COMP9311: Database Systems

Relational Algebra

(textbook: chapter 8)

Term 32022
Week 3 Relational Algebra and SQL
By Helen Paik, CSE UNSW

Disclaimer: the course materials are sourced from

- previous offerings of COMP9311 and COMP3311
- Prof. Werner Nutt on Introduction to Database Systems (http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/)

Motivation

We know how to store data ... i.e., we modelled our data in relational data model -> then created tables to store them into a relational database.

How do we manipulate or retrieve (interesting) the data?

A data model must include a set of operations to manipulate the database, in addition to the concepts for defining database's structure and constraints.

The basic set of operations for the relational model is Relational Algebra

- Edgar F. Codd (1970): Relational Algebra, mathematical foundation for relational data management
- supports basic retrieval requests (queries) -> the result of a query is also a relation
- A sequence of relational algebra operations form a relational algebra
 expression -> results in a relation

Motivation

The relational algebra is very important for several reasons.

- First, it provides a formal foundation for relational model operations.
- Second, and perhaps more important, it is used as a basis for implementing and optimizing queries in the query processing and optimization modules that are integral parts of relational database management systems (RDBMSs),
- Third, some of its concepts are incorporated into the SQL, the standard query language for relational database management systems

Characteristics of an Algebra

An algebra expression:

- is constructed with operators from atomic operands (constants, variables,)
- can be evaluated
- can be equivalent to another expression
- ...if they return the same result for all values of the variables

This equivalence concept gives rise to an algebraic identity between expressions

An algebraic identity is an equality that holds for any values of its variables.

The value of an expression is independent of its context

- e.g., $5+3$ has the same value, no matter whether it occurs as

$$
10-(5+3) \quad \text { or } \quad 4 \cdot(5+3)
$$

Atomic expressions:
numbers and variables
Operators: +, -, ;:

Identitities:
$x+y=y+x$
$x \cdot(y+z)=x \cdot y+x \cdot z$
... and so on

Consequence: subexpressions can be replaced by equivalent expressions without changing the meaning of the entire expression

Relational Algebra: Principles

Atoms are relations

Operators are defined for arbitrary
instances of a relation

The following two results have to be defined for each operator:

- result schema
- result instance

Set theoretic operators

- union " \smile ", intersection " \cap ", difference "\"

Renaming operator ρ
Removal operators

- projection π, selection σ

Combination operators

- Cartesian product "×", joins " \lfloor "

Extended operators

- duplicate elimination, grouping, aggregation, sorting, outer joins, etc.
- "Equivalent" to SQL query language ... Relational Algebra concepts reappear in SQL
- Used inside a DBMS, to express query plans

Set Operators

Observations:
Instances of relations are sets
\rightarrow we can form unions, intersections, and differences

Set algebra operators can only be applied to relations with identical attributes,

- same number of attributes
- same attribute names
- same domains
- (i.e., set operation compatibility)

Union (\cup)

CS-Student

Studno	Name	Year
s1	Egger	5
s3	Rossi	4
s4	Maurer	2

Master-Student

Studno	Name	Year
s1	Egger	5
s2	Neri	5
s3	Rossi	4

CS-Student \cup Master-Student

Studno	Name	Year
s1	Egger	5
s2	Neri	5
s3	Rossi	4
s4	Maurer	2

Intersection (\cap

CS-Student

Studno	Name	Year
s1	Egger	5
s3	Rossi	4
s4	Maurer	2

Master-Student

Studno	Name	Year
s1	Egger	5
s2	Neri	5
s3	Rossi	4

CS-Student \cap Master-Student

Studno	Name	Year
s1	Egger	5
s3	Rossi	4

Difference (l)

CS-Student

Studno	Name	Year
s1	Egger	5
s3	Rossi	4
s4	Maurer	2

Master-Student

Studno	Name	Year
s1	Egger	5
s2	Neri	5
s3	Rossi	4

CS-Student \backslash Master-Student

Studno	Name	Year
s4	Maurer	2

$$
\begin{gathered}
\text { Set difference, formally: } \\
B \backslash A=\{x \in B \mid x \notin A\} \text {. }
\end{gathered}
$$

