
Term 3 2022
Week 9 Transactions and Concurrency
By Xiaoyang Wang, CSE UNSW

Textbook: Chapters 20, 21 and 22

Disclaimer: the course materials are sourced from
– previous offerings of COMP9311 and COMP3311
– Prof. Werner Nutt on Introduction to Database Systems

(http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/)

COMP9311:
Database Systems

http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/

Transactions, Concurrency
DBMSs provide access to valuable information resources in an environment that is:

• shared - concurrent access by multiple users
• unstable - potential for hardware/software failure

DBMS aims to shield the users from this environment … Each user should see the system
as:

• unshared - their work is not inadvertantly affected by others
• stable - the data survives in the face of system failures

Goal of DBMS: “data integrity is always maintained”.

2

Transactions, Concurrency
DBMS implements the following three concepts to ensure data integrity …

(1) Transaction processing

techniques for describing "logical units of work" in applications in terms of underlying
DBMS operations

(2) Concurrency control

techniques for ensuring that multiple concurrent transactions do not interfere with each
other

(3) Recovery mechanisms

techniques to restore information to a consistent state, even after major hardware
shutdowns/failures

3

What is … Transaction Processing
For DBMS to handle potential failures correctly and efficiently:

Each database user must express her database work requirements (e.g., your SQL
statements) as a set of transactions.

A database transaction is a "logical unit of work" in a DB application.

A transaction typically comprises multiple DBMS operations.

E.g. select ... update ... insert ... select ... insert ...

Examples:
• booking a concert ticket
• transferring funds between bank accounts
• updating stock levels via point-of-sale terminal
• enrolling in a course or class

4

Example Transaction in code
Transfer funds between two accounts in same bank. Rough implementation in PLpgSQL:

5

Example Transaction
Now using this function and the transaction that contains A, B and C action points …

Consider two simultaneous transfers between accounts …

we have two transactions … starting balances of X = 500, Y = 500
• T1 transfers $200 from account X to account Y
• T2 transfers $300 from account X to account Y

If the sequence of events is like:

everything works correctly, i.e.
• overall, account X is reduced by $500
• overall, account Y is increased by $500

6

Example Transaction
What if the sequence of events is like?

In terms of database operations,

this is what happens:
• T1 gets balance from X (oldBal)
• T2 gets same balance from X (oldBal)
• T1 decrements balance in X (oldBal - 200)
• T2 decrements balance in X (oldBal - 300)
• T2 increments balance in Y (bal + 200) // new balance for Y is bal + 200 = 700

• T1 increments balance in Y (bal + 300) // new balance for Y is bal + 300 = 1000

Final balance of Y is ok; final balance of X is wrong (inter-leaving operations may cause it)

Transaction management is to prevent transactions being executed in this fashion,
while still being able to run as many transactions as possible at any given time.

7

Transaction Concepts
Let’s define some basic concepts for transaction processing.

A transaction must always terminate, either:
• successfully (COMMIT), with all changes correctly preserved
• unsuccessfully (ABORT), with database unchanged

8

Transaction
Concepts

– Read/Write

READ - compute the data block that contains
the item to be read

Either

• find a buffer containing the block, or

• read from disk into a buffer

Copy (read) the value from the buffer.

SELECT produces READ operations on the
database.

9

WRITE - compute the disk block containing
the item to be written

Either

• find a buffer containing the block, or

• read from disk into a buffer

Copy (write) the new value into the buffer

At some point (maybe later), write the buffer
back to disk.

INSERT, UPDATE, DELETE produce WRITE/
READ operations.

Transaction Concepts

10

To describe transaction effects, we consider:
• READ - transfer data from disk to memory
• WRITE - transfer data from memory to disk
• ABORT - terminate transaction, unsuccessfully
• COMMIT - terminate transaction, successfully

The READ, WRITE, ABORT, COMMIT operations:
• occur in the context of some transaction T
• involve manipulation of data items X, Y, ... (READ and WRITE)

The operations are typically denoted as:

Transaction Concepts

11

Execution of the above funds transfer example can be described as

or simply as:

RT(S) RT(D) RT(S) WT(S) RT(D) WT(D) CT

Let’s say there were two transactions (i.e., running the funds transfer function 2 times)

schedule: R1(S) R1(D) R1(S) W1(S) R1(D) W1(D) C1 R2(S) R2(D) R2(S) W2(S) R2(D) W2(D) C2

This is known as a schedule for the transactions.

Note: this is not a “plan”, this is a trace of the execution of transactions (i.e.,
log/history). It is a very important distinction to remember.

Transaction Consistency
Transactions typically have intermediate states that are inconsistent.

However, states before and after transaction must be consistent.

12

ACID Properties
Data integrity is assured if transactions satisfy the following:

Atomicity
• Either all operations of transaction are reflected in database or none are.

