
Term 3 2022
Week 8 Data Storage, Indices and Query Processing
By Xiaoyang Wang, CSE UNSW

Textbook: Chapters 16, 17, 18 and 19

Disclaimer: the course materials are sourced from
– previous offerings of COMP9311 and COMP3311
– Prof. Werner Nutt on Introduction to Database Systems

(http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/)

COMP9311:
Database Systems

http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/

Functional Components of DBMS

2

Data Storage Principles
• Database relations are implemented as files of records.

• This is still an abstraction: the real storage medium are disks, which consist of pages
(size about 0.5–5 kbytes)

• Pages are read from disk and written to disk à high cost operations!

• Mapping: each record has a record identity (rid), which identifies the page where it is
stored and its offset on that page

• The DBMS reads (and writes) entire pages and stores a number of them in a buffer
pool

• The buffer manager decides which pages to load into the buffer (Replacement policy:
e.g., “least recently used” or “clock”)

3

Buffer Management in DBMS

4

Data must be in main memory for
DBMS to operate on it …

Table of <frame#, pageid> pairs is
maintained in the buffer pool …

When a page is requested ... and if requested page is not in pool:
• Choose a frame for replacement (replacement policy – Least Recently Used, Clock, etc.)
• If frame is dirty, write it to disk
• Read requested page into chosen frame
• Pin the page and return its address.

If requests can be predicted (e.g., sequential scans) pages can be pre-fetched several
pages at a time!

File and Record organisation

5

Record format: Variable length

• Two alternative formats (# fields is fixed)

• Second option offers direct access to ith
field, efficient storage

• small directory overhead

Record format: Fixed length

Information about field types same for all
records in a file; stored in system catalogs.
Finding the ith field requires scan of record.

So … table data are stored as files of records.

Files of Records
Ultimately, data is stored into disk as disk pages, but higher levels components of DBMS

operate on records and files of records (abstract physical), the record blocks in a
file are stored in different disk pages in different sectors of a disk

A file: is a collection of pages, each containing a collection of records. The storage
management component, through the abstraction of “files”, support:

• insert/delete/modify record
• read a particular record (specified using record id)
• scan all records (possibly with some conditions on the records to be retrieved)

6

Alternative File Organisations
Alternatives are ideal for some situation, and not so good in others:

Heap Files: No order on records. Suitable when typical access is a file scan retrieving all
records.

Sorted Files: Sorted by a specific record field (key). Best if records must be retrieved in
some order, or only a “range” of records is needed.

Hashed Files:
• File is a collection of buckets, each bucket containing some records.

• Uses a hashing function h. e.g., h(search-fields from r) computes the buckets
that record r belongs (looks at only some of the fields of r, the search fields.)

• Good for equality selections.

7

Indexes (basic concept)
Find all subcode belonging to the Law

faculty (i.e., subcode = LAWS)

Basic strategy = scan …, test, select

Not efficient …

An “idea” of an index on a file on the search
key ‘subcode’ may look like …

An index gives a short cut to the tuples that
match the search key

An added cost for building/maintaining it …

8

LAND, {1}
ANAT, {2,19}
BENV, {…}

LAWS, {4,7, …}

Indexes

9

Data Entries in Indexes

10

(is actual data stored or pointers to the data stored?)

LAND,{(LAND, LAND1170, Design 1, 6, ..) }
ANAT, {(ANAT, ANAT2211, Histology 1, …)}
ANAT, {(ANAT, ANAT3141, Functional Anatomy, …)}
Etc.

LAND, 1
ANAT, 2
ANAT, 19

Etc.
LAND, 1
ANAT, [2, 19]
Etc.

e.g., Alt1 (Data record with K) in B+ Tree

The records (data) are organised along with the index in one.

• No need to follow pointers. The leaves of the tree contains the data

• That is, the index contains the data file itself … this is the full copy of the data. Typically
you can only build one index in this manner as having another index on a different
search key will duplicate the entire data …

11

≦

≦ ≦ A B

1 aa

2 xx

3 qq

5 tt

7 oo

8 ii

9 dd

e.g., Alt2 (K with r) in B+ Tree – (un)clustered

The leaves of the index contains a pointer to the data (single record)

You can build many such indexes on a file (different search keys) as the index is separated
from the data

The underlying file that contains the records may or not be sorted … when unsorted, the
arrows (i.e., the pointers to the data) ‘cross’ each other, this is referred to as ‘unclustered’
index option (cf. clustered, on the right)

12

e.g., Alt2 and Alt3 in B+ Tree

13

Alt3 option: this is suitable if a search
key could point to a large number of records

In Alt2 option, when
a key points to multiple records

e.g., Indexes in Hash
Index contains “buckets”, each bucket
contains the index data entries …

A hash function works on the search key
and produces a number over the range of 0
… M-1 (M is the number of buckets).

e.g., h(K) = (a * K + b), where
a, b are constant … K is the search key.

Fast to search (i.e., no traversing of tree
nodes)

Best for equality searches, cannot support
range searches.

