
Term 3 2022
Week 5 (Extending SQL with PLpgSQL)
By Helen Paik, CSE UNSW

Textbook: Chapters 6, 7, 8 and 10

Disclaimer: the course materials are sourced from
– previous offerings of COMP9311 and COMP3311
– Prof. Werner Nutt on Introduction to Database Systems

(http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/)

COMP9311:
Database Systems

2

SQL as a Programming Language

SQL is a powerful language for manipulating relational data.

But it is not a powerful programming language.

At some point in developing complete database applications

• we need to implement user interactions

• we need to control sequences of database operations

• we need to process query results in complex ways, or enforce some business rules

and SQL cannot do any of these.

3

What’s wrong with SQL?

Consider the problem of withdrawal from a bank account:

If a bank customer attempts to withdraw more funds than they have in their account, then
indicate "Insufficient Funds", otherwise update the account

An attempt to implement this in SQL:

4

What’s wrong with SQL?

Two possible evaluation scenarios:

• displays "Insufficient Funds", UPDATE has no effect, displays unchanged balance

• UPDATE occurs as required, displays changed balance

Some problems:

• SQL doesn't allow parameterisation (e.g. AcctNum)

• always attempts UPDATE, even when it knows it's invalid

• need to evaluate balance test twice (balance < Amount, balance >= Amount)

• always displays balance, even when not changed

To accurately express the "business logic", we need facilities like conditional execution and
parameter passing.

5

Database Programming

Database programming requires a combination of

• manipulation of data in DB (via SQL)

• conventional programming (via procedural code)

This combination is realised in a number of ways:

• passing SQL commands via a "call-level" interface
(prog. lang. is decoupled from DBMS; most flexible; e.g. Java/JDBC, Python/DB-API)

• embedding SQL into augmented programming languages
(requires pre-processor for language; typically DBMS-specific; e.g. SQL/C)

• special-purpose programming languages in the DBMS
(closely integrated with DBMS; enable extensibility; e.g. PL/SQL, PLpgSQL)

6

Database Programming

Combining SQL and procedural code solves the "withdrawal" problem:

(This example is actually a stored procedure, using SQL/PSM syntax)

7

Stored Procedures

Stored procedures

• procedures/functions that are stored in DB along with data

• written in a language combining SQL and procedural ideas
• provide a way to extend operations available in database

• executed within the DBMS (close coupling with query engine)

Benefits of using stored procedures:

• code executed inside DBMS is fast with large data
• user-defined functions can be nicely integrated with SQL

• procedures are managed like other DBMS data

• procedures and the data they manipulate are held together

8

Stored Procedures – SQL/PSM

SQL/PSM is a 1996 standard for SQL stored procedures.
(PSM = Persistent Stored Modules)

Syntax for PSM procedure/function definitions:

Parameters have three modes: IN, OUT, INOUT

9

Stored Procedures – SQL/PSM

Example: Find the cost of Toohey's New beer at a specified bar

Default behaviour: return price charged for Toohey's New at that bar.

function CostOfNew(string) returns float;

How to deal with the case: New is not sold at that bar?

• i.e., exception-handling (e.g. Java)
• return null or negative value to indicate error

• return two values: price and/or status

In PSM, could use return-value plus OUT-mode parameter.

10

Stored Procedures – SQL/PSM

Example: Find cost of Toohey's New beer at a specified bar -> return price charged for
New at that bar.

Using NULL return value …

11

Stored Procedures – SQL/PSM

Using an OUT parameter

12

Stored Procedures – SQL/PSM

How the function is used …

13

SQL/PSM in REAL database systems

Unfortunately, the PSM standard was developed after most DBMSs had their
own stored procedure language

⇒ no DBMS implements the PSM standard exactly.

IBM's DB2 and MySQL implement the SQL/PSM closely (but not exactly)

Oracle's PL/SQL is moderately close to the SQL/PSM standard
• syntax differences e.g. EXIT vs LEAVE, DECLARE only needed once, ...

• extra programming features e.g. packages, exceptions, input/output

PostgreSQL's PLpgSQL is close to PL/SQL (95% compatible)

• has only functions (but can return void); limited exceptions; no i/o
• PLpgSQL function bodies are defined within a string

• PLpgSQL is just one of a number of languages for stored procedures

14

PLpgSQL

PLpgSQL = Procedural Language extensions to PostgreSQL

A PostgreSQL-specific language integrating features of
• procedural programming and SQL programming

Functions are stored in the database with the data.

Provides a means for extending DBMS functionality, e.g.
• implementing constraint checking (triggered functions)

• complex query evaluation (e.g. recursive)

• complex computation of column values
• detailed control of displayed results

15

PLpgSQL

PLpgSQL functions are created (and inserted into db) via:

Note: the entire function body is a single SQL string ($$ … $$)
LANGUAGE plpgsql -> the function body is written in … (specify the language!)

currently... PL/Perl (Chapter 42), and PL/Python(Chapter 43), with more possibilities.

https://www.postgresql.org/docs/9.5/plperl.html
https://www.postgresql.org/docs/9.5/plpython.html

16

PLpgSQL

Beware: never give parameters the same names as attributes.

One strategy: start all parameter names with an underscore (e.g., _x, _y)

add (‘abc’, ‘def’) returns the string “abc’def”

17

PLpgSQL functions

18

PLpgSQL functions

If a PLpgSQL function definition is syntactically correct
• the function is stored in the database

• but is not completely checked until executed

Common errors:

• using a variable with same name as some attribute
(the variable hides the attribute, so queries using the attribute fail
"inexplicably")

Warning: PLpgSQL's error messages can sometimes be obscure.

However, the PLpgSQL parser and error messages have
improved considerably in recent versions.

19

PLpgSQL functions

Example: Adding two integers:

20

PLpgSQL function return types

A PostgreSQL function can return a value which is
• an atomic data type (e.g. integer, float, boolean, ...)

• a tuple (e.g. table record type or tuple type)
• a set of atomic values (like a table column)

• a set of tuples (i.e. a table)

A function returning a set of tuples is similar to a view.

Examples of different function return types:

The OlderEmployees function returns an instance of the Employee table.

21

PLpgSQL function return types

Different kinds of functions are invoked in different ways:

22

Using PLpgSQL
PLpgSQL functions can be invoked in several contexts:

23

INSERT RETURNING … PLpgSQL

INSERT … RETURNING -> Can capture values from tuples inserted into DB:

Useful for recording id values generated for serial PKs:

24

Exceptions… PLpgSQL

Handling Exceptions …

list of exception names, e.g. division_by_zero.
A list of exceptions is in Appendix A of the PostgreSQL Manual.

The server log for your PostgreSQL server is located in /srvr/YOU/$PGDATA/log

25

Function returning tables

PLpgSQL functions can return tables by using a return type
CREATE OR REPLACE funcName(arg1type, arg2type,)

RETURNS SETOF rowType

Example:

26

Function returning tables

Functions returning SETOF rowType are used like tables.

SETOF functions look similar to views.

Example:

27

Function returning tables

A difference between views and functions returning a SETOF:

• CREATE VIEW produces a "virtual" table definition
(table definitions induce a row type with same name as the virtual table)

• SETOF functions require an existing tuple type

In examples before, we used existing Employees tuple type.

You could also define a new tuple return type beforehand via:

28

Function returning tables

Example of using tuple types ... valuableEmployees() revisited:

