
Term 3 2022
Week 7 Relational Database Design Theory
By Xiaoyang Wang, CSE UNSW

Textbook: Chapters 14 and 15

Disclaimer: the course materials are sourced from
– previous offerings of COMP9311 and COMP3311
– Prof. Werner Nutt on Introduction to Database Systems

(http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/)

COMP9311:
Database Systems

Designing Relational Schemas

2

Relational Design and Redundancy
Consider the following relation defining Employee and Department

3

We need to be careful updating this data, otherwise we may introduce inconsistencies.

Relational Design and Redundancy
Insertion Anomalies.

4

when we insert a new record:
• we need to check that department data is consistent with existing tuples
• we must include both employee and department details (or NULLs for not-known?)

(“Sue Smith”, “98790098”, “1968-09-10”, “789 Captain, Houston, TX”, 4, “Administration”, “1155667788”)

(NULL, NULL, NULL, NULL, 6, “Marketing”, ”123456789”)

Relational Design and Redundancy
Deletion anomaly (say delete employee James Borg)

5

What is the department number of Headquarters? Who is the manager?
if we remove information about the last employee at the department, all of the

department information disappears

Relational Design and Redundancy
Update anomaly example (update the manager of Department 5)

6

if a branch changes address, we need to update all tuples referring to that branch

Relational (Database) Design Theory
Usually there are many different options in designing a database schema for an

application … Which one to choose? How do we know which one is better
than the other?

Previously we studied ER design and ER-to-relational mapping. We claimed that
this allows us to produce "good" schemas. However, the mapping can also
produce different relations, more over, some designers choose to go straight
into relations.

Can we make a stronger/formal statement on what makes a schema good
through some analysis?

The study of relational design theory

• examines some foundational notions of "schema goodness"

• provides methods to transform schemas to make them better

7

Relational (Database) Design Theory
Functional Dependency

Functional dependencies

• A functional dependency is a kind of constraint between two sets of
attributes from the database.

• have implications for "good" relational schema design

What we study here:

• basic theory and definition of functional dependencies

• methodology for improving schema designs (normalisation)

The aim of studying this:

• improve understanding of relationships among data

• gain enough formalism to assist practical database design

8

Relational Design Theory

Our earlier approach used a top-down design procedure:

• structure data at conceptual level (ER design)

• then map a collection of tables

It appears that ER-design-then-relational-mapping

• leads to a collection of well-structured tables, so why do we need a
dependency theory and normalisation procedure to deal with redundancy?

9

Some reasons ...

• ER design does not guarantee minimal redundancy … dependency theory
allows us to check designs for residual problems

• Tables can be created independently of any conceptual designs. You still may
need to analyse “goodness” of schema of given tables

Relational Design Theory
A good relational database design:

• must capture all of the necessary attributes/associations

• should do this with a minimal amount of stored information

Minimal stored information ⇒ no redundant data.

In database design, redundancy is generally a "bad thing":

• causes problems maintaining consistency after updates

• require extra storage

However, it can sometimes lead to performance improvements

e.g. may be able to avoid a join to collect bits of data together

10

To avoid redundancy and update anomaly problems:

• decompose the relation U into several smaller relations Ri

• where each Ri has minimal overlap with other Rj

• Typically, each Ri contains information about one entity (e.g. employee,
department, ...)

11

Relational Design Theory

Design – revisited.

12

Redundancy is at the root of several problems associated with relational schemas:

• redundant storage, insert/delete/update anomalies

Consider relation obtained from Hourly_Emps:

Hourly_Emps (Eid, Name, Office, Rating, hrly_Wages, Hrs_worked)

Let’s say the hourly_Wage is determined by rating.

• Update – can we update W for just
the 1st tuple?

• Can we record the hourly wage for a
rating that no employee has
currently?

• If we delete an employee with rating
5, we also lose the information
about its hourly rate …

i.e., we see the anomaly problems

Decomposition – design refinement

Main refinement technique:

decomposition (replacing ENORWH with
ENORH and RW)

Analysing functional dependencies can
help us identify schemas with
problems and to suggest design
refinements (i.e., better grouping of
attributes).