Consistency
• Execution of a transaction in isolation preserves data consistency.

Isolation
• Each transaction is "unaware" of other transactions executing concurrently in the

system.

Durability
• After a transaction completes successfully, its changes persist even after subsequent

system failure.

13

ACID Properties
Atomicity is handled by the commit and rollback mechanisms.

• commit saves all changes and ends the transaction
• rollback undoes changes already made by the transaction

Durability is handled by implementing stable storage, via
• redundancy, to deal with hardware failures
• logging/checkpoint mechanisms, to recover state

Here, we consider primarily Consistency and Isolation.

14

Transaction Anomalies
If concurrent transactions access shared (i.e., the same) data objects, various anomalies

can arise.

We give examples using the following two transactions:

and initial DB state X=100, Y=50, N=5, M=8.

T1 and T2 are sharing X.

15

Serial Schedules
A schedule is a trace of transaction operations. A serial schedule is a schedule that doesn’t

overlap with other transaction operations (i.e., isolated with each other)

If T1 and T2 transactions are executed in a serial schedule, like:

the database is left in a consistent state. So this is ideal schedule. We want to run
transactions as if they are isolated from each other … i.e., as serial schedules.

The basic idea behind serial schedules:
• the database starts in a consistent state
• the first transaction completes, leaving the DB consistent
• the next transaction completes, leaving the DB consistent

As would occur e.g. in a single-user database system.

16

Serial Schedules
For the first schedule in our example (executed in serial):

17

initial DB state X=100, Y=50, N=5, M=8

Serial Schedules
For the second schedule in our example (executed in serial):

18

initial DB state X=100, Y=50, N=5, M=8

Serial Schedules
Note that serial execution doesn't mean that each transaction got the same results,

regardless of the order.

Consider the following two transactions:

• If we execute T1 then T2, we get a smaller salary total than if we executed T2 then T1.

• In both cases, however, the salary total is consistent with the state of the database at
the time the query is executed:

Again … we repeat: the basic idea behind serial schedules:
• the database starts in a consistent state
• the first transaction completes, leaving the DB consistent
• the next transaction completes, leaving the DB consistent

19

Concurrent Schedules
A serial execution of transactions leaves DB consistent.

but not great in terms of processing a large amount of transactions because it meant all
transactions are executed in sequence… so DBMS run transactions “concurrently (non-
serial)”.

But … if transactions execute in a manner that they produces a concurrent (non-serial)
schedule, the potential exists for conflict among their effects. In the worst case, the
effect of executing the transactions ...

• is to leave the database in an inconsistent state
• even though each transaction, by itself, is consistent

So why don't we observe such problems in real DBMSs with high # of transactions? ...
• concurrency control mechanisms handle them (see later).

20

Valid Concurrent Transactions
Not all concurrent executions cause problems.

For example, the schedules (interleaving, not serial)

still leave the database in a consistent state.

21

Lost Update Problem
Consider the following schedule where the transactions execute in parallel:

In this scenario:
• T2 reads data (X) that T1 is currently operating on
• then makes changes to X and overwrites T1's result

This is called a Write-Read (WR) Conflict or dirty read.

The result: T1's update to X is lost.

22

Lost Update Problem
Consider the states in the WR Conflict schedule: (n=5, m=8)

23

Temporary Update Problem
Consider the following schedule where one transaction fails:

Transaction T1 aborts after writing X.

The abort will undo the changes to X, but where the undo occurs can affect the results.

Consider three places where undo might occur:

24

Temporary Update – Case 1
This scenario is ok. T1's effects have been eliminated.

25

Temporary Update – Case 2
In this scenario, some of T1's effects have been retained.

26

Temporary Update – Case 3
In this scenario, T2's effects have been lost, even after commit.

27

Serializability
For ACID, the DBMS must run transactions in a way that it produces a “serializable”

schedule

Serializable
• The effect of executing n concurrent transactions is the same as the effect of

executing them serially in some order.
• (i.e., may not be in serial, but the effect is as if they are in serial)

• DBMS uses a concurrency control technique to run transactions concurrently so they
do not have to run the high number of transactions sequentially

• For assessing the correctness of concurrency control methods, we can perform a test
to see whether it produces serializable schedules (à Serializability Test) …
• DBMS should devise a concurrency control method that is guaranteed to produce

only serializable schedules.
• The use of the serialisability concept is relevant in “theoretically” proving/testing

that the schedules are serializable

28

Serializability
If a concurrent schedule for transactions T1 ..Tn acts like a serial schedule for T1 ..Tn, then

consistency is guaranteed.

To determine this requires a notion of schedule equivalence (i.e., “equality” test).

Note: we are not attempting to determine equivalence of entire computations, simply of the
interleaved sequences of read/write operations.

A serializable schedule is a concurrent schedule that produces a final state that is the same
as that produced by some serial schedule.

