
1

Nested Queries

• In the atomic conditions of the where clause one can also
use a select clause (which must appear in
parentheses).

2

Nested Queries

In particular, in atomic conditions one can have:

– comparisons of an attribute (or several attributes) with
the result of a subquery

– existential quantification

an existential quantifier = condition F is TRUE if there
exists some tuple that makes F TRUE.

3

“Name and income of Frank’s father”

select f.name, f.income
from person f, fatherChild fc
where f.name = fc.father and fc.child = 'Frank'

select f.name, f.income
from person f
where f.name = (select fc.father

from fatherChild fc
where fc.child = 'Frank')

Nested Queries (Example)

An example of the first usage scenario:
the Where clause comparing f.name with the result of the nested SELECT

4

In the where clause, the result of a nested query can be related to other
values by way of several operators:

Nested Queries: Operators

• equality and other comparisons such as >, < …
(the result of the nested query must be unique)

• if it is not certain that the result of the nested query is unique, the
nested query can be preceded by one of the keywords:
— any: true, if the comparison is true for at least one of the result

tuples of the nested query (e.g., > any, < any)
— all: true, if the comparison is true for all the result tuples of the

nested query (e.g., >all, <all)
• the operator in, which is equivalent to =any
• the operator not in, which is equivalent to <>all
• the operator exists

5

Nested Queries: Example

“Name and income of the fathers of persons who earn more than 20k”

select distinct f.name, f.income
from person f, fatherChild fc, person c
where f.name = fc.father and

fc.child = c.name and c.income > 20

select f.name, f.income
from person f
where f.name = any

(select fc.father
from fatherChild fc, person c
where fc.child = c.name and

c.income > 20)

fathers of persons
who earn more
than 20k

6

Nested Queries: Example

“Name and income of the fathers of persons who earn more than 20k”
select f.name, f.income
from person f
where f.name = any

(select fc.father
from fatherChild fc, person c
where fc.child = c.name and

c.income > 20)

7

Name and income of the fathers of persons who earn more than 20k.

select f.name, f.income
from person f
where f.name in (select fc.father

from fatherChild fc, person c
where fc.child = c.name

and c.income > 20)

select f.name, f.income
from person f
where f.name in (select fc.father

from fatherChild fc
where fc child in (select c.name

from person c
where c.income > 20)

)

Nested Queries: Example

fathers of
persons who
earn more than
20k

per
son

s who

ear
n mor

e

tha
n 20k

“in” equals to “= any”

8

The nested formulation of a query is sometimes executed
less efficiently than an equivalent unnested formulation
(due to limitations of the query optimizer).

The nested formulation is sometimes more readable.

Nested Queries: Comments

9

“Persons who have an income that is higher than the income of all
persons younger than 30”

Nested Queries: Example with all
9

10

“Persons who have an income that is higher than the income of all
persons younger than 30”

select name
from person
where income >= all (select income

from person
where age < 30)

Nested Queries: Example with all
10

11

“Persons who have an income that is higher than the income of all
persons younger than 30”

select name
from person
where income >= (select max(income)

from person
where age < 30)

Equivalent Formulation with max
11

12

An expression with the operator exists is true if the result of the
subquery is not empty.

Example: “Persons with at least one child”

select p.name, p.age, p.income
from person p
where exists (select *

from fatherChild fc
where fc.father = p.name)

or
exists (select *

from motherChild mc
where mc.mother = p.name)

Note: the attribute name refers to the table in the outer from clause.

Nested Queries: Example with exists

13

The query for “persons with at least one child” can also be expressed as
a union:

select p.name, p.age, p.income
from person p, fatherChild fc
where fc.father = p.name
union
select p.name, p.age, p.income
from person p, motherChild mc
where mc.mother = p.name

Does the following query with “or” return the same answers?

select distinct p.name, p.age, p.income
from person p, fatherChild fc, motherChild mc
where fc.father = p.name

or mc.mother = p.name

Nesting, Union, and “or”

14

All the queries with nesting in the previous examples are equivalent to some
unnested query. So, what’s the point of nesting?