13

(Functional) Dependency Theory
So a relational design theory, functional dependency theory in particular helps

us:

Decide whether a given relation R is in “good” form.

In the case that a relation R is not in “good” form, decompose it into a set of
relations {R1, R2, ..., Rn} such that:

• each relation is in good form

• the decomposition is a lossless-join decomposition

(i.e., R1 join R2 join … Rn = R)

14

Functional Dependency
A relation instance r(R) satisfies a dependency X → Y if

• for any t, u ∈ r, t[X] = u[X] implies that t[Y] = u[Y]

In other words, if two tuples in R agree in their values for the set of attributes X,
then they must also agree in their values for the set of attributes Y.

e.g., t[BeerName] = ‘Lager’, u[BeerName] = ‘Lager’ implies t[Manf]=’Carlton’, u[Manf]=’Carlon’

If in a relation instance r(R) a dependency X → Y holds

• This means that the values of the Y component of a tuple in r are determined
by, the values of the X component; alternatively, we say the X component of a
tuple functionally determines the Y component.

15

Xiaoyang Wang

Functional Dependency
If in a relation instance r(R) a dependency X → Y holds

• This means that the values of the Y component of a tuple in r are determined
by, the values of the X component; alternatively, the values of the X
component of a tuple functionally determine the values of the Y component.

• We read X → Y (X functionally determines Y, or X determines Y)

NOTE:

• If X → Y in R, this does not say whether or not Y → X in R.
• Say, from the definition of FD, we can imagine emp_id → emp_phone, but

we cannot say for sure that emp_phone → emp_id … (e.g., shared office?)

• The abbreviation for functional dependency is FD or f.d.

• X, Y can be a set of attributes (not just a single) {A,B} → {C,D}

• The set of attributes X is called the left-hand side of the FD, and Y is called
the right-hand side

16

Example

17

name addr beersLiked manf favBeer
Janeway Voyager Bud A.B. WickedAle
Janeway Voyager WickedAle Pete’s WickedAle
Spock Enterprise Bud A.B. Bud

Reasonable FD’s to assert:
• name ® addr (or Nà A)
• name ® favBeer (or N à F)
• beersLiked ® manf (or B à M)
• favBeer ® manf (??)

Table Drinkers(name, addr, beersLiked, manf, favBeer)
NABMF for short

NOTE: generally you cannot just look at the tuples to decide on FD. FD should hold for
all possible instances of the table, not just for the given tuples/instances …
Normally, you’d rely on your domain knowledge to decide …

FD’s With Multiple Attributes
FD’s left and right can have multiple attributes …

The attribute on the right can be combined (i.e., short handed)

Example: name ® addr and name ® favBeer

become

name ® addr favBeer (or Nà AF)

Multiple attributes on the left may have more crucial role when together … (i.e.,
the “combination” determines the right hand)

Example: bar beer ® price (or AB à P)

18

Functional Dependency

T1 , A ® B holds … attempt to check if r1(A) = r2(A) then r1(B) = r2(B), however, there is
no pair of rows in T1 that have equal vale for A, so the condition is trivially satisfied. In
fact, take note of this case … If A is unique for all tuples, A can determine the whole
relation. B ® A does not hold … see tuple 1 and tuple 3

T2, A ® B holds, see tuple 1 and tuple 3, or tuple 2 and tuple 5, B ® A holds as well

T3, A ® B holds, but B ® A does not, see tuple 2 and 6.

19

A B
X1 Y1
X2 Y2
X3 Y1
X4 Y1
X5 Y2
X6 Y2

A B
X1 Y1
X2 Y4
X1 Y1
X3 Y2
X2 Y4
X4 Y3

A B
X1 Y1
X2 Y4
X1 Y1
X3 Y2
X2 Y4
X4 Y4

T1 T2 T3

Functional Dependency

Consider the following instance r(R) of the relation schema R(ABCDE):

20

What kind of dependencies can we observe among the attributes in r(R)?