There are two primary testing formulations of serializability:
• conflict serializibility (read/write operations occur in the "right" order)
• view serializibility (read operations see the correct version of data)

29

Conflict Serializability
Consider two transactions T1 and T2 acting on data item X.

Considering only read/write operations, the possibilities are:

If T1 and T2 act on different data items result is equivalent regardless of order.

30

Conflict Serializability
Two transactions have a potential conflict if

• they perform operations on the same data item
• at least one of the operations is a write operation

o In the above cases, the order of operations affects the result.

o Conversely, if two operations in a schedule don't conflict,
we can swap their order without affecting the overall result.

o This gives a basis for determining equivalence of schedules.

31

If we can transform a schedule
• by swapping the orders of non-conflicting operations
• such that the result is a serial schedule

then we say that the schedule is conflict serializible.

If a concurrent schedule is equivalent to some (any) serial schedule, then we have a
consistency guarantee.

Conflict Serializability
Example: transform a concurrent schedule to serial schedule

32

View Serializability
View Serializability is

• an alternative formulation of serializability
• that is less conservative than conflict serializability (CS)

(i.e., some schedules that are view serializable are not conflict serializable)

As with CS, it is based on a notion of schedule equivalence
• a schedule is "safe" if view equivalent to a serial schedule
• i.e., compare a schedule with a serial schedule à check “view equivalent”, if yes,

“view serialisiable”

The idea: if all the read operations in two schedules ...
• always read the result of the same write operations
• then the schedules must produce the same result

33

View Serializability
Two schedules S and S' on T1 .. Tn are view equivalent iff

for each shared data item X
– (1) initial read: if Tj reads the initial value of X in S, then it also reads the initial value

of X in S’
– (2) update read: if Tj reads X in S and X was produced by Tk, then Tj must also read

the value of X produced by Tk in S’
– (3) final write: if Tj performs the final write of X in S, then it must also perform the final

write of X in S'

To check serializibilty of S,

find a serial schedule

that is view equivalent to S

34

Testing Serializability

In designing concurrency control schemes (i.e., lock management system), we need a way

of checking whether they produce "safe" schedules (i.e., serializable schedules).

This is typically achieved by a demonstration that the scheme generates only serializable

schedules, and we need a serializability test for this.

There is a simple and efficient test for conflict serializability; there is a more complex test

for view serializablity.

Both tests are based on notions of

• building a graph to represent transaction interactions
• testing properties of this graph (checking for cycles)

35

Testing Serializability - precedence graph
A precedence graph G = (V,E) for a schedule S consists of

• a vertex in V for each transaction from T1 .. Tn

• an edge in E for each pair Tj and Tk, such that
– there is a pair of conflicting operations between Tj & Tk
– the Tj operation occurs before the Tk operation

Note: the edge is directed from Tj → Tk

If an edge Tj → Tk exists in the precedence graph
• then Tj must appear before Tk in any serial schedule

Implication: if the precedence graph has cycles, then S can't be serialized.

Thus, the serializability test is reduced to cycle-detection

(and there are cycle-detection algorithms available in many algorithms textbooks)

36

Cyclic Graph

Serializability Test Examples

37

Serializability Test Examples

38

Serializability Test Examples

39

Serializability Test Examples

40

Concurrency Control
• Having serializability tests is useful theoretically, but they do not provide a

practical tool for organising schedules.
§ the # of n transactions to be considered at any given time is high in

most database management systems
§ the cost of testing for serializability via graphs may not be acceptable
§ Besides … the schedules are traces (i.e., log/history) of executed

transactions, not applicable for organising future transactions

• What is required are methods (= a set of rules) that can be applied to each
transaction individually which guarantee that any combination of transactions
is serializable

• This method is called concurrency control and the method aims to produce
serializable schedules from concurrent transactions.

41

Concurrency Control Methods
Approaches that DBMS use to produce serializable schedules:

• lock-based: synchronise transaction execution via locks on some portion of

the database.

• multiversion-based: allow multiple “consistent” versions of the data to exist,

and allocate each transaction exclusively to access one version.

• timestamp-based: organise transaction execution in advance by assigning

timestamps to operations.

• validation-based (optimistic concurrency control): exploit typical

execution-sequence properties of transactions to determine safety

dynamically.

42

Concurrency Control Methods
Locking Mechanism

• The idea of locking some data item X is to:
– give a transaction exclusive use of the data item X,
– do not restrict the access of other data items.

• This prevents one transaction from changing a data item currently being used
in another transaction.

We will discuss a simple locking scheme which locks individual items, using read
and write locks

43

Lock-based Concurrency Control
Synchronise access to shared data items via following rules:

• before reading X, get shared (=read) lock on X
• before writing X, get exclusive (=write) lock on X
• an attempt to get a shared lock on X is blocked if another transaction already has

exclusive lock on X
• an attempt to get an exclusive lock on X is blocked if another transaction has any

kind of lock on X

Lock requests are made to concurrency-control manager. Transaction can proceed only
after request is granted.