Example: “Persons without a child”

select *
from person p
where not exists (select *

from fatherChild fc
where fc.father = p.name)

and
not exists (select *

from motherChild mc
where mc.mother = p.name)

This cannot be expressed equivalently as a “select from where” query …
(join? union?)

Nested Queries and Negation

15

“Name and age of the mothers all of whose children are at
least 18”

Approach 1: Subquery with all

Approach 2: Subquery with min

Approach 3: Subquery with not exists

Query 8 – nested queries

16

“Name and age of the mothers all of whose children are at
least 18”

select m.name, m.age

from person m join motherChild mc

on m.name = mc.mother

where 18 =< all (select c0.age

from motherChild mc0 join person c0
on mc0.child = c0.name

where mc0.mother = mc.mother)

Query 8 – Solution with all
16

17

“Name and age of the mothers all of whose children are at
least 18”

select m.name, m.age

from person m join motherChild mc

on m.name = mc.mother

where 18 =< (select min(c0.age)

from motherChild mc0 join person c0
on mc0.child = c0.name

where mc0.mother = mc.mother)

“Name and age of mothers where the minimal age of their children is
greater or equal 18”

Query 8: Solution with min
17

18

“Name and age of the mothers all of whose children are at
least 18”

select m.name, m.age

from person m join motherChild mc

on m.name = mc.mother

where not exists

(select *

from motherChild mc0 join person c0
on mc0.child = c0.name

where mc0.mother = mc.mother and

c0.age < 18)

Name and age of mothers who don’t have a child that is younger than 18.

Query 8: Solution with not exists

19

Visibility rules:
• it is not possible to refer to a variable defined in a block

below the current block
• if an attribute name is not qualified with a variable or table

name, it is assumed that it refers to the “closest” variable or
table with that attribute

In each block, one can refer to variables defined in the same
block or in surrounding blocks

Semantics: the inner query is executed for every tuple of
the outer query

Nested Queries: Comments
19

20

Persons having at least one child.

select *
from person
where exists (select *

from fatherChild
where father = name)

or
exists (select *

from motherChild
where mother = name)

The attribute name refers to the table person in the outer from clause.

Nested Queries: Visibility
20

21

Note: This query is incorrect:

select *
from employee
where dept in (select name

from department D1
where name = 'Production')

or
dept in (select name

from department D2
where D2.city = D1.city)

More on Visibility

name lastNameemployee dept

name addressdepartment city

22

Name and income of the fathers of persons who earn more than 20k, showing
also the income of the child.

select distinct f.name, f.income, c.income
from person f, fatherChild, person c
where f.name = fc.father and fc.child = c.name

and c.income > 20

In this case, the “intuitive” nested query is incorrect:

select name, income, c.income
from person
where name in (select father

from fatherChild
where child in (select name

from person c
where c.income > 20))

Visibility: Variables in Internal Blocks

23

It may be necessary to use in inner blocks variables that are defined in outer
blocks. In this case one talks about correlated subqueries.

Example: The fathers all of whose children earn strictly more than 20k.

select distinct fc.father
from fatherChild fc
where not exists (select *

from fatherChild fc0, person c
where fc.father = fc0.father

and fc0.child = c.name
and c.income <= 20)

Correlated Subqueries
23

24

Query 10. Correlated Subqueries
24

“Name and age of mothers who have a child whose age
differs less than 20 years from their own age”

select m.name, m.age
from person m, motherChild mc
where m.name = mc.mother and

mc.child in (select c.name
from person c

where m.age – c.age < 20)

25

Can one express intersection by way of nesting?

select name from employee
intersection

select lastName as name from employee

Question: Intersection
25

name lastNameemployee dept

26

select name from employee
intersection

select lastName as name from employee

select name
from employee
where name in (select lastName

from employee)

select name
from employee e
where exists (select *

from employee
where lastName = e.name)

Intersection by Way of Nesting

27

Is it possible to express intersection without nesting?

select name from employee
intersection

select lastName as name from employee

select en.name
from employee en, employee eln
where en.name = eln.lastName

Intersection Without Nesting
27

28

Can one express set difference by way of nesting?