Note: here, we do not know the domain of schema, so we will just observe the given tuples

Functional Dependency
Since the values of A are unique,

it follows from the fd definition that:

A → B, A → C, A → D, A → E

The right side can be combined … This can be summarised as A → BCDE

From our understanding of primary keys, A is a PK.

We will see later how FD helps compute potential keys in a relation effectively.

21

Functional Dependency
Other observations

(mainly aiming for “uniqueness” in tuples):

• combinations of BC are unique, therefore BC → ADE

• combinations of BD are unique, therefore BD → ACE

• if C values match, so do D values, therefore C → D

• however, D values don't determine C values, so D ↛ C

We could derive many other dependencies, e.g. AE → BC, ...

In practice, choose a minimal set of fds (basis)

• from which all other fds can be derived

• which typically captures useful problem-domain information

22

Use of Functional Dependencies
We use functional dependencies to:

1. test relations to see if they are legal under a given set of functional
dependencies. If a relation r is legal under a set F of functional dependencies, we say
that r satisfies F.

2. specify constraints on the set of legal relations. We say that F holds on R if all legal
relations on R satisfy the set of functional dependencies F.

An FD is a statement about all allowable relations.

• Must be identified based on semantics of application.

• Given some allowable instance r1 of R, we can check if it violates some FD f, but we
cannot tell if f holds over R!

Note: A specific instance of a relation schema may satisfy a functional dependency even if
the functional dependency does not hold on all legal instances. For example, a specific
instance of Students may, by chance, satisfy Sname → Sid

23

Inference rules on FDs
Can we generalise some ideas about functional dependency?

E.g. are there dependencies that hold for any relation?

Yes, but they're rather uninteresting (or trivial/obvious) ones such as:

• X → X (e.g., emp_id → emp_id, emp_name → emp_name)

• Y ⊆ X implies X → Y (e.g., (emp_id, emp_name) → emp_name)

E.g. do some dependencies suggest the existence of others?

Yes, and this is much more interesting ... there are a number of rules of
inference that allow us to derive more dependencies given some
dependencies …!

24

Amstrong’s Axioms & Inference Rules
So … given some FDs, we can usually infer additional FDs:

e.g., ssn→ did, did → lot implies ssn→ lot

We use Amstrong’s Axioms and Inference Rules to derive FDs …

Let’s say F is given FDs … then F closure (denote F+) is all FDs that can logically
imply from F … Amstrong’s Axiom is both ”sound” and “complete” which
means, when you apply Amstrong’s Axiom on F:

• You won’t find any fd that is OUTSIDE of F+ (i.e., no wrong fd will be derived)

• You will find ALL fds that can be implied from F

25

Amstrong’s Axioms & Inference Rules

Armstrong’s axioms: (X, Y are a set of attributes)

• (F1) Reflexivity If X ⊇ Y, then X → Y
a formal statement of trivial dependencies; useful for derivations of other fd

• (F2) Augmentation X → Y ⇒ XZ → YZ
if a dependency holds, then we can add an extra component to both sides

(useful for expanding the left side)

• (F3) Transitivity e.g. X → Y, Y → Z ⇒ X → Z

the "most powerful" inference rule; useful in multi-step derivations

26

While Armstrong's rules are complete, there are other useful rules exists:

• (F4) Additivity (or Union) X → Y, X → Z ⇒ X → YZ

useful for constructing new right hand sides of fds

• (F5) Projectivity (or Decomposition) X → YZ ⇒ X → Y, X → Z
useful for reducing right hand sides of fds

• (F6) Pseudotransitivity X → Y, YZ → W ⇒ XZ → W
shorthand for a common transitivity derivation

27

Amstrong’s Axioms & Inference Rules

Applying the Inference Rules

R = ABCDE, consider the given set of FDs

F = { A → BC, CD → E, B → D, E → A}

28

(F4) Union X → Y, X → Z ⇒ X → YZ

(F5) Decomposition X → YZ ⇒ X → Y, X → Z

(F6) Pseudotransit X → Y, YZ → W ⇒ XZ → W

(F1) Reflexivity If X ⊇ Y, then X → Y

(F2) Augmentation X → Y ⇒ XZ → YZ

(F3) Transitivity X → Y, Y → Z ⇒ X → Z

A → A (F1)

