
Term 3 2022
Week 2 Relational Data Model
By Helen Paik, CSE UNSW

Disclaimer: the course materials are sourced from
– previous offerings of COMP9311 and COMP3311
– Prof. Werner Nutt on Introduction to Database Systems

(http://www.inf.unibz.it/~nutt/Teaching/IDBs1011/)

COMP9311:
Database Systems

Relational Data Model

(textbook: chapters 5)

2

Relational Data Model

Conceptual
Schema

Logical
Schema

Physical
Schema

ER:
• Entities,
• Relationships,
• Attributes

Relations:
• tuples,
• attributes
• domain

File organisation:
• File types
• Index structures

Data can be represented at different levels of abstraction

≈ Tables/columns/rows

S CE S (a,b,…)
C (x,y,…)

a b x y

B treeidx

Not specifically tied to a database
specifically tied to the data model of
a database you chose (for our course,
the choice is relational database)

specifically tied to the implementation
Methods provided by the
database you chose

3

Relational Data Model Concepts

The relational data model is the most widely used data model for database systems.

The relational data model describes the world as
• a collection of inter-connected relations

Goal of relational model:
• a simple, general data modelling formalism
• which maps easily to file structures (i.e. implementable)

Relational model has two styles of terminology:
• mathematical: relation, tuple, attribute, ...
• data-oriented: table, record, field/column, ...

Warning: textbooks alternate between the two; treat them as synonyms

4

Example relation: bank accounts (terminology)

• In a relation, each row (a.k.a. tuple) represents a collection of related data values
and the names (i.e., table name and column names) help interpret the meaning of
the values

5

Relational Data Model - formal definitions

The relational model has one structuring mechanism ...

• a relation corresponds to a mathematical "relation”

A relation schema (denoted R,S,T,...) has:

• a name (unique within a given database)

• a set of attributes (which can be viewed as column headings)

• e.g., STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)
• or generally, R (A1, A2, …, An)

Each attribute (denoted A,B,... or a1,a2,...) has:

• a name (unique within a given relation)

• an associated domain (set of allowed values)

e.g., STUDENT(Name: string, Ssn: string, …, Age: integer, Gpa: real)

6

Relational Model - formal definitions

A relation schema R is formally denoted by:

R(A1, A2, A3 ..., An)

where Ai denotes an attribute in R.

e.g., STUDENT(Name, Sid, Age, GPA)

Sometimes R can be written as:
R(A1:D1, A2:D2, ... An:Dn)

where Ai denotes an attribute in R, Di denotes the domain of Ai

e.g., STUDENT(Name: string, Sid: string, Age: integer, GPA: real)

Domain refers to the legal type and range of values for an attribute, denoted by dom(Ai)
• e.g., Attribute Age Domain: [0-100]
• e.g., Attribute EmpName Domain: 50 alphabetic chars
• e.g., Attribute Salary Domain: non-negative integer
• Domain can also specify the format of the attribute (e.g., (ddd)dd—dddd))

7

Relational Model – formal definitions

A relation r of the relation schema R(A1, A2, ... , An) is denoted by r(R)

r(R) is a set of n-tuples, i.e., r = {t1, t2, ... , tm}

Each tuple t is an ordered list of values t = <v1, v2, v3 ..., vn> where each vi is an element
of dom(Ai)

R_student (Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

r1 = {<Benjamin Bayer, 305-61-2435, (817)373-1616, …, 3.21>,
<Chung-cha Kim, 381-62-1245, …>, … <Barbara Benson, …>}

The ith value in tuple tj, corresponds to the attribute Ai, referred to as t[Ai] or t.Ai or t[i])
e.g., Benjamin Bayer is t1[1], t1[Name], or t1.Name

8

Analogy with programming
languages:

schema = type
instance = value

Important distinction:
• Relation Schema = stable over long periods of time
• Relation Instance = a relation state, it changes

constantly, as data is inserted/updated/deleted

Relation Schema (R) vs Relation Instance r(R)

9

Characteristics of Relations

• Ordering of Tuples in a Relation:
a relation is defined as a set of
tuples à no order among them

• Tuples in a relation do not have
any particular order (r1, r2 on the
right are identical from the relation
model view point)

• Tuple ordering is not part of a
relation because the relation is
only capturing the logical level
schema.

• When the tuples are physically
stored in a file (disk), an order may
be enforced by the storage
mechanism. But this concept is not
part of a relation.

10

Characteristics of Relations

• Ordering of Values within a
Tuple: a tuple is an order list of
values à there is an order among
them

• The order of attributes in a
relational schema is therefore
important …

• More abstract level relation
schema can be defined so that the
order of attributes do not matter.
Refer to pp. 184-185. But we will
mostly use the first definition.

