
COMP9311:
Database Systems

Term 3 2022
Week 3 Relational Algebra and SQL
By Helen Paik, CSE UNSW

Disclaimer: the course materials are sourced from
– previous offerings of COMP9311 and COMP3311
– Prof. Werner Nutt on Introduction to Database Systems

(http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/)

Relational Algebra

(textbook: chapter 8)

2

Motivation

We know how to store data … i.e., we modelled our data in relational data model -> then
created tables to store them into a relational database.

How do we manipulate or retrieve (interesting) the data?

A data model must include a set of operations to manipulate the database, in addition to
the concepts for defining database’s structure and constraints.

The basic set of operations for the relational model is Relational Algebra

• Edgar F. Codd (1970): Relational Algebra, mathematical foundation
for relational data management

• supports basic retrieval requests (queries) -> the result of a query is
also a relation

• A sequence of relational algebra operations form a relational algebra
expression -> results in a relation

3

Motivation

The relational algebra is very important for several reasons.

• First, it provides a formal foundation for relational model operations.

• Second, and perhaps more important, it is used as a basis for implementing and

optimizing queries in the query processing and optimization modules that are integral

parts of relational database management systems (RDBMSs),

• Third, some of its concepts are incorporated into the SQL, the standard query language

for relational database management systems

4

Characteristics of an Algebra

An algebra expression:
• is constructed with operators from atomic

operands (constants, variables, ….)
• can be evaluated
• can be equivalent to another expression
– …if they return the same result for all

values of the variables

This equivalence concept gives rise to an
algebraic identity between expressions

An algebraic identity is an equality that holds
for any values of its variables.

The value of an expression is independent of
its context

• e.g., 5 + 3 has the same value, no matter
whether it occurs as

10 - (5 + 3) or 4 × (5 + 3)

Atomic expressions:

numbers and variables

Operators: +, -, ×, :

Identitities:
x + y = y + x
x × (y + z) = x × y + x × z
… and so on

Consequence: subexpressions can be
replaced by equivalent expressions
without changing the meaning of the
entire expression

5

Relational Algebra: Principles

Atoms are relations

Operators are defined for arbitrary
instances of a relation

The following two results have to be
defined for each operator:

• result schema
• result instance

• “Equivalent” to SQL query language … Relational Algebra concepts reappear in SQL
• Used inside a DBMS, to express query plans

Set theoretic operators
– union “È”, intersection “Ç”, difference “\”

Renaming operator r

Removal operators
– projection p, selection s

Combination operators
– Cartesian product “´”, joins “ ”

Extended operators
– duplicate elimination, grouping,

aggregation, sorting, outer joins, etc.

6

Set Operators

Observations:

Instances of relations are sets
è we can form unions, intersections, and differences

Set algebra operators can only be applied to relations with identical attributes,

• same number of attributes

• same attribute names

• same domains

• (i.e., set operation compatibility)

7

Union (È)

Studno Name Year
s1 Egger 5
s3 Rossi 4
s4 Maurer 2

CS-Student
Studno Name Year

s2 Neri 5
s1 Egger 5

s3 Rossi 4

Master-Student

s1 Egger 5

s3 Rossi 4
s4 Maurer 2

s2 Neri 5

Studno Name Year
CS-Student È Master-Student

8

Intersection (Ç)

Studno Name Year
s1 Egger 5
s3 Rossi 4
s4 Maurer 2

CS-Student
Studno Name Year

s2 Neri 5
s1 Egger 5

s3 Rossi 4

Master-Student

Studno Name Year
CS-Student Ç Master-Student

s1 Egger 5
s3 Rossi 4

9

Difference (\)

Studno Name Year
s1 Egger 5
s3 Rossi 4
s4 Maurer 2

CS-Student
Studno Name Year

s2 Neri 5
s1 Egger 5

s3 Rossi 4

Master-Student

Studno Name Year
CS-Student \ Master-Student

s4 Maurer 2

Set difference, formally:

10

Renaming ρ
• The renaming operator r (reads ‘rho’) changes the name of relation

schema (both for relation name and relation attributes)
• It changes the schema, but only within a query
• rx(E) where E is the relation name and x is the new name for E,

usually a shorter name
• rFC(Father-Child)