14

(an approximate diagram of Hash Index)

Index can be dense or sparse
Regardless of the index structure … An

index can be dense or sparse

Dense, if the index contains at least one
data entry per every value of the search
key

• faster to search for a particular
record

• high cost

Sparse, if only some values of the search
key have data entries

• low cost
• slower to search (i.e., some scan

required)

15

Summary on Storage Management
• Many alternative file organisations exist .. Heap, Sorted and Hash files … each

appropriate in some situation.

• Data entries can be (1) actual data records, (2) key, rid-pairs, (3) key, rid-list-pairs

• Choice orthogonal to indexing technique used to locate data entries with a a given key
value.

• There may be several indexes on a given file of data records, each with a different
search key.

• Indexes can be classified as
– clustered vs. unclustered
– dense vs. sparse.

• Differences have important consequences for utility/performance

16

DB Application Performance
In order to make DB applications efficient, we need to know:

• what operations on the data does the application require (which queries, updates,
inserts and how frequently is each one performed)

• how these operations might be implemented in the DBMS (data structures and
algorithms for select, project, join, sort, ...)

• how much each implementation will cost (in terms of the amount of data transferred
between memory and disk)

and then, as much as the DBMS allows, "encourage" it to use the most efficient methods

17

DB Application Performance
Application programmer choices that affect the cost of executing a query …

how queries are expressed is important … Generally speaking:

• a join is faster than subquery, especially if subquery is correlated

• avoid producing large intermediate tables then filtering

• avoid applying functions in where/group-by clauses

We could create indexes on tables

• index will speed-up filtering based on the search key attributes

• indexes generally only effective for equality or greater than/less than type search

• indexes have update-time and storage overheads (i.e., indexes could be costly)
– only useful if filtering (i.e., reading) is much more frequent operations on that table

than than updates

18

Database Query Processing
Whatever you do as a DB application programmer

• the DBMS will transform your query to make it
execute as efficiently as possible

Transformation is carried out by query optimiser

• which assesses possible query execution
approaches

• evaluates the likely cost of each approach,
chooses cheapest

You have no control over the optimisation process

• but choices you make can block certain
options, limiting the query optimiser's chance
to improve

19

DB Architecture
Layers in a DB Engine (Ramakrishnan's View)

20

DB Components

• File Manager: manages allocation of disk space and data structures

• Buffer Manager: manages data transfer between disk and main memory

• Query Optimiser:

• translates queries into efficient sequence of relational operations

• Recovery Manager: ensures consistent database state after system failures

• Concurrency Manager: controls concurrent access to database

• Integrity Manager: verifies integrity constraints and user privileges

21

Database Query Processing
Example: query to find “sales” people earning more than $50K

A query optimiser might use the strategy (roughly …)

Needs to examine all employees, even if not in Sales

22

Database Query Processing
A different expression of the same query:

A different expression of the same query:

Only examines Sales employees, and uses a simpler test

23

// join on (empid) -> smaller #tuples

Database Query Processing
A subquery … especially correlated subquery:

A query optimiser would be forced to use the strategy:

Needs to run a query for every employee ...

24

Query Processing
A query in SQL:

• states what answers are required

• says little about how they should be computed

A query evaluator & optimiser :

• takes a declarative description of the query in SQL

• parses the query into a relational algebra expression

• determines a plan for answering the query

• executes the plan via the database engine

25

Query Processing
mapping SQL to relational algebra (RA)

26

RA Expressions à Optimiser à concrete RA operations
(e.g., JOIN on empid) (e.g., HASH JOIN on empid)

Mapping SQL to RA expression
A naive translation scheme from SQL to relational algebra:

Example:

is translated to

27

Mapping SQL to RA Expression
A better translation scheme would be something like:

Example:

is translated to

28

Mapping SQL to RA Expression

• Mapping other SQL syntax to (extended) RA operations ...

• Aggregation operators (e.g. MAX, SUM, ...):

• add new operators to extend RA (e.g. max(Project[age](..)))

• Duplicate elimination (DISTINCT)

• incorporate into projection operator (e.g. Project')

• Grouping (GROUP-BY, HAVING)

• add new operators to extend RA (e.g. GroupBy, GroupSelect)

• Sorting (ORDER-BY)

• add sort operator to extend RA

29

Mapping Example

30

Query Evaluation

Which is better? ... The query optimiser works this out.

Note: for a join involving N tables, there are O(N!) possible trees to consider ...

The Join operations could be done (at least) two different ways:

31

Query Evaluation

• The order of operations is important.

• e.g., foreach employee vs. foreach (employee join SalesEmp)

• Equally important is the choice of concrete operations:

• each RA operator in an RA expression has several implementation methods

• Note: understanding the choices are out of the scope of the course …

• DBMSs typically provide a range of choices

• each implementation is effective under certain conditions, not in others …

• The DBMS query optimiser needs to

• choose concrete operations for each RA operation in query

• by analysing the cost of potential concrete operations

32

Database Engine Operations
One view of DB engine - "relational algebra virtual machine":

For each of these operations:
• various data structures and algorithms are available
• DBMSs may provide only one, or may provide a choice
• we need to be able to estimate the cost of each method

Cost analysis requires a model of DBMS internal implementation details ...