Renaming ρ

- The renaming operator ρ (reads 'rho') changes the name of relation schema (both for relation name and relation attributes)
- It changes the schema, but only within a query
- $\rho_{\mathrm{x}}(\mathrm{E})$ where E is the relation name and x is the new name for E , usually a shorter name
- $\rho_{\text {FC }}$ (Father-Child)
- $\rho_{\mathrm{a} / \mathrm{b}}(\mathrm{E})$ where E is the relation name, a, b are attribute names, b is an attribute of E
- $\rho_{\text {parent/father }}$ (Father-Child)

Father-Child

Father	Child
Adam	Abel
Adam	Cain
Abraham	Isaac

$$
\rho_{\mathrm{FC}}(\text { Father-Child) }
$$

Father	Child
Adam	Abel
Adam	Cain
Abraham	Isaac

$\rho_{\text {parent/father }}$ (Father-Child)

Parent	Child
Adam	Abel
Adam	Cain
Abraham	Isaac

Union example after renaming

$\rho_{\text {Parent / Father (Father-Child) }}$

Parent	Child
Adam	Abel
Adam	Cain
Abraham	Isaac

$\rho_{\text {Parent / Father (Father-Child) }}$
$\rho_{\text {Parent / Mother }}$ (Mother-Child)
ρ Parent / Mother (Mother-Child)

Parent	Child
Eve	Abel
Eve	Seth
Sara	Isaac

Parent	Child
Adam	Abel
Adam	Cain
Abraham	Isaac
Eve	Abel
Eve	Seth
Sara	Isaac

Projection and Selection

Two "orthogonal" operators

- Selection:
- horizontal decomposition
- Projection:
- vertical decomposition

Selection

Projection (π)

General form: $\pi_{\mathrm{A} 1, \ldots, \mathrm{Ak}}(\mathrm{R})$

where R is a relation and A_{1}, \ldots, A_{k} are atributes of R.

Result:

- Schema: $\left(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{k}}\right)$
- Instance: the set of all subtuples $t\left[A_{1}, \ldots, A_{k}\right]$ where $t \in R$

Intuition: "removes" all attributes that are not in projection list

Projection: Example

STUDENT

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	cs	zobel	1
s6	peters	ca	kahn	3

$\pi_{\text {tutor }}($ STUDENT $)=$| tutor |
| :--- |
| $\begin{array}{l}\text { bush } \\ \text { kahn } \\ \text { goble } \\ \text { zobel }\end{array}$ |

Note:

- result relations don't have a name
- If duplicates?

Selection (σ)

General form: $\quad \sigma_{C}(R)$

with a relation R and a condition C on the attributes of R.

Result:

- Schema: the schema of R
- Instance: the set of all $t \in R$ that satisfy C

Intuition: Filters out all tuples that do not satisfy C

Selection: Example

STUDENT

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	cs	zobel	1
s6	peters	ca	kahn	3

STUDENT

$\sigma_{\text {name='bloggs'(STUDENT) }}=$| studno | name | hons | tut or | year |
| :--- | :--- | :--- | :--- | :--- |
| s 4 | bloggs | ca | goble | 1 |

Note:

- result relation has a name

Selection Conditions

Elementary conditions:

<attr> op <val> or <attr> op <attr> or <expr> op <expr>
where op is " $=$ ", " $<$ ", " \leq ", (on numbers and strings)
"LIKE" (for string comparisons), ...