• ra/b(E) where E is the relation name, a, b are attribute names, b
is an attribute of E
• rparent/father(Father-Child)

Father-Child

Father Child

Adam Cain

Abraham Isaac

Adam Abel

rparent/father(Father-Child)

Parent Child

Adam Cain

Abraham Isaac

Adam Abel

rFC(Father-Child)

Father Child

Adam Cain

Abraham Isaac

Adam Abel

FC

11

Union example after renaming

r Parent / Father (Father-Child)

Parent Child

Adam Cain
Abraham Isaac

Adam Abel

r Parent / Mother (Mother-Child)
Parent Child

Eve Seth
Sara Isaac

Eve Abel

Parent Child

Adam Cain
Abraham Isaac

Adam Abel

Eve Seth
Sara Isaac

Eve Abel

r Parent / Father (Father-Child)

r Parent / Mother (Mother-Child)
È

12

Projection and Selection
Two “orthogonal” operators
• Selection:

– horizontal decomposition
• Projection:

– vertical decomposition

Selection

Projection

13

Projection (𝜋)

General form:

where R is a relation and A1,…,Ak are attributes of R.

Result:

• Schema: (A1,…,Ak)
• Instance: the set of all subtuples t[A1,…,Ak] where t Î R

Intuition: “removes” all attributes that are not in projection list

pA1,…,Ak(R)

14

Projection: Example

STUDENT
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

ptutor(STUDENT) = Note:
• result relations don’t have a name
• If duplicates?

tutor
bush
kahn
goble
zobel

15

Selection (σ)

General form:

with a relation R and a condition C on the attributes of R.

Result:

• Schema: the schema of R
• Instance: the set of all tÎR that satisfy C

Intuition: Filters out all tuples that do not satisfy C

sC(R)

16

Selection: Example

sname=‘bloggs’(STUDENT) =

STUDENT
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

studno name hons tut or year
s4 bloggs ca goble 1

Note:
• result relation has a name

STUDENT

17

Selection Conditions

Elementary conditions:

<attr> op <val> or <attr> op <attr> or <expr> op <expr>

where op is “=”, “<”, “£”, (on numbers and strings)
“LIKE” (for string comparisons),…

Example:

• age £ 24

• phone LIKE ‘0039%’

• salary + commission ³ 24000

Combined conditions (using Boolean connectives):

C1 and C2 or C1 or C2 or not C

18

Selection conditions

s((hons=‘cs’) or (hons = ‘ca’)) and (tutor=‘goble’) (STUDENT) =

STUDENT
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

studno name hons tut or year
s3 smithl s cs goble 2

STUDENT

s4 bloggs ca goble 1

19

Operators Can Be Nested

Who is the tutor of the student named “Bloggs”?

STUDENT
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

sname=‘bloggs’ (STUDENT) ptutor ()

tutor
goble=

20

Identities for Selection and Projection

For all conditions C1, C2, more generally predicates p,q and relation R we have:

Selection splitting:

sC1 and C2(R) = sC1(sC2(R))

Also, selection is commutative:

sC1(sC2(R)) = sC2(sC1(R))

What about these – commutativity of selection and projection

pA1,…,Am(sC(R)) = sC(pA1,…,Am(R))

21

Selection Conditions and “NULL”

Does the following identity hold?

Student = syear £ 3(Student) È syear > 3(Student) ?

What if Student contains a tuple t with t[year] = null ?

Convention: Only comparisons with non-null values are TRUE or FALSE. Comparisons
involving null yield a value UNKNOWN. To test, whether a value is null or not null, there are
two conditions:

<attr> IS NULL or <attr> IS NOT NULL

Thus, the following identities hold:

Student = syear £ 3(Student) È syear > 3(Student) È syear IS NULL(Student)

= syear £ 3 OR year > 3 OR year IS NULL(Student)

22

Cartesian Product (X)

General form:

where R and S are arbitrary relations

Result:

• Schema: (A1,…,Am,B1,…,Bn), where (A1,…,Am) is the schema of R and (B1,…,Bn) is
the schema of S.

(If A is an attribute of both, R and S, then R ´ S contains the disambiguated attributes
R.A and S.A.)