44

In this scheme,
• Several read locks can be issued on the same

data item at the same time.

• A read lock and a write lock cannot be issued
on the same data item at the same time,
neither two write locks

Shared
(read)

Exclusive
(write)

Shared Yes No

Exclusive No No

Lock-based Concurrency Control

• A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks. Locking protocols restrict the set of possible
schedules.

• Locking as above is not sufficient to guarantee serializability — if A and B get
updated in-between the read of A and B, the displayed sum would be wrong.

• These rules alone do not guarantee serializability.

45

Example of a transaction performing locking:

Display Sum (A and B)

Two Phase Locking (2PL)
To guarantee serializability, transactions must also obey the two-phase locking

protocol:

• Growing Phase: all locks for a transaction must be obtained before any locks
are released

• transaction may obtain locks
• transaction may not release locks

• Shrinking Phase: gradually release all locks (once a lock is released no new
locks may be requested).

• transaction may release locks
• transaction may not obtain locks

The protocol assures conflict serializability. It can be proved that the transactions
can be serialized in the order of their lock points à the point where a
transaction acquired its final lock.

46

Two Phase Locking (2PL) Example

47

(a) Two transactions T1 and T2 (do not obey two-phase locking)
(b) Results of possible serial schedules of T1 and T2.

Two Phase Locking (2PL) Example

48

(c) A nonserializable schedule S that uses locks.

Initial values: X = 20, Y = 30

Two Phase Locking (2PL) Example

49

Transactions T1′ and T2′, which are the same as T1 and T2
previously but follow the two-phase locking protocol.

Problems with Locking
Appropriate locking can guarantee correctness.

However, it also introduces potential undesirable effects:

• Deadlock

No transactions can proceed; each waiting on lock held by another.

• Starvation

One transaction is permanently "frozen out" of access to data.

• Reduced performance

Locking introduces delays while waiting for locks to be released.

50

Deadlock
Deadlock occurs when two transactions are waiting for a lock on an item held by

the other.

Example:

51

Neither transaction can proceed … Such a situation is called a deadlock.

Deadlock Check
Create the wait-for graph for currently active transactions:
• create a vertex for each transaction; and

• create a directed edge from Ti to Tj, if Ti is waiting for an item locked by Tj.
• If the graph has a cycle, then a deadlock has occurred.

52

deadlock detection
periodically check for deadlocks, abort and rollback some transactions
(restart them later).

Deadlock

53

Handling deadlock involves forcing a transaction to "back off".

• select a process to "back off"
• choose on basis of how far transaction has progressed, # locks held, ...

• roll back the selected process
• prevent starvation

• need methods to ensure that same transaction isn't always chosen

Deadlock prevention
Assign priorities based on timestamps (early start has higher priority).

Assume T1 wants a lock that T2 holds.

Two policies (strategies) are possible:
– “Wait-die”: If T1 has higher priority, T1 waits for T2; otherwise T1 aborts
– “Wound-wait”: If T1 has higher priority, T2 aborts; otherwise T1 waits

If a transaction re-starts, make sure it has its original timestamp

54

Looking at Performance
Locking typically reduces concurrency ⇒ reduces throughput.

Granularity levels: field, row (tuple), table, whole database

Granularity of locking can impact performance:

+ lock a small item ⇒ more of database accessible

+ lock a small item ⇒ quick update ⇒ quick lock release

- lock small items ⇒ more locks ⇒ more lock management

Multiple lock-granularities give best scope for optimising performance.

55

Concurrency Control in SQL
Transactions in SQL are specified by

BEGIN ... start a transaction

COMMIT ... successfully complete a transaction

** ROLLBACK ... undo changes made by transaction + abort

In PostgreSQL, other actions that cause rollback:
• raise exception during execution of a function
• returning null from a before trigger

56

Concurrency Control in SQL
Explicit control of concurrent access is available, e.g.

Table-level locking: LOCK TABLE

• various kinds of shared/exclusive locks are available
» access share allows others to read, and some writes
» exclusive allows others to read, but not to write
» access exclusive blocks all other access to table

• Row-level locking: SELECT FOR UPDATE, UPDATE, DELETE
• allows others to read, but blocks write on selected rows

Some SQL commands automatically acquire locks
» e.g. ALTER TABLE acquires an access exclusive lock

All locks are released at end of transaction (no explicit unlock)

57

PostgreSQL – Transactions, Concurrency
For more details on PostgreSQL's handling of these:

Chapter 12: Concurrency Control

SQL commands: BEGIN, COMMIT, ROLLBACK, LOCK, etc.

(for your reference only)

58