Example:

- age ≤ 24
- phone LIKE '0039\%’
- salary + commission ≥ 24000

Combined conditions (using Boolean connectives):

```
Cl and C2 or Cl or C2 or not C
```


Selection conditions

STUDENT

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	cs	zobel	1
s6	peters	ca	kahn	3

$\sigma_{((\text {hons='cs') or (hons = 'ca')) and (tutor='goble') }}($ STUDENT $)=$

STUDENT

studno	name	hons	tut or	year
s3	smiths	cs	goble	2
s4	bloggs	ca	goble	1

Operators Can Be Nested

Who is the tutor of the student named "Bloggs"?
STUDENT

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	cs	zobel	1
s6	peters	ca	kahn	3

$\pi_{\text {tutor }}\left(\sigma_{\text {name }}=\right.$ 'bloggs' $\left.(S T U D E N T)\right)$

$$
=\begin{array}{|l|}
\hline \text { tutor } \\
\hline \text { goble } \\
\hline
\end{array}
$$

Identities for Selection and Projection

For all conditions $\mathrm{C} 1, \mathrm{C} 2$, more generally predicates p, q and relation R we have:
Selection splitting:
$\sigma_{C 1}$ and $C_{2}(R)=\sigma_{C 1}\left(\sigma_{C 2}(R)\right)$

Also, selection is commutative:
$\sigma_{\mathrm{C}_{1}}\left(\sigma_{\mathrm{C} 2}(\mathrm{R})\right)=\sigma_{\mathrm{C} 2}\left(\sigma_{\mathrm{C} 1}(\mathrm{R})\right)$

What about these - commutativity of selection and projection
$\pi_{\mathrm{A} 1, \ldots, \mathrm{Am}}\left(\sigma_{\mathrm{C}}(\mathrm{R})\right)=\sigma_{\mathrm{C}}\left(\pi_{\mathrm{A} 1, \ldots, \mathrm{Am}}(\mathrm{R})\right)$

Selection Conditions and "NULL"

Does the following identity hold?

$$
\text { Student }=\sigma_{\text {year } \leq 3}(\text { Student }) \cup \sigma_{\text {year }>3}(\text { Student }) ?
$$

What if Student contains a tuple t with $\mathrm{t}[\mathrm{year}]=$ null ?

Convention: Only comparisons with non-null values are TRUE or FALSE. Comparisons involving null yield a value UNKNOWN. To test, whether a value is null or not null, there are two conditions:

```
<attr> IS NULL or <attr> IS NOT NULL
```

Thus, the following identities hold:

Student $=\sigma_{\text {year } \leq 3}($ Student $) \cup \sigma_{\text {year }>3}($ Student $) \cup \sigma_{\text {year IS NULL }}($ Student $)$

$$
=\sigma_{\text {year }} \leq 3 \text { OR year }>3 \text { OR year IS NULL(Student) }
$$

Cartesian Product (X)

General form:
where R and S are arbitrary relations $\quad R \times S$

Result:

- Schema: (A1,...,Am, B1, .., Bn), where (A1,...,Am) is the schema of R and $(B 1, \ldots, B n)$ is the schema of S.
(If A is an attribute of both, R and S, then $R \times S$ contains the disambiguated attributes R.A and S.A.)
- Instance: the set of all concatenated tuples (t, s) where $t \in R$ and $s \in S$

Cartesian Product: Student \times Staff

STUDENT

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	cs	zobel	1
s6	peters	ca	kahn	3

STAFF

lecturer	roomno
kahn	IT206
bush	2.26
goble	2.82
zobel	2.34
watson	IT212
woods	IT204
capon	A14
lindsey	2.10
barringer	2.125

Brings all information from relations into one without applying any conditions

What's the point of this?