• Instance: the set of all concatenated tuples (t,s) where tÎR and sÎS

R ´ S

23

Cartesian Product: Student ´ Staff
STUDENT
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

STAFF
lecturer roomno
kahn IT206
bush 2.26
goble 2.82
zobel 2.34
watson IT212
woods IT204
capon A14
lindsey 2.10
barringer 2.125

studno name hons tutor year lecturer roomno
s1 jones ca bush 2 kahn IT206
s1 jones ca bush 2 bush 2.26
s1 jones ca bush 2 goble 2.82
s1 jones ca bush 2 zobel 2.34
s1 jones ca bush 2 watson IT212
s1 jones ca bush 2 woods IT204
s1 jones ca bush 2 capon A14
s1 jones ca bush 2 lindsey 2.10
s1 jones ca bush 2 barringer 2.125
s2 brown cis kahn 2 kahn IT206
s2 brown cis kahn 2 bush 2.26
s2 brown cis kahn 2 goble 2.82
s2 brown cis kahn 2 zobel 2.34
s2 brown cis kahn 2 watson IT212
s2 brown cis kahn 2 woods IT204
s2 brown cis kahn 2 capon A14
s2 brown cis kahn 2 lindsey 2.10
s2 brown cis kahn 2 barringer 2.125
s3 smith cs goble 2 kahn IT206
s3 smith cs goble 2 bush 2.26
s3 smith cs goble 2 goble 2.82
s3 smith cs goble 2 zobel 2.34
s3 smith cs goble 2 watson IT212
s3 smith cs goble 2 woods IT204
s3 smith cs goble 2 capon A14
s3 smith cs goble 2 lindsey 2.10
s3 smith cs goble 2 barringer 2.125
s4 bloggs ca goble 1 kahn IT206…

What’s the point
of this?

Brings all information
from relations into one
without applying any
conditions

24

“Where are the Tutors of Students?”

To answer the query

“For each student, identified by name and student
number, return the name of the tutor and their office
number”

we have to

• combine tuples from Student and Staff
• that satisfy “Student.tutor=Staff.lecturer”

• and keep the attributes studno, name, (tutor or
lecturer), and roomno.

In relational algebra:

pstudno,name,lecturer,roomno(stutor=lecturer(Student ´ Staff))

The part stutor=lecturer(Student ´ Staff) is a “join”.

STUDENT
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

STAFF
lecturer roomno
kahn IT206
bush 2.26
goble 2.82
zobel 2.34
watson IT212
woods IT204
capon A14
lindsey 2.10
barringer 2.125

25

Example: Student Marks in Courses
STUDENT
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3
 ENROL
stud
no

course
no

lab
mark

exam
mark

s1 cs250 65 52
s1 cs260 80 75
s1 cs270 47 34
s2 cs250 67 55
s2 cs270 65 71
s3 cs270 49 50
s4 cs280 50 51
s5 cs250 0 3
s6 cs250 2 7

“For each student,
show the courses in which they are
enrolled and their marks”

First,

R ¬ sStudent.studno= Enrol.studno(Student ´ Enrol),

then

Result ¬ pstudno,name, …,exam_mark(R)

pstudno,name, …,exam_mark(sStudent.studno= Enrol.studno(Student ´ Enrol))

26

Join (⨝)

• The most used operator in the relational algebra.

Allows us to establish connections among data in different relations, taking advantage of
the ”data-based" nature of the relational model.

• Three main versions of the join:
• "natural" join: takes attribute names into account;
• "theta" join.
• “equi” join (a special form of theta join)
• all denoted by the symbol ⨝

27

Natural Join
STUDENT
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3
 ENROL
stud
no

course
no

lab
mark

exam
mark

s1 cs250 65 52
s1 cs260 80 75
s1 cs270 47 34
s2 cs250 67 55
s2 cs270 65 71
s3 cs270 49 50
s4 cs280 50 51
s5 cs250 0 3
s6 cs250 2 7

Student ⨝ Enrol

• Implicit join based on common
attributes

• The tuples in the resulting relation
are obtained by combining tuples
in the operands with equal values
on the common attributes

• Common attributes appear once
in the results

28

STUDENT
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

ENROL
stud
no

course
no

lab
mark

exam
mark

s1 cs250 65 52
s1 cs260 80 75
s1 cs270 47 34
s2 cs250 67 55
s2 cs270 65 71
s3 cs270 49 50
s4 cs280 50 51
s5 cs250 0 3
s6 cs250 2 7

Student ⨝ Enrol

29

Natural Join (another example)

Example from CSC343 Intro to Database, University of Toronto

Mimault Bernard

30

q-Joins (read “Theta”-Joins), Equi-Joins

Theta-Join:

• The most general form of JOIN …

• Theta join combines tuples from different relations provided they satisfy the theta
condition. The join condition is denoted by the symbol θ.