R_student (Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

t1 = <Benjamin Bayer, 305-61-2435, (817)373-1616, …, 3.21> (correct)

t1 = <Benjamin Bayer, (817)373-1616, 305-61-2435, …, 3.21> (wrong)

11

Characteristics of Relations

• Values and NULLs in the Tuples: each value in a tuple is an atomic value
• e.g., “Benjamin Bayer” is a single string value (not two words)
• Person.Favourite_Foods = <“Thai, Indian”> is also a single string value (not two words).

• A tuple value could be NULL – which represent the values of attributes that may be
unknown or does not apply to the tuple.

NULL values are sometimes ambiguous
- Unknown
- Not available
- Does not apply
- …

NULL values could be problematic when performing
Some operations (like comparison).

Is Babara’s phone number the same as
Benjamin’s phone number?
Both NULL, but not the same

12

Relational Model and Integrity Constraints

• In a relational database system, we are likely to have many relations – and the tuples in
those relations are usually related in various ways (e.g., a student tuple in Student is
enrolled in a course tuple in Course)

• Ideal: relation instances in the db system reflect the real world correctly

• In real life: This is not always the case (e.g., wrong tuples)

• Goal: Reduce such errors as much as we can

• Observation: Not all mathematically possible instances make sense

• Idea:

• Formulate conditions that hold for all plausible instances

• Check whether the condition holds when updating a relation

• Such conditions are called integrity constraints

13

Common Types of Integrity Constraints

Constraints Applying to Single Relations

Domain Constraints
• “No employee is younger than 15 or older than 80”
• dom(Age) = > 15 or < 80

Superkeys and keys

• “Employees with the same tax code are identical”, in other words, the values of any
given two employees’ tax code attribute are different

• t1[taxCode] ≠ t2[taxCode]

NULL value constraint
• ”Employee name cannot be NULL”

14

Common Types of Integrity Constraints

Constraints Applying to Many Relations

branchName accountNo balance

branchName address assets

account customer

Address customerNo homeBranchname

Account

Branch

HeldBy

Customer

Example Relation Schema

15

Example Instances

Common Types of Integrity Constraints

HeldBy

16

Entity Integrity Constraint
- No primary key value can be NULL

- Applies to a single relation, but important in the context of multiple relations

Referential Integrity Constraint

• Between two relations, a tuple in one relation that refer to another relation must refer to
an existing tuple in that relation

• For example, Account.branchName must refer to an existing tuple (i.e., branch name)
in Branch.branchName

• Or HeldBy.customer must refer to an existing tuple (i.e., customer number) in
Customer.customerNo

• (note: NULL or not NULL)

Common Types of Integrity Constraints

17

Referential Integrity

Referential integrity constraints
• describe references between relations (tables)
• are related to notion of a foreign key (FK), i.e., a key from another relation

Notation:
FK1: Account (branchName) references Branch (branchName)
FK2: HeldBy (account) references Account (accountNo)

- Attribute names could be different, but the domains must be the same

18

Referential Integrity

More formally describing a foreign key here …

A set of attributes F in relation R1 is a foreign key from R2 if:

• the attributes in F correspond to the primary key of R2

• the value for F in each tuple of R1

– either occurs as a primary key in R2 (i.e., existing value)
– or is entirely NULL*

Foreign keys are critical in relational DBs; they provide ...
• the "glue" that links individual relations (tables)
• the way to assemble queries from multiple tables (e.g., list all accounts per branch)
• the relational representation of ER relationships

branchName accountNo balance

branchName address assets

Account

Branch

R1

R2

19

Updates and Dealing with Constraint Violations

A database reflects the state of an aspect of the real world:

The world changes è the database has to change

Updates to an instance:
• adding a tuple
• deleting a tuple
• modifying an attribute value of a tuple
• updates to the data happen very frequently.

Updates to a schema:
• What could be updates to a schema?

• e.g., deleting an attribute, changing the domain of an attribute, etc.
• Updates to the schema: relatively rare, rather painful, sometimes not possible.

Database updates may violate constraints …

Let’s consider updates:
“Insertions, Deletions, Modifications” of tuples

Example DB with tables:

Student (studno, name, hons, tutor, year)
Staff (lecturer, roomno, appraiser)

FK: Student(tutor) references Staff(lecturer)

Assume that this database has “key” and “foreign key (i.e., referential integrity)”
constraints … what can go wrong? How should the DBMS react?

20

Insertions (1)

If the following tuple is inserted into Student,
what should happen? Why?