studno	name	hons	tutor	year	lecturer	roomno
s1	jones	ca	bush	2	kahn	IT206
s1	jones	ca	bush	2	bush	2.26
s1	jones	ca	bush	2	goble	2.82
s1	jones	ca	bush	2	zobel	2.34
s1	jones	ca	bush	2	watson	IT212
s1	jones	ca	bush	2	woods	IT204
s1	jones	ca	bush	2	capon	A14
s1	jones	ca	bush	2	lindsey	2.10
s1	jones	ca	bush	2	barringer	2.125
s2	brown	cis	kahn	2	kahn	IT206
s2	brown	cis	kahn	2	bush	2.26
s2	brown	cis	kahn	2	goble	2.82
s2	brown	cis	kahn	2	zobel	2.34
s2	brown	cis	kahn	2	watson	IT212
s2	brown	cis	kahn	2	woods	IT204
s2	brown	cis	kahn	2	capon	A14
s2	brown	cis	kahn	2	lindsey	2.10
s2	brown	cis	kahn	2	barringer	2.125
s3	smith	cs	goble	2	kahn	IT206
s3	smith	cs	goble	2	bush	2.26
s3	smith	cs	goble	2	goble	2.82
s3	smith	cs	goble	2	zobel	2.34
s3	smith	cs	goble	2	watson	IT212
s3	smith	cs	goble	2	woods	IT204
s3	smith	cs	goble	2	capon	A14
s3	smith	cs	goble	2	lindsey	2.10
s3	smith	cs	goble	2	barringer	2.125
s4	bloggs	ca	goble	1	kahn	IT206

"Where are the Tutors of Students?"

To answer the query
"For each student, identified by name and student number, return the name of the tutor and their office number"
we have to

- combine tuples from Student and Staff
STAFF

lecturer	roomno
kahn	IT206
bush	2.26
goble	2.82
zobel	2.34
watson	IT212
woods	IT204
capon	A14
lindsey	2.10
barringer	2.125

- that satisfy "Student.tutor=Staff.lecturer"
- and keep the attributes studno, name, (tutor or lecturer), and roomno.

In relational algebra:
STUDENT

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	cs	zobel	1
s6	peters	ca	kahn	3

$\pi_{\text {studno,name,lecturer,roomno }}\left(\sigma_{\text {tutor }}=\right.$ lecturer $($ Student \times Staff $\left.)\right)$
The part $\quad \sigma_{\text {tutor=lecturer }}($ Student \times Staff) \quad is a "join".

Example: Student Marks in Courses

STUDENT

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	cs	zobel	1
s6	peters	ca	kahn	3

"For each student, show the courses in which they are enrolled and their marks"

ENROL

stud	course	lab	exam
no	no	mark	mark
s1	cs250	65	52
s1	cs260	80	75
s1	cs270	47	34
s2	cs250	67	55
s2	cs270	65	71
s3	cs270	49	50
s4	cs280	50	51
s5	c250	0	3
s6	cs250	2	7

First,
$R \leftarrow \sigma_{\text {Student.studno }}=$ Enrol.studno $($ Student \times Enrol $)$,
then

Result $\leftarrow \pi_{\text {studno,name, ...,exam_mark }}(R)$

Join (內)

- The most used operator in the relational algebra.

Allows us to establish connections among data in different relations, taking advantage of the "data-based" nature of the relational model.

- Three main versions of the join:
- "natural" join: takes attribute names into account;
- "theta" join.
- "equi" join (a special form of theta join)
- all denoted by the symbol \bowtie

Natural Join

STUDENT

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	cs	zobel	1
s6	peters	ca	kahn	3

ENROL

$\frac{\text { stud }}{\underline{n o}}$	$\underline{\text { course }}$	lab no	exam mark
$\underline{\text { s1 }}$	mark		
s1	cs250	65	52
s1	cs270	80	75
s2	cs250	47	34
s2	cs270	65	55
s3	cs270	49	51
s4	cs280	50	51
s5	cs250	0	3
s6	cs250	2	7

Student \bowtie Enrol

- Implicit join based on common attributes
- The tuples in the resulting relation are obtained by combining tuples in the operands with equal values on the common attributes
- Common attributes appear once in the results

Student \bowtie Enrol
STUDENT

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	cs	zobel	1
s6	peters	ca	kahn	3