• Theta join can use comparison operators and common attributes are not required.

• The results include the ‘joined’ attributes from both relations

• The attribute names do not have to match (but their domains have to be compatible)

Equi-Join:

A special form of Theta-join, and the most common form of JOIN …

with a join condition containing an equality operator (i.e., explicitly stating the joining
attributes)

Student ⨝stuno=stuno Enrol

Student ⨝student.year < enrol.labmark Enrol

31

STUDENT
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

STAFF
lecturer roomno
kahn IT206
bush 2.26
goble 2.82
zobel 2.34
watson IT212
woods IT204
capon A14
lindsey 2.10
barringer 2.125

stud
no

name hons tutor year lecturer roomno

s1 jones ca bush 2 bush 2.26
s2 brown cis kahn 2 kahn IT206
s3 smith cs goble 2 goble 2.82
s4 bloggs ca goble 1 goble 2.82
s5 jones cs zobel 1 zobel 2.34
s6 peters ca kahn 3 kahn IT206

Student tutor=lecturer Staff

(equivalent to: stutor=lecturer(Student ´ Staff))

32

Join: An Observation

Some tuples don’t contribute to the result, they get lost.

Employee Department
Brown
Jones
Smith

A
B
B

Department
B
C

Head
Black
White

Employee Department Head
Jones
Smith

B
B

Black
Black

33

Outer Join

An outer join extends those tuples with null values that would get lost by a join
like natural join or equi join (a.k.a. inner joins)

The outer join comes in three versions
• left: keeps the tuples of the left argument, extending them with nulls if

necessary
• right: ... of the right argument ...
• full: ... of both arguments ...

34

(Natural) Left Outer Join

Employee Department
Brown
Jones
Smith

A
B
B

Employee
Department
B
C

Head
Black
White

Department

Employee Department Head
Brown
Jones

A
B

null
Black

Smith B Black

Employee DepartmentLeft

35

(Natural) Right Outer Join

Employee Department
Brown
Jones
Smith

A
B
B

Employee
Department
B
C

Head
Black
White

Department

Employee Department Head
Jones
Smith

B
B

Black
Black

null C White

Employee DepartmentRight

36

(Natural) Full Outer Join

Employee Department
Brown
Jones
Smith

A
B
B

Employee
Department
B
C

Head
Black
White

Department

Employee Department Head
Brown
Jones

A
B

null
Black

Smith B Black

Employee DepartmentFull

null C White

37

Duplicate Elimination

Real DBMSs implement a version of relational algebra that operates on

multisets (“bags”) instead of sets.

(Which of these operators may return bags,

even if the input consists of sets?)

For the bag version of relational algebra, there exists a duplicate

elimination operator d.

A B
1 2
3 4
3 4
1 2

A B
1 2
3 4

If R = , then d(R) =

38

Aggregation

Often, we want to retrieve aggregate values, like the “sum of salaries” of employees, or the
“average age” of students.

This is achieved using aggregation functions, such as SUM, AVG, MIN, MAX, or COUNT.

Such functions are applied by the grouping and aggregation operator g.

A B
1 2
3 4
3 5
1 1

If R = , then gSUM(A)(R) =
SUM(A)

8

and gAVG(B)(R) =
AVG(B)

3

39

Grouping and Aggregation

More often, we want to retrieve aggregate values for groups, like the “sum of employee
salaries” per department, or the “average student age” per faculty.

As additional parameters, we give g attributes that specify the criteria according to which
the tuples of the argument are grouped.

E.g., the operator gA,SUM(B) (R)
• partitions the tuples of R in groups that agree on A,
• returns the sum of all B values for each group.

A B
1 2
3 4
3 5
1 3

If R = , then gA,SUM(B)(R) =
A SUM(B)
1 5
3 9