<s1, jones, cis, capon, 3>

Student
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

Staff
lecturer roomno appraiser
kahn IT206 watson
bush 2.26 capon
goble 2.82 capon
zobel 2.34 watson
watson IT212 barringer
woods IT204 barringer
capon A14 watson
lindsey 2.10 woods
barringer 2.125 null

21

Insertions (2)

If the following tuple is inserted into Student,
what should happen? Why?

<null, jones, cis, capon, 3>

Student
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

Staff
lecturer roomno appraiser
kahn IT206 watson
bush 2.26 capon
goble 2.82 capon
zobel 2.34 watson
watson IT212 barringer
woods IT204 barringer
capon A14 watson
lindsey 2.10 woods
barringer 2.125 null

22

Insertions (3)

If the following tuple is inserted into Student,
what should happen? Why?

<s7, jones, cis, null, 3>

Student
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

Staff
lecturer roomno appraiser
kahn IT206 watson
bush 2.26 capon
goble 2.82 capon
zobel 2.34 watson
watson IT212 barringer
woods IT204 barringer
capon A14 watson
lindsey 2.10 woods
barringer 2.125 null

23

Insertions (4)

If the following tuple is inserted into Student,
what should happen? Why?

<s7, jones, cis, calvanese, 3>

Student
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

Staff
lecturer roomno appraiser
kahn IT206 watson
bush 2.26 capon
goble 2.82 capon
zobel 2.34 watson
watson IT212 barringer
woods IT204 barringer
capon A14 watson
lindsey 2.10 woods
barringer 2.125 null

24

Deletions (1)

If the following tuple is deleted from Student,
is there a problem? And what should happen?

<s2, brown, cis, kahn, 2>

Student
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

Staff
lecturer roomno appraiser
kahn IT206 watson
bush 2.26 capon
goble 2.82 capon
zobel 2.34 watson
watson IT212 barringer
woods IT204 barringer
capon A14 watson
lindsey 2.10 woods
barringer 2.125 null

25

Deletions (2)

And if this one is deleted from Staff ?

<kahn, IT206, watson>

Student
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

Staff
lecturer roomno appraiser
kahn IT206 watson
bush 2.26 capon
goble 2.82 capon
zobel 2.34 watson
watson IT212 barringer
woods IT204 barringer
capon A14 watson
lindsey 2.10 woods
barringer 2.125 null

26

Modifications (1)

What if we change in Student

<s1, jones, ca, bush, 2>
to

<s1, jones, ca, watson, 2> ?

Student
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

Staff
lecturer roomno appraiser
kahn IT206 watson
bush 2.26 capon
goble 2.82 capon
zobel 2.34 watson
watson IT212 barringer
woods IT204 barringer
capon A14 watson
lindsey 2.10 woods
barringer 2.125 null

27

Modifications (2)

And what if we change in Student

<s2, brown, cis, kahn, 2>
to

<s1, jones, ca, bloggs, 2> ?

Student
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

Staff
lecturer roomno appraiser
kahn IT206 watson
bush 2.26 capon
goble 2.82 capon
zobel 2.34 watson
watson IT212 barringer
woods IT204 barringer
capon A14 watson
lindsey 2.10 woods
barringer 2.125 null

28

Modifications (3)

And what if we change in Staff

<lindsey, 2.10, woods>
to

<lindsay, 2.10, woods> ?

Student
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

Staff
lecturer roomno appraiser
kahn IT206 watson
bush 2.26 capon
goble 2.82 capon
zobel 2.34 watson
watson IT212 barringer
woods IT204 barringer
capon A14 watson
lindsey 2.10 woods
barringer 2.125 null

29

Modifications (4)

Now, let’s change in Staff

<goble, 2.82, capon>
to

<gobel, 2.82, capon> …

Student
studno name hons tutor year
s1 jones ca bush 2
s2 brown cis kahn 2
s3 smith cs goble 2
s4 bloggs ca goble 1
s5 jones cs zobel 1
s6 peters ca kahn 3

Staff
lecturer roomno appraiser
kahn IT206 watson
bush 2.26 capon
goble 2.82 capon
zobel 2.34 watson
watson IT212 barringer
woods IT204 barringer
capon A14 watson
lindsey 2.10 woods
barringer 2.125 null

30

Summary: Integrity Violations of Database Operations

The Insert Operation

• Domain constraints (e.g., a value out side of the defined domain)

• Key constraints (e.g., the value that already exists in another tuple)

• Entity integrity (e.g., if the value of the primary key is NULL)

• Referential integrity (e.g., the value of any FK does not exist in the referenced relation)

• Reject the operation

The Delete operation

• The tuple being deleted is referenced by FKs from other tuples in other relations

• Reject or “cascade delete”, or “set to NULL”

The Update operation

• Modifying primary key or FK may have the same effect/considerations as DELETE

• Updating non-key attributes are usually OK (maybe domain constraints)

31

