
1

SQL functions

PostgreSQL functions require you to specify a language.

In our examples, we have used primarily PLpgSQL.

Other PostgreSQL function languages: SQL, Tcl, Perl, Python, Java … In particular, using
SQL for PLpgSQL function (simply called SQL functions) is also a common usage.

Recall the ValuableEmployees() example from before.

Positional
parameter name

2

SQL functions

If we know that the minimum salary for a valuable employee will always be $50,000, we
can solve the problem very simply as an SQL views:

valuableEmployees() – PLpgSQL version …

3

SQL functions

However, if we want to allow minimum valuable salary to change (i.e., parameterise it), we
need a way of replacing $50,000 by a supplied value.

SQL functions provide a simple mechanism for this:

SQL functions allows SQL statements to have parameters …

4

SQL functions

Differences between SQL and PLpgSQL functions
• SQL function bodies are a single SQL statement
• SQL functions cannot use named parameters

(required to use positional parameter notation: $1, $2, $3)
• SQL functions have no RETURN statement

(their result is the result of the SQL statement)
• return types can be atomic, tuple, or setof tuples

5

SQL functions

Can the above be turned into SQL functions?

6

Aggregates and User Defined Aggregates

Aggregates reduce a collection of values into a single result.

Often used with GROUP BY to "summarise" each group

Example:

7

Aggregates and User Defined Aggregates

Procedural view of what an aggregate does:

All aggregates follow this pattern,
• but differ in initial, final() and newState()

8

Aggregates and User Defined Aggregates

SQL standard alone does not specify user-defined aggregates.

But PostgreSQL provides a mechanism for creating custom aggregates.

The skeleton of implementing a new aggregate is as explained before … To
define a new aggregate, you need to supply PostgreSQL with:

• BaseType ... type of input values

• StateType ... type of intermediate states

• State Mapping function (how the new state is produced): sfunc(state,value) →
newState

• [optionally] an initial state value (defaults to null)

• [optionally] final function: ffunc(state) → result

9

User-defined Aggregates

Example: sum2 sums two columns of integers

i.e. sum2(x,y) = (x1+y1) + (x2+y2) … (xn+yn)

create aggregate sum2 (int, int) (

stype = int,

initcond = 0,

sfunc = AddPair

);

create function

AddPair(sum int, _x int, _y int) returns int

as $$

begin return _x+_y+sum; end; //next state …

$$ language plpgsql;

NOTE: AddPair() needs to be defined before aggregate sum2()

10

User-defined Aggregates

Exercise: Define a concat aggregate that
• takes a column of string values

• returns a comma-separated string of values

For example:

Use it to get a list of beers liked by each drinker.

11

User-defined Aggregates
create or replace function

AddStrName (_t1 text, _t2 text) returns text

as $$ Begin return _t1||','||_t2; end; $$ language plpgsql;

create or replace function

finalReturnName(_t1 text) returns text

as $$ begin return substr(_t1,2); end;

$$ language plpgsql;

create aggregate concatstr (text) (

stype = text,

initcond = '',

sfunc = AddStrName,

finalfunc = finalReturnName

);

12

Triggers

Triggers are
• procedures stored in the database

• activated in response to database events (e.g., updates)

Active databases = databases using triggers extensively.

Examples of uses for triggers:

• checking constraints on table updates
• maintaining summary data (e.g., calculated attributes)

• performing multi-table updates (to maintain constraints)

13

Triggers

Triggers provide event-condition-action (ECA) programming:
• an event activates the trigger

• on activation, the trigger checks a trigger condition

• if the condition holds, a procedure is executed (the action)

Triggers can:
• have the action executed before or after the triggering event

• access both old and new values of updated tuples
• limit updates to a particular set of attributes

• perform action: once for each modified tuple, once for all modified tuples

14

Triggers

SQL standard syntax for defining triggers:

Possible Events are
INSERT, DELETE, UPDATE.

FOR EACH ROW clause ...
• if present, code is executed on each modified tuple

• if not present, code is executed once after all tuples are modified, just before
changes are finally committed.

15

Trigger Semantics

Sequence of activities during database update:

Note: BEFORE trigger can modify value of new tuple

16

Trigger Semantics

Consider two triggers and an INSERT statement

Sequence of events:
1. execute Code1 for trigger X

2. Code1 has access
to (a,b,c,...) via NEW

3. Code1 typically checks the values
of a,b,c,..

4. Code1 can modify values
of a,b,c,.. in NEW

5. DBMS does constraint checking as
if NEW is inserted

6. if fails any checking, abort insertion
and rollback

7. execute Code2 for trigger Y

8. Code2 has access to final version of
tuple via NEW

9. Code2 typically does final checking,
or modifies other tables in database
to ensure constraints are satisfied

Note: INSERT trigger has no value for OLD

17

Trigger Semantics

Consider two triggers and an Update statement

Sequence of events:
1. execute Code1 for trigger X

2. Code1 has access to current
version of tuple via OLD

3. Code1 has access to updated
version of tuple via NEW

4. Code1 typically checks new values
of b,c,..

5. Code1 can modify values
of b,c,.. in NEW

6. do constraint checking as
if NEW has replaced OLD

7. if fails any checking, abort update
and rollback

8. execute Code2 for trigger Y

9. Code2 has access to final version of
tuple via NEW

10. Code2 typically does final checking,
or modifies other tables in database
to ensure constraints are satisfied

Note: Update trigger has value for both OLD/NEW

18

Example Trigger

Example: department salary totals
Scenario

Employee(id, name, address, dept, salary, ...)
Department(id, name, manager, totSal, ...)

An assertion that we wish to maintain:

19

Example Trigger

Events that might affect the validity of the database
• a new employee starts work in some department

• an employee gets a pay rise
• an employee changes from one department to another

• an employee leaves the company

A single assertion could check for this after each change. (assertion is not
supported in PostgreSQL …)

We can use triggers, but we have to program each case separately.

Each program implements updates to ensure the assertion holds. We will
basically make sure that each update keeps track of the total salary in the
department.

20

Example Trigger

Case 1: new employees arrive

Case 2: employees get a pay rise

21

Example Trigger

Case 3: employees change departments

Case 4: employees leave

22

Triggers in PostgreSQL

Overall syntax:

Typical form:

23

Triggers in PostgreSQL

PostgreSQL trigger syntax does not have conditional activation clause
(i.e. no WHEN clause in the trigger definition statement).

However, tests in the function can effectively provide this, e.g.

Can be implemented in PostgreSQL as:

24

Example
Trigger

ensure that U.S.
state names
are entered
correctly (uses
a look up table
States)

25

Example PostgreSQL Trigger

Examples of how this trigger would behave:

Insert into us_person values (‘John’, …, ‘C’); -- fails, two alpha chars

Insert into us_person values (‘Jane’, …, ‘NY’) – format OK, State look up?

Update us_person set town=‘Sunnyvale’, state=‘CA’
where name = ‘Dave’ – OK, David is now in CA

Update us_person set state=‘OZ’
where name = ‘Pete’ ; -- fail, Invalid state

26

Example PostgreSQL Trigger #2

Implement the Employee update triggers and totSal example in PostgreSQL:
There are three changes that need to be handled:

• case 1: new employee arrives (INSERT)
• case 2a: employee changes salary (UPDATE)

• case 2b: employee changes department (UPDATE)

• case 3: existing employee leaves (DELETE)

We need a function and trigger for each case.

Note: all after triggers because we want to make sure that the changes
to the Employees table are really going to occur.

27

Example PostgreSQL Trigger #2

Case 1: new employee arrives

28

Case 2: employees get a pay rise

29

Case 3: employees change departments BUT WHAT IF WE CAN DO BOTH case 2
and case 3 in one trigger?

30

Case 4: employees leave

31

Trigger Caveat

Mutually recursive triggers can cause infinite loops.