select name from employee
except

select lastName as name from employee

Query 11

29

Can one express set difference by way of nesting?

select name from employee
except

select lastName as name from employee

select name
from employee
where name not in (select lastName

from employee)

Query 11 (Solution 1)

30

Can one express set difference by way of nesting?

select name from employee
except

select lastName as name from employee

select name
from employee e
where not exists (select *

from employee
where lastName = e.name)

Query 11 - (Solution 2)
30

31

Query 12: Nesting and Functions
31

“The person (or the persons) that have the highest income”

select *
from person
where income = (select max(income)

from person)

Or:

select *
from person
where income >= all (select income

from person)

32

The persons which have a unique combination of age and
income
(that is, persons for whom the pair (age, income) is

different from the corresponding pairs of all other
persons).

select *
from person p
where (age,income) not in

(select age, income
from person
where name <> p.name)

Conditions on Several Attributes

33

A view is a table whose instance is derived from other tables by a query.

create view ViewName [(AttributeList)] as SQLSelect

Views are virtual tables: their instances (or parts of them) are only calculated
when they are used (for instance in other queries).

Example:

create view AdminEmp(empNo,firstName,lastName,sal) as
select EmpNo, firstName, lastName, salary
from employee
where dept = 'Administration' and

salary > 10

SQL Views

34

“Which age group has the highest total income?”

One solution is to use nesting in the having clause:

select age
from person
group by age
having sum(income) >= all (select sum(income)

from person
group by age)

Another solution is to create a view.

Maximizing Aggregates

35

create view ageIncome(age,sumIncome) as
select age, sum(income)
from person
group by age

select age
from ageIncome
where sumIncome = (select max(sumIncome)

from ageIncome)

Solution with Views
35

36

Among all companies based in George Street that sell red
parts, which is the one with the least average price for red
parts?

Query 13

On the supplier and parts DB:

Supplier(sid, sname, address)
Part(pid, pname, colour)
Catalog(sid, pid, cost)

37

Among all companies based in George Street that supply
red parts, which is the one with the least average price for
red parts?

create view RedPartCompGS(sid,name,avgCost) as
select sid, name, avg(cost)
from supplier natural join catalog

natural join part
where address LIKE ‘%George St%’ AND

colour = ‘red’
group by sid, name

Query 13 (Solution)
37

38

Among all companies based in George Street that sell red
parts, which is the one with the least average price for red
parts?

select name
from RedPartCompGS
where avgCost = (select min(avgCost)

from RedPartCompGS)

Query 13 (Solution, cntd)
38

39

select *

from person

where name in (select father from fatherChild);

With a view

create view father(name) as

select distinct father from fatherChild;

select *

from person

where name in (select name from father);

Views can be used in subqueries
39

40

An equivalent formulation (… showing a view appearing in JOIN)

select person.*

from person, father

where person.name = father.name;

where father is the view we saw previously.

If we need a view only once, we can define it in the FROM clause
select *

from person,

(select distinct father as name

from fatherChild) father

where person.name = father.name;

Inline Views: Views in the FROM Clause
40

41

Inline views can also take part in joins

select person.*

from person

natural join

(select distinct father as name

from fatherChild) father;

Note: The inline view needs to be named, even if the name is never used.

Inline Views (Cntd)

42

Consider a database about suppliers and parts with the following schema:

Supplier(sid, sname, address)

Part(pid, pname, colour)

Catalog(sid, pid, cost)

Formulate the following queries in SQL:

Exercises …

43

1. Find the names of suppliers who supply some red part.
2. Find the IDs of suppliers who supply some red or green part
3. Find the Ids of suppliers who supply some red part and are based at 21

George Street

4. Find pairs of IDs such that for some part the supplier with the first ID charges
more than the supplier with the second ID.

5. For each supplier, return the maximal and the average cost of the parts they
offer.

6. List those red parts that on average cost no more than 30 Euro.

7. List the names of those red parts that are offered by at least three suppliers.
8. Suppliers that supply only red parts

9. Suppliers that supply all red parts

Queries: Exercises (cntd)