B → B (F1)

C → C (F1)

D → D (F1)

E → E (F1)

A → B (F5)

A → C (F5)

A → D (F3)

A → CD (F4)

A → E (F3)

A → ABCDE (F4)

E → ABCDE (F3)

CD → ABCDE (F3)

BC → CD (F2)

BC → ABCDE (F3)

i.e., Using the rules, we can logically imply all FDs (F closure) from given F

Closure
Given a set F of fds, how many new fds can we derive?

For a finite set of attributes, there must be a finite set of fds.

The largest collection of dependencies that can be derived from F is called
the closure of F and is denoted F+ (read F closure …)

Closures allow us to answer two questions:

• Q1: is a particular dependency X → Y derivable from F?

• Q2: are two sets of dependencies F and G equivalent?

29

Closure
For Q1, the question "is X → Y derivable from F?" ...

compute the closure F+; check whether X → Y ∈ F+

For Q2, the question "are F and G equivalent?" ...

compute closures F+ and G+; check whether they're equal

Unfortunately, closures on even small sets of functional dependencies can be
very large. Algorithms based on F+ rapidly become infeasible.

Example (of fd closure):

R = ABC, F = { AB → C, C → B }
F+ = { A → A, AB → A, AC → A, AB → B, BC → B, ABC → B,

C → C, AC → C, BC → C, ABC → C, AB → AB, ,
AB → ABC, AB → ABC, C → B, C → BC, AC → B, AC → AB }

30

Closure of Attribute Sets
Take Q1, to answer if X → Y is derivable from F? The strategy is compute F+;
check whether X → Y ∈ F+ ….

Since computing F+ is expensive, we reduce the computation task to ”closure of
attribute sets”

Say given R = ABC, F = { AB → C, C → B }

Consider a set X of attributes and a set F of fds, a closure of attribute set X is the
largest set of attributes that can be determined by X using F (denoted X+).

We say that (X → Y) ∈ F+ iff Y ⊂ X+

For computation, | X+ | is bounded by the number of attributes.

Say the question is AC → B, here, X = {AC}, Y = {B}, X closure = {ABC}, {B} ⊂
X+, so the answer is YES.

31

Closure of Attribute Sets

A → A

A → B

A → C

A → D

A → E

A → ABCDE

32

From the following R and FD … let’s derive some attribute set closures

R = ABCDE

FD = { A → B, B → C, C → D, D → E}

B → B

B → C

B → D

B → E

B → BCDE

C→ C

C → D

C → E

C → CDE

And so on …

According to the definition,
Attribute Closure of A (A+) = {A,B,C,D,E}
Attribute Closure of B (B+) = {B,C,D,E}, etc.
How about AD+ or other combinations…. Is there a way to come up with this quickly?

Attribute Set Closure Algorithm

33

R = ABCDE
FD = { A → B, B → C, C → D, D → E}
What is AD closure?

Attribute Set Closure
E.g. R = ABCDEF, Z = { AB → C, BC → AD, D → E, CF → B }

Does AB → D follow from Z? Solve by checking D ∈ AB+.

34

Since D is in AB+, then AB → D does follow from Z.

Attribute Set Closure
E.g. R = ABCDEF, Z = { AB → C, BC → AD, D → E, CF → B }

Does D → A follow from Z? Solve by checking A ∈ D+.

35

Since A is not in D+, then D → A does not follow from Z.

Utilising Attribute Set Closure …
For Q1, the question "is X → Y derivable from F?" ...

compute the closure X+, check whether Y ⊂ X+

For Q2, the question "are F and G equivalent?" ... The strategy is to For Q2, the
compute closures F+ and G+; check whether they're equal

• for each dependency in G, check whether derivable from F
• for each dependency in F, check whether derivable from G
• if true for all, then F ⇒ G and G ⇒ F which implies F+ = G+

Interesting use case of attribute set closure:

For Q3 the question "what are the keys of R implied by F?" ...

to answer this, we find subsets X ⊂ R such that X+ = R

(in other words, find a set of attributes whose “closure” contains all attributes of the relation,
then X is a superkey (i.e., contains a key))

36

Attribute Closure to Computing Keys
Let’s examine the keys and attribute closure again …

R = ABCDE, F = { A → B, B → C, C → D, D → E }

What are the keys of R? … Find X ⊂ R such that X+ = R.

