

serializable schedule

A schedule over a set of transactions that produces a result that is the same as some serial
execution of the transactions.

conflict-serializable schedule

A schedule is conflict-serializable if it is conflict-equivalent to some serial schedule. Two
schedules are conflict-equivalent if they involve the same set of actions and they order
every pair of conflicting actions in the same way.

view-serializable schedule

A schedule is view-serializable if it is view-equivalent to some serial schedule. Two
schedules are view-equivalent if they satisfy:

 the initial value of any object is read by the same transaction in both schedules, and
 the final value of any object is written by the same transaction in both schedules, and

« any shared object is written-then-read by the same pair of transactions in both
schedules.



Recap ...

two-phase locking protocol is ...




Recap ...

two-phase locking protocol

The two-phase locking protocol is a way of ensuring that only serializable schedules occur
when transactions execute concurrently. Under this protocol each transaction must:

« acquire a shared lock on an object before reading it
* acquire an exclusive lock on an object before writing it

* not acquire any new locks once it has released a lock



Exercises ...

Draw a precedence graph for the following schedule (C means commit)

T1: R(A) W(Z) C
T2: R(B) W(Y) C
T3: W(A) W(B) C

UNSW



Answer ...

Draw a precedence graph for the following schedule (C means commit)

T1: R(A) W(Z) C
T2: R(B) W(Y) C
T3: W(A) W(B) C

It has an edge from T3 to T1 (because of A) and an edge from
T2 to T3 because of B.

This gives: T2 --> T3 --> T1

YYYYYY



Exercises ...

Consider the following Schedule S:

Tl: R(X) R(Y) W(X) W(X)
T2: R(Y) R(Y)
T3: W(Y)

A. Determine (by using a precedence graph) whether the schedule is
serializable

B. Modify S to create a complete schedule that is conflict-serializable

YYYYYY



Answer ...

Tl: R(X) R(Y) W(X) W(X)
T2: R(Y) R(Y)
T3: W(Y)

a. Determine (by using a precedence graph) whether the schedule is serializable

The precedence graph has an edge, from T7 to T3, because of the conflict
between T1:R(Y) and T3:W(Y). It also has an edge, from T2 to T3, because of the
conflict between the first T2:R(Y) andT3:W(Y). It also has an edge, from T3 to T2,
because of the conflict between T3:W(Y) and the second T2:R(Y).

b. Modify S to create a complete schedule that is conflict-serializable
Trick question. It is not possible. Since the precedence graph is cyclic, we know that

it's not conflict-serializable. If we are allowed to add abort actions (which was not

mentioned in the question), we could simply abort either T2 or T3 and the schedule
would become conflict-serializable.

B UNSW
10



11

EXxercises ...

For each of the following schedules, state whether it is conflict-serializable and/or view-
serializable. If you cannot decide whether a schedule belongs to either class, explain
briefly. The actions are listed in the order they are scheduled, and prefixed with the
transaction name.

T1:R(X) T2:R(X) T1:W(X) T2:W(X)
T1:W(X) T2:R(Y) T1:R(Y) T2:R(X)

T1:R(X) T2:R(Y) T3:W(X) T2:R(X) T1:R(Y)

T1:R(X) T1:R(Y) T1:W(X) T2:R(Y) T3:W(Y) T1:W(X) T2:R(Y)
e. T1:R(X) T2:W(X) T1:W(X) T3:W(X)

© T o

Q



12

Answer ...

d.

e.

Tl

T1

Tl

Tl

T1

:R(X)
1W(X)
:R(X)
:R(X)

tR(X)

T2

T2

T2

Tl

T2

:R(X) T1
:R(Y) T1
:R(Y) T3
:R(Y) T1

sW(X) T1

The methods used to determine these solutions:

TW(X)
:R(Y)
TW(X)
TW(X)

tW(X)

T2

T2

T2

T2

T3

TW(X)

tR(X)

:R(X) T1:R(Y)

:R(Y) T3:W(Y) T1l:W(X) T2:R(Y)

tW(X)

for conflict-serializablility, draw precedence graph and look for cycles

for view-serializablility, apply the definition from lecture notes.

You can short-circuit the view serializability check. As soon as you know that the schedule

Solutions:
a.

b.

is conflict-serializable, it must also be view serializable.

not conflict-serializable, not view-serializable

conflict-serializable, view-serializable

conflict-serializable, view-serializable

not conflict-serializable, not view-serializable

not conflict-serializable, view-serializable (view equivalent to the serial schedule T1, T2,

T3)

UNoW

)



13

Exercise ...

Is the following schedule serializable? Show your working.

T1: R(X)W(X)W(Z) R(Y)W(Y)
T2: R(Y)W(Y)R(Y) W(Y)R(X)

W(X)R(V)W(V)

UNSW



Answer ...

Is the following schedule serializable? Show your working.

T1: R(X)W(X)W(Z) R(Y)W(Y)
T2: R(Y)W(Y)R(Y) W(Y)R(X) W(X)R(V)W(V)

When we talk about serializability and don't specifically say what kind,
we usually mean conflict-serializable. As above, the "working" for this
question involves constructing a precedence graph, based on
conflicting operations, and looking for cycles.

In this case there's a conflict between T1:R(X) and T2:W(X), giving a
graph edge from T1 to T2. There's also a conflict

between T2:R(Y) and T1:W(Y), giving a graph edge from T2 to T1. This
means the graph has a cycle, so the schedule is not serializable.



15

Exercise ...

Consider the following two transactions:

Tl T2
read(A) read(B)
A := 10*A+4 B := 2*B+3
write(A) write(B)
read(B) read(A)
B := 3*B A := 100-A
write(B) write(A)

a.Write versions of the above two transactions that use two-phase
locking.

b.Can a schedule for T7 and T2 result in deadlock? If so, give an example
schedule. If not, explain why not.

YYYYYY



16

Answer ...

a.Write versions of the above two transactions that use two-phase

locking.

The basic idea behind two-phase locking is that you take out all the locks
you need, do the processing, and then release the locks. Thus two-phase
implementations of T1 and T2 would be:

write lock(A)
read(A)

A := 10*A+4
write(A)
write lock(B)
read(B)

B := 3*B
write(B)
unlock(A)
unlock(B)

write lock(B)
read(B)

B := 2*B+3
write(B)
write lock(A)
read(A)

A := 100-A
write(A)
unlock(B)
unlock(A)

UNSW



17

Answer ...

b. Can a schedule for T7 and T2 result in deadlock? If so, give an
example schedule. If not, explain why not.

Yes. Consider the following (where L(X) denotes taking a lock on object X):

Tl: L(A)R(A) W(A)L(B)
T2 L(B) R(B)W(B)L(A)

YYYYYY



