
Normalisation
Normalization: branch of relational theory providing design insights.

The goals of normalization:

• be able to characterise the level of redundancy in a relational schema

• provide mechanisms for transforming schemas to remove redundancy

Normalization draws heavily on the theory of functional dependencies

1

Schema Design
Consider the following relation for BankLoans:

2

Schema Design
The BankLoans relation exhibits update anomalies (insert, update, delete).

The cause of these problems can be stated in terms of fds

• a branch is located in one city branchName → branchCity

• a branch may handle many loans branchName ↛ loanNo

In other words, some attributes are determined by branchName, while others are
not.

This suggests that we have two separate notions (branch and loan) mixed up in
a single relation

3

Schema Design
To improve the design, decompose the BankLoans relation.

The following decomposition is not helpful:

Branch(branchName, branchCity, assets)
CustLoan(custName, loanNo, amount)

because we lose information (which branch is a loan held at?)

Clearly, we need to leave some "connection" between the new relations, so that
we can reconstruct the original information if needed.

Another possible decomposition:

BranchCust(branchName, branchCity, assets, custName)
CustLoan(custName, loanNo, amount)

4

Schema Design

5

The CustLoan relation instance:The BranchCust relation instance:

The result:
• BranchCust still has redundancy problems.
• CustLoan doesn't, but there is potential confusion over L-15.
• But even worse, when we put these relations back together to try to re-create the

original relation, we get some extra tuples! Not good.

6

The result of
Join(BranchCust,CustLoan)
On CustName

Schema Design
This is clearly not a successful decomposition.

The fact that we ended up with extra tuples was symptomatic of losing some
critical "connection" information during the decomposition.

Such a decomposition is called a lossy decomposition.

In a good decomposition, we should be able to reconstruct the original relation
exactly:

if R is decomposed into S and T, then Join(S,T) = R

Such a decomposition is called lossless join decomposition.

How do we decide on this decomposition strategy?

à we analyse “normal forms” and apply “normalisation process”

7

Normal Forms
Normalization theory defines six normal forms (NFs).

Each normal form:

• defines the properties that a schema must satisfy (e.g., 1NF must have atomic values)

• gives guarantees about presence/absence of update anomalies

Higher normal forms have less redundancy ⇒ less update problems

Normal forms:
• First, Second, Third Normal Forms (1NF, 2NF, 3NF) (Codd 1972)

• Boyce-Codd Normal Form (BCNF) (1974)

• Fourth Normal Form (4NF) (Zaniolo 1976, Fagin 1977)

• Fifth Normal Form (5NF) (Fagin 1979)

NF hierarchy: 5NF ⇒ 4NF ⇒ BCNF ⇒ 3NF ⇒ 2NF ⇒ 1NF

1NF allows most redundancy; 5NF allows least redundancy.

8

Normal Forms
The use of normal forms:
• First, check if a given relation is in r-NF (where r-NF is your desired level of NF)
• Second, transform the given relation to r-NF

In practice, BCNF and 3NF are the most important.
• these are generally the "acceptable/desired normal forms" for relational design,
• 1NF/2NF (too much redundancy), 4NF/5NF (handles redundancy that are not likely to

be common in practice)

Our desired normal forms are:

Boyce-Codd Normal Form (BCNF):
• eliminates all redundancy due to functional dependencies
• but may not preserve original functional dependencies

Third Normal Form (3NF):
• eliminates most (but not all) redundancy due to fds
• guaranteed to preserve all functional dependencies

9

Relational Decomposition
From given relations, achieving Normal Forms is one of the schema design

strategies (i.e., going from possibly redundant relations into redundancy free
forms)

The standard transformation technique to remove redundancy:

• decompose relation R into relations S and T

We accomplish decomposition by

• selecting (overlapping) subsets of attributes

• forming new relations based on attribute subsets

• Properties: R = S ∪ T, S ∩ T ≠ {} and ideally r(R) = s(S) ⨝ t(T)

We may require several decompositions to achieve acceptable NF.

Normalization algorithms tell us how to choose S and T.

10

Boyce-Codd Normal Form (BCNF)
A relation schema R is in BCNF w.r.t a set F of functional dependencies iff:

• for all fds X → Y in F
• either X → Y is trivial (i.e. Y ⊂ X)
• or X is a superkey (i.e., contains a key)

In another words: if a X ® A is a nontrivial fd (i.e., A Ï X) in R, then X must be a
superkey (i.e., contains a key)

Some simple “short hands” about BCNF:

• any relation with two-attributes is in BCNF

• any relation with key K, other attributes X, (i.e., (K ∪ X = R)) and K → X, is in
BCNF

A DB schema is in BCNF if all relation schemas are in BCNF.

