
Term 3 2022
Week 4 (SQL) 
By Helen Paik, CSE UNSW

Textbook: Chapters 6 and 7

Disclaimer: the course materials are sourced from
– previous offerings of COMP9311 and COMP3311
– Prof. Werner Nutt on Introduction to Database Systems 

(http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/)

COMP9311: 
Database Systems



2

name age
Person

income
Andy 27

Mary 55
Anne 50
Phil 26
Greg 50
Frank 60
Kim 30
Mike 85
Lisa 75

Rob 25
21

42
35
30
40
20
41
35
87

15

mother child
Lisa

Anne
Anne
Mary
Mary

Lisa
Mary

Kim
Phil
Andy
Rob

Greg

MotherChild

father child

Greg
Greg
Frank
Frank

Steve
Kim
Phil
Andy
Rob

Frank

FatherChild



3

Name and income of persons that are less than 30:

pname, income(sage<30(Person))

select name, income
from   person
where age < 30

Selection and Projection

name income
Andy

Phil
Rob

21

30
15



4

To avoid ambiguities, every attribute name has two components: RelationName.AttributeName
When there is no ambiguity, one can drop the initial component: RelationName.

select person.name, person.income
from   person
where person.age < 30

can be written as:

select name, income
from   person
where age < 30

Naming Conventions and Renaming

and also for (re-naming attributes and relations)

select p.name as Pname,  p.income as income
from person p
where p.age < 30



5

Query 1

“From the table person, !"#$%&'()(*'+(&),-'(,.(
/'-'!&0*1("*-.(&2'($'3/"*/(+0&2()*(0*!"#'(,'&+''*(45(
)*6(758()*6()660*1()*()&&30,%&'(!)--'6(90*!"#'(6"%,-'6:(
&2)&(2)/8(;"3('<'3.(&%$-'8(6"%,-'(&2'(<)-%'(";(income=

Show the result of the query”

name agePerson income



6

select name, age, income,
(income * 2) as income-doubled

from   person
where income >= 20 and income <= 30

Query 1: Solution

name age income
Andy 27
Phil 26
Frank 60

21
30
20

income-doubled
42
60
40



7

select income/4 as quarterlyIncome
from   person 
where name = ‘Greg'

Expressions in the Target List

select *
from   person
where  income > 25 

and (age < 30 or age > 60)

Complex Conditions in the “where” Clause



8

The “like” Condition
8

The persons having a name that starts with 'A' and has a 'd' as the third 
letter:

select * 
from   person 
where  name like 'A_d%‘

• ‘_‘ matches a single letter

• ‘%‘ matches a string



9

Query 2

“From the table employee, calculate a new table by 
selecting only employees from the branches whose name 
start with ‘L’ and salary is less than 50,  projecting the 
data on the attribute empNo, salary, branch and 
adding an attribute that has, for every tuple, twice the 
value of the attribute salary.

Show the result of the query on the following table”

surname branch salaryempNo

Black Glasgow 645998
Black York 557309

Brown London 645698
Brown London 449553

Employee



10

select empNo, branch, salary,
salary*2 as doubleSal

from   employee
where branch like ‘L%’ 

and salary < 50

Query 2

branch salary doubleSalempNo
London 44 889553

Employee



11

Using select statements with a single relation in the 
from clause we can realise:

• selections, 
• projections, 
• renamings

Joins (and Cartesian products) are realised by using two or 
more relations in the from clause

Selection, Projection, and Join

11



12

Given the relations: R1(A1,A2)    and    R2 (A3,A4),

select R1.A1, R2.A4 
from   R1, R2
where R1.A2 = R2.A3

corresponds to:

pA1,A4 (sA2=A3 (R1 x  R2))

SQL and Relational Algebra (cntd)



13

“The fathers of persons who earn more than 20K”

pfather(FatherChild child=name sincome>20 (Person))

Query 3:

select distinct fc.father
from person p, fatherChild fc
where fc.child = p.name

and p.income > 20



14

“Father and mother of every person”

… can be calculated in relational algebra by means of a 
natural join

FatherChild MotherChild

select fc.child, fc.father, mc.mother
from motherChild mc, fatherChild fc
where fc.child = mc.child

Query 4



15

Query 5 Join and Other Operations

15

“Persons that earn more than their father, 
showing name, income, and income of the father”

Write the query in SQL



16

Query 5.

“Persons that earn more than their father, 
showing name, income, and income of the father”

select c.name, c.income, f.income
from person f, fatherChild fc, person c
where f.name = fc.father and

c.name = fc.child and
c.income > f.income



17

For the persons that earn more than their father, show their 
name, income, and the income of the father

select c.name as child, c.income as income,
f.income as incomefather

from   person f, fatherChild fc, person c
where  f.name = fc.father and

fc.child = c.name and 
c.income > f.income

select, with Renaming of the Result



18

For every person, return the person, their father and their 
mother

select fatherChild.child, father, mother
from motherChild join fatherChild on

fatherChild.child = motherChild.child

Explicit Join

select …
from Table { join Table on JoinCondition }, …
[ where OtherCondition ]



19

For every person, return the person, their father and their 
mother

Explicit Join



20

“For the persons that earn more than their father, show their 
name, income, and the income of the father”

An equivalent formulation without explicit join:

Query 5 with explicit joins

select c.name, c.income, f.income
from person c 

join fatherChild fc on c.name = fc.child
join person f on fc.father = f.name

where c.income > f.income

select c.name, c.income, f.income
from person c, fatherChild fc, person f
where c.name = fc.child and

fc.father = f.name and
c.income > f.income



21

“For every person, return the father and, if known, the mother”

select fatherChild.child, father, mother
from fatherChild left outer join motherChild

on fatherChild.child = motherChild.child

Note: “outer” is optional
select fatherChild.child, father, mother
from fatherChild left join motherChild

on fatherChild.child = motherChild.child

Outer Join



22

“Return name and income of persons under thirty, in
alphabetic order of the names”

select name, income
from   person
where  age < 30
order by name

select name, income
from   person
where  age < 30
order by name desc

Ordering the Result: order by

descending
order

ascending
order



23

Ordering the Result: order by

select name, income
from   person
where  age < 30

select name, income
from   person
where  age < 30
order by name

name income
Andy 21
Rob 15
Mary 42

name income

Mary 42
Andy 21

Rob 15



24

Among the expressions in the target list (i.e., projection list), 
we can also have expressions that calculate values based
on a group of tuples:

• count, minimum (min), maximum (max), average (avg), 
sum

Example: How many children has Frank?

select count(*) as NumFranksChildren
from   fatherChild
where father = 'Frank'

Aggregate Operators



25

Results of count: Example
25

NumFranksChildren
2

fatherFatherChild child

Greg
Greg

Steve
Kim
Phil

Frank
Frank

Andy
Rob

Frank

Frank
Frank

Andy
Rob



26

select count(*) 
from   person

select count(income) 
from   person

select count(distinct income) 
from   person

count and Null Values
26

name agePerson income
Andy 27

Mary 55
Anne 50

Rob 25
21

21
35

NULL

Result =number of tuples 
=4

Result = number of values 
different from NULL 

= 3
Result =number of distinct 

values (excluding
NULL)

=2



27

Aggregate Operators and Null Values

27

select avg(income) as meanIncome
from   person

name agePerson income
Andy 27

Mary 55
Anne 50

Rob 25
30

36
36

NULL

is 
ignored

meanIncome
34



28

An incorrect query (whose name should be returned?):

select name, max(income)
from   person

The projection list has to be homogeneous, for example:

select min(age), avg(income)
from   person

Aggregate Operators and the Projection List



29

Aggregate Operators and Grouping

29

• Aggregation functions can be applied to partitions of the 
tuples of a relations

• To specify the partition of tuples, one uses the group by 
clause:

group by attributeList



30

Aggregate Operators and Grouping

30

The number of children of every father.

select father, count(*) as NumChildren
from   fatherChild
group by father

FatherChild

father child

Greg
Greg

Steve
Kim
Phil

Frank
Frank

Andy
Rob

Frank
father NumChildren

Greg
Steve

2
Frank 2

1



31

“For each group of adult persons (age > 17) who have the 
same age, return the maximum income for every group and 
show the age”

Write the query in SQL!

Query 6: group by
31

name agePerson income



32

Query 6

32

“For each group of adult persons who have the same age,
return the maximum income for every group and show the 
age”

select age, max(income)
from   person
where  age > 17
group by age



33

In a query that has a group by clause, only such attributes appear in the group by
clause can appear in the projection list (except for aggregation functions)

Example: Incorrect: income of persons, grouped according to age

select age, income
from   person
group by age

The above is wrong … because there could exist several values for the same  group.

Correct: average income of persons, grouped by age.

select age, avg(income)
from   person
group by age

Make the attribute aggregate

Grouping and Projection List



34

The syntactic restriction on the attributes in the select clause holds also for queries that
would be semantically correct (i.e., for which there is only a single value of the attribute for 
every group).

Example: Fathers with their income and with the average income of their children. 

Incorrect:
select fc.father, avg(c.income), f.income
from   person c join fatherChild fc on c.name=fc.child

join person f on fc.father=f.name
group by fc.father

Correct:
select fc.father, avg(c.income), f.income
from   person c join fatherChild fc on c.name=fc.child

join person f on fc.father=f.name
group by fc.father, f.income

Grouping and Target List (cntd)



35

It is also possible to filter the groups using selection conditions.
Clearly, the selection of groups differs from the selection of the tuples in the where clause: 
the tuples form the groups.

To filter the groups, the “having clause” is used.

The having clause must appear after the “group by”

Example: “Fathers whose children have an average income greater 25.”

select fc.father, avg(c.income)
from   person c join fatherChild fc

on c.name = fc.child
group by fc.father
having avg(c.income) > 25

Conditions on Groups (“having” clause)



36

“Fathers whose children under age 30 have an average 
income greater 20”

Query 7.  where or having?
36



37

“Fathers whose children under the age of 30 have an 
average income greater 20”

select father, avg(f.income)
from   person c join fatherChild fc

on c.name = fc.child
where c.age < 30 
group by cf.father
having avg(c.income) > 20

Query 7.



38

Within a select statement one cannot express unions.
An explicit construct is needed:

select ...
union [all]
select ...

With union, duplicates are eliminated
(also those originating from projection).

With union all duplicates are kept.

Union, Intersection, and Difference

38



39

select father, child
from   fatherChild
union
select mother, child
from   motherChild

Which are the attribute names of the result?
Those of the first operand!

® SQL matches attributes in the same position
® SQL renames the attributes of the second

operand

Positional Notation of Attributes

39



40

Positional Notation: Example

select father, child
from fatherChild
union
select mother, child
from   motherChild

select father, child
from   fatherChild
union
select child, mother
from   motherChild



41

Positional Notation (cntd)

Renaming does not change anything:

select father as parent, child
from   fatherChild
union
select child, mother as parent
from   motherChild

Correct (if we want to treat fathers and mothers as parents):

select father as parent, child
from   fatherChild
union
select mother as parent, child 
from   motherChild



42

Difference

select name
from   person
except
select child as name
from   fatherChild

We will see that differences can also be expressed with 
nested select statements.



43

select name
from   person
intersect
select child as name
from   fatherChild

is equivalent to 

select person.name
from   person, fatherChild
where person.name = fatherChild.child

Intersection