33

Query Optimisation Problem
Given:

a query Q, a database D, a database "engine" E

Determine a sequence of relational algebra operations that:
• produces the answer to Q in D
• executes Q efficiently on E (minimal I/O)

The term "query optimisation" is a little misleading:
• not just for queries (e.g. also updates)
• not necessarily optimal ("reasonably efficient")

(Finding the optimal query is NP-hard; the cost of finding it
may be higher than the query cost).

34

Query Optimisation Problem
The query optimiser start with an RA expression, then

• generates a set of equivalent expressions
• generates possible execution plans for each
• estimates cost of each plan, chooses cheapest

The cost of evaluating a query is determined by:
• size of relations (database relations and temporary relations)
• access mechanisms (indexing, hashing, sorting, join algorithms)
• size/number of main memory buffers (and replacement strategy)

Analysis of costs involves estimating:
• the size of intermediate results
• then, based on this, cost of disk storage accesses (i.e., I/O - page read/write)

35

Query Optimisation Problem
An execution plan is a sequence of relational operations (see last two slides for examples)

All produce same result, but have different costs.

36

Performance Tuning
Schema design:

• devise data structures to represent application information

Performance tuning:
• devise data structures to achieve good performance

Good performance may involve any/all of:
• making applications run faster
• lowering response time of queries/transactions
• improving overall transaction throughput

37

Performance Tuning
Tuning requires us to consider the following:

• which queries and transactions will be used?

(e.g. check balance for payment, display recent transaction history)

• how frequently does each query/transaction occur?

(e.g. 99% of transactions are EFTPOS payments; 1% are print balance)

• are there time constraints on queries/transactions?

(e.g. payment at EFTPOS terminals must be approved within 7 seconds)

• are there uniqueness constraints on any attributes?
(therefore, define index on attributes to speed up insertion uniqueness check)

• how frequently do updates occur?

(indexes slow down updates, because must update table and index)

38

Performance Tuning
Performance can be considered at two times:

during schema design
– typically towards the end of schema design process
– requires schema transformations such as denormalisation

after schema design
– requires adding extra data structures such as indexes

39

Denormalisation
Normalisation structures data to minimise storage redundancy.

• achieves this by "breaking up" the data into logical chunks
• requires minimal "maintenance" to ensure data consistency

• (i.e., removes update/insert anomalies)

Problem: queries that need to put data back together.
• need to use a (potentially expensive) join operation
• if an expensive join is frequent, system performance suffers

Solution: store some data redundantly
• benefit: queries needing expensive join are now cheap
• trade-off: extra maintenance effort to maintain consistency
• worthwhile if joins are frequent and updates are rare

40

Denormalisation

Say we frequently need to refer to course "standard" name as e.g., COMP93112020T2
• add extra courseName column into Course table
• cost: trigger before insert on Course to construct name
• trade-off likely to be worthwhile: Course insertions infrequent

41

Indexes
Indexes provide efficient content-based access to tuples (i.e., through search keys).

Can build indexes on any (combination of) attributes.

Defining indexes (syntax):

CREATE INDEX index_name ON table_name (attr1, attr2, ...)

e.g., CREATE INDEX idx_address_phone ON address(phone);

CREATE INDEX also allows us to specify
• that the index is on UNIQUE values
• an access method (USING btree, hash, rtree, or gist)

e.g., CREATE INDEX idx_address_phone ON address USING hash (phone);

42

Indexes
Indexes can make a huge difference to query processing cost.

On the other hand, they introduce overheads (storage, updates).

Creating indexes to maximise performance benefits:
• apply to attributes used in equality, greater/less-than conditions, e.g.

select * from Employee where id = 12345

select * from Employee where age > 60

select * from Employee where salary between 10000 and 20000

• but only in queries that are frequently used
• and on tables that are not updated frequently

43

Indexes
Considerations in applying indexes:

• is an attribute used in frequent or expensive queries? (i.e., is it worth it?)

• should we create an index on a collection of attributes?

(yes, if the collection is used in a frequent/expensive query)

• can we exploit a clustered index? (only one per table)

• should we use B-tree or Hash index?

44

Query Tuning
Sometimes, a query can be re-phrased to affect performance:

• by helping the optimiser to make use of indexes
• by avoiding (unnecessary) operations that are expensive

Examples which may prevent optimiser from using indexes:

45

Query Tuning
Other factors to consider in query tuning:

• select distinct requires a sort; is distinct necessary?
• if multiple join conditions are available ...

choose join attributes that are indexed, avoid joins on strings

• sometimes ”OR” in condition prevents index from being used ...
replace the or condition by a union of non-or clauses

46

PostgreSQL Query Tuning
PostgreSQL provides the explain statement to

• give a representation of the query execution plan
• with information that may help to tune query performance

• Note that runtimes may show considerable variation due to buffering.

47

EXPLAIN Examples

48

EXPLAIN Examples

49

EXPLAIN Examples

50

EXPLAIN Examples

51