37

Attribute Closure to Computing Keys
E.g. R = ABCDEF, Z = { AB → C, BC → AD, D → E, CF → B }

What are the keys of R?

Solve by finding X ⊂ R such that X+ = R.

38

From previous examples (slide 34/35), we know AB and D are not keys:
• AB+ = {ABCDE}
• D+ = {DE}
• Both are not R.

This also implies that A and B alone are not keys.

So how to find keys? Try all combinations of ABCDEF ...

E.g. maybe ACF is a key ...

Since ACF+ = R, ACF is a key (as is ABF … is ACF or ABF a candidate key?)

39

E.g. R = ABCDEF, Z = { AB → C, BC → AD, D → E, CF → B }

What are the keys of R?

Solve by finding X ⊂ R such that X+ = R.

Attribute Closure to Computing Keys

Minimal Covers
For a given application, we can define many different sets of fds whose closure is the

same (e.g. F and G where F+ = G+) …

40

F
H

G

ALL FD Space for a given application

F closure = H closure = G closure
= ALL FDs for a given application

Which one is best to "model" the application?

Minimal Covers
Which one is best to "model" the application?
• any model has to be complete (i.e. capture entire semantics)
• models should be as small as possible (we use them to check DB validity after update;

less checking is better)

If we can ...
• determine a number of candidate fd sets, F, G and H
• establish that F+ = G+ = H+

• we would then choose the smallest one for our "model"

Better still, can we derive the smallest complete set of fds? Sets of functional
dependencies may have redundant dependencies that can be inferred from the others

E.g. {A → B, B → C, A → CD} can be simplified to {A → B, B → C, A → D}

E.g. {A → B, B → C, AC → D} can be simplified to {A → B, B → C, A → D}

Intuitively, a canonical cover of F is a “minimal” set of functional dependencies
equivalent to F, with no redundant dependencies or having redundant parts of
dependencies

41

Minimal Covers
Minimal cover Fc for a set F of fds:

• Fc is equivalent to F

• all fds have the form X → A (where A is a single attribute)

• it is not possible to make Fc smaller
» either by deleting an fd
» or by deleting an attribute from an fd

An fd d is redundant if (F-{d})+ = F+

An attribute a is redundant if (F-{d} ∪ {d'})+ = F+

(where d' is the same as d but with attribute A removed)

42

i.e., Remove attributes in d ∈ F that does not change F+

Minimal Covers
Algorithm for computing minimal cover:

An Overview of the Algorithm …

43

Minimal Covers

Step 1: put fds into canonical form

44

E.g., R = ABC, F = { A → BC, B → C, A → B, AB → C }

• canonical fds: A → B, A → C, B → C, AB → C

Minimal Covers

Step 2: eliminate redundant attributes

45

E.g., R = ABC, F = { A → BC, B → C, A → B, AB → C }

• redundant attrs: A → B, A → C, B → C, AB → C

• canonical fds: A → B, A → C, B → C, AB → C

// what if I removed b from f ??

Minimal Covers

Step 3: eliminate redundant functional dependencies

46

E.g., R = ABC, F = { A → BC, B → C, A → B, AB → C }

•This gives the minimal cover Fc = { A → B, B → C }.

• redundant attrs: A → B, A → C, B → C, AB → C

Summary so far ..
• Functional dependency (FD) theory forms the base of relational schema

design theory. In part two, we will see how they are used in deriving good
schema design

• There are other forms dependencies, such as multivalued dependency
(MVD), inclusion dependency, etc.

• In practical applications, FD seems sufficient to derive good schema. So we
consider that as the most important dependency theory to learn and practice
with.

47