11

Example
Beers(name, manf, manfAddr)

FD’s: name ® manf, manf ® manfAddr

The key is {name}

Is the above in BCNF?

Work out:

name ® manf does not violate BCNF,

manf ® manfAddr does violate BCNF. manfAddr depends on manf, which does
not contain the key

Beers is not in BCNF

12

Another Example

Drinkers(name, addr, beersLiked, manf, favBeer)

FDs: name ® addr favBeer, beersLiked ® manf

The key is {name, beersLiked}

Is the above in BCNF?

Work out:

• name ® addr favBeer … the left side is not a superkey (i.e., does not
contains the key)

• beersLiked ® manf … the left side is not a superkey (i.e., does not contains
the key)

• Drinkers is not in BCNF.

13

Boyce-Codd Normal Form
If we transform a schema into BCNF, we are guaranteed:

• no update anomalies due to fd-based redundancy (especially the ones that
are dependent on non key attributes)

• lossless join decomposition

However, we are not guaranteed to preserve all fds from the original schema
exist in the new schema

• This may be a problem if the fds contain significant semantic information about
the problem domain.

• If we need to preserve dependencies, use 3NF.

14

BCNF Decomposition
The following algorithm converts an arbitrary schema to BCNF:

15

The last step:
• Remove S from Res // we are going to replace S with new ones
• Remove {Y } the right-hand side, from S // let’s denote new S as S’
• Make a new table using {XY}
• Now Res contains S’ , plus, XY, plus any existing schema in Res

BCNF Decomposition
Example (the BankLoans schema):

BankLoans(branchName, branchCity, assets, custName, loanNo, amount)

FD : {

branchName→ assets,branchCity,

loanNo→ amount,branchName

}

The key {branchName, custName, loanNo}

Produce a BCNF decomposition of BankLoans

16

BCNF Exercise
Consider the schema R and set of fds F

R = ABCDEFGH

F = { ABH → C, A → DE, BGH → F, F → ADH, BH → GE }

Key = BH

Produce a BCNF decomposition of R.

17

Third Normal Form — Motivation
There is one structure of FDs that causes trouble in BCNF

R = ABC, FD: AB ® C and C ® B

Keys: AB, AC

(e.g., A = street address, B = city, C = zip code)

C ® B is a BCNF violation,
so we must decompose R(ABC) into

• R(AC), ??

• R(BC), FD: C ® B

• What happens to the functional dependency AB ® C ??

18

An Unenforceable FD

19

street zip
545 Tech Sq. 02138
545 Tech Sq. 02139

city zip
Cambridge 02138
Cambridge 02139

Join tuples with equal zip codes.

street city zip
545 Tech Sq. Cambridge 02138
545 Tech Sq. Cambridge 02139

Although no FDs were violated in the decomposed relations,
FD street city ® zip is violated by the database as a whole

If we decompose ABC into AC and BC then we cannot enforce AB ® C by
checking FDs in the decomposed relations

3NF Lets Us Avoid This Problem
3rd Normal Form (3NF) modifies the BCNF condition so we do not have to decompose in

this problem situation

A relation schema R is in 3NF w.r.t a set F of functional dependencies iff:

• for all fds X → Y in F
• either X → Y is trivial (i.e. Y ⊂ X)
• or X is a superkey
• or Y is a single attribute from a key

e.g., R = ABC, FD: AB ® C and C ® B, Keys: AB

A DB schema is in 3NF if all relation schemas are in 3NF. The extra condition represents a
slight weakening of BCNF requirements

20

Third Normal Form
If we transform a schema into 3NF, we are guaranteed:

• lossless join decomposition

• the new schema preserves all of the fds from the original schema

However, we are not guaranteed:

• no update anomalies due to fd-based redundancy

Whether to use BCNF or 3NF depends on overall design considerations.

21

Third Normal Form
The following algorithm converts an arbitrary schema to 3NF:

22

Third Normal Form
Two critical concepts in the algorithm:

Minimal cover Fc for FA set F of fds is minimal if
• every fd X → Y is simple

(Y is a single attribute, X ->AB = X->A, X->B)
• every fd X → Y is left-reduced

(no redundant attributes on the left side, AB->Y = A->Y (if safe to do so))
• every fd X → Y is necessary

(no X → Y can be removed without changing F+)
• Summary: right-reduce, left-reduce, eliminate redundant fds

Candidate keys

- Minimal superkey (if necessary, use attribute closure to work out a key)

23

3NF decomposition exercise (1)
Consider the schema R and set of fds F

R = ABCDEFGH

F = Fc = { ABH → C, A → D, C → E, F → A, E → F, BGH → E }

key = BGH

Produce a 3NF decomposition of R.

24