ENROL

$\frac{\text { stud }}{\text { no }}$	course	lab no	exam mark
mark	man250	65	52
s1	cs260	80	75
s1	cs270	47	34
s2	cs250	67	55
s2	cs270	65	71
s3	cs270	49	50
s4	cs280	50	51
s5	cs250	0	3
s6	cs250	2	7

stuno	name	hons	tutor	year	cours		labmark	exan	ark
s1	jones	\| ac	I bush	21	cs250	\|	651		52
s1	jones	1 ac	1 bush	air 21	cs260	I	80	nns	75
s1	jones	1 ac	1 bush	21	cs270		471		34
s2	brown	is	1 kahn	21	cs250	\|	67		55
s2	brown	is	1 kahn	21	cs270		65		71
s3	smith	\| cs	\| goble	21	cs270		49		50
s4	bloggs	ac	\| goble	11	cs250		50		51
s5	jones	cs	\| zobel	11	cs250		0		3
s6	peters	ac	I kahn	31	cs250		21		7
(9 rows)									

Natural Join (another example)

Offences | Code | Date | Officer | Dept | Registartion | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 143256 | $25 / 10 / 1992$ | 567 | 75 | 5694 FR |
| | 987554 | $26 / 10 / 1992$ | 456 | 75 | 5694 FR |
| | 987557 | $26 / 10 / 1992$ | 456 | 75 | 6544 XY |
| | 630876 | $15 / 10 / 1992$ | 456 | 47 | 6544 XY |
| | 539856 | $12 / 10 / 1992$ | 567 | 47 | 6544 XY |

Cars | Registration | | | | | Dept | Owner | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 6544 XY | 75 | Cordon Edouard | | | | |
| 7122 HT | 75 | Cordon Edouard | \ldots | | | | |
| | 5694 FR | 75 | Latour Hortense | | | | |
| | $\ldots 54 \mathrm{XY}$ | 47 | Mimault Bernard | | | | |
| | \ldots | | | | | | |

Offences \bowtie Cars

Code	Date	Officer	Dept	Registration	Owner	\ldots
143256	$25 / 10 / 1992$	567	75	5694 FR	Latour Hortense	\ldots
987554	$26 / 10 / 1992$	456	75	5694 FR	Latour Hortense	\ldots
987557	$26 / 10 / 1992$	456	75	6544 XY	Cordon Edouard	\ldots
630876	$15 / 10 / 1992$	456	47	6544 XY	Mimault Bernard	\ldots
539856	$12 / 10 / 1992$	567	47	6544 XY	Mimault Bernard	\ldots

θ-Joins (read "Theta"-Joins), Equi-Joins

Theta-Join:

- The most general form of JOIN ...
- Theta join combines tuples from different relations provided they satisfy the theta condition. The join condition is denoted by the symbol $\boldsymbol{\theta}$.
- Theta join can use comparison operators and common attributes are not required.

Student $\bowtie_{\text {student.year < enrol.labmark }}$ Enrol

- The results include the 'joined' attributes from both relations
- The attribute names do not have to match (but their domains have to be compatible)

Equi-Join:

A special form of Theta-join, and the most common form of JOIN ...
with a join condition containing an equality operator (i.e., explicitly stating the joining attributes)

Student $\bowtie_{\text {stuno=stuno }}$ Enrol

STUDENT

studno	name	hons	tutor	year
s1	jones	ca	bush	2
s2	brown	cis	kahn	2
s3	smith	cs	goble	2
s4	bloggs	ca	goble	1
s5	jones	cs	zobel	1
s6	peters	ca	kahn	3

Student tutor=lecturer Staff

| STAFF |
| :--- | :--- |
| lecturer roomno
 kahn IT2006
 bush 2.26
 goble 2.82
 zobel 2.34
 watson IT212
 woods IT204
 capon A14
 lindsey 2.10
 barringer 2.125 |

(equivalent to: $\sigma_{\text {tutor=lecturer }}($ Student \times Staff))

$\begin{array}{\|l\|} \hline \text { stud } \\ \text { no } \end{array}$	name	hons	tutor	year	lecturer	roomno
s1	jones	ca	bush	2	bush	2.
s2	brown	cis	kahn	2	kahn	IT206
s3	smith	cs	goble	2	goble	2.82
s4	bloggs	ca	goble	1	goble	2.82
s5	jones	cs	zobel	1	zobel	2.34
s6	peters	ca	kahn	3	kahn	IT206

Join: An Observation

Some tuples don't contribute to the result, they get lost.

Employee	Department
Brown	A
Jones	B
Smith	B

Department	Head
B	Black
C	White

Employee	Department	Head
Jones	B	Black
Smith	B	Black

Outer Join

An outer join extends those tuples with null values that would get lost by a join like natural join or equi join (a.k.a. inner joins)

The outer join comes in three versions

- left: keeps the tuples of the left argument, extending them with nulls if necessary
- right: ... of the right argument ...
- full: ... of both arguments ...

(Natural) Left Outer Join

Employee

Employee	Department
Brown	A
Jones	B
Smith	B

Department

Department	Head
B	Black
C	White

Employee $\bowtie^{\text {Left }}$ Department

Employee	Department	Head
Brown	A	null
Jones	B	Black
Smith	B	Black

(Natural) Right Outer Join

Employee

Employee	Department
Brown	A
Jones	B
Smith	B

Department

Department	Head
B	Black
C	White

Employee	Department	Head
Jones	B	Black
Smith	B	Black
null	C	White

(Natural) Full Outer Join

Employee

Employee	Department
Brown	A
Jones	B
Smith	B

Department

Department	Head
B	Black
C	White

Employee $\bowtie^{\text {Full }}$ Department

Employee	Department	Head
Brown	A	null
Jones	B	Black
Smith	B	Black
null	C	White

Duplicate Elimination

Real DBMSs implement a version of relational algebra that operates on multisets ("bags") instead of sets.
(Which of these operators may return bags, even if the input consists of sets?)

For the bag version of relational algebra, there exists a duplicate elimination operator δ.

$$
\text { If } R=\begin{array}{|c|c|}
\hline A & B \\
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline 3 & 4 \\
\hline 1 & 2 \\
\hline
\end{array}, \text { then } \delta(R)=\begin{array}{|c|c|}
\hline A & B \\
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}
$$

Aggregation

Often, we want to retrieve aggregate values, like the "sum of salaries" of employees, or the "average age" of students.

This is achieved using aggregation functions, such as SUM, AVG, MIN, MAX, or COUNT.
Such functions are applied by the grouping and aggregation operator γ.

$$
\text { If } R=\begin{array}{|l|l|}
\hline A & B \\
\hline & 2 \\
\hline 3 & 4 \\
\hline 3 & 5 \\
\hline 1 & 1 \\
\hline
\end{array} \text {, then } \gamma_{\operatorname{SUM}(A)}(R)=\begin{aligned}
& \operatorname{SUM}(A) \\
& \hline 8 \\
& \hline
\end{aligned}
$$

Grouping and Aggregation

More often, we want to retrieve aggregate values for groups, like the "sum of employee salaries" per department, or the "average student age" per faculty.
As additional parameters, we give γ attributes that specify the criteria according to which the tuples of the argument are grouped.
E.g., the operator $\gamma \mathrm{A}, \mathrm{SUM}(\mathrm{B})(\mathrm{R})$

- partitions the tuples of R in groups that agree on A,
- returns the sum of all B values for each group.

$$
\text { If } R=\begin{array}{|l|l|}
\hline A & B \\
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline 3 & 5 \\
\hline
\end{array}, \quad \text { then } \gamma_{A, S U M(B)}(R)=\begin{array}{|l|l|}
\hline A & \operatorname{SUM}(B) \\
\hline 1 & 5 \\
\hline 3 & 9 \\
\hline
\end{array}
$$

