School of Computer Science & Engineering
COMP9242 Advanced Operating Systems

Australia’s
Global
SYDNEY University

2025 T3 Week 08 Part 2

Microkernel Design & Implementation
The 25-year quest for the right API Laiapha

@GernotHeiser

L4-embed.

P4 - PikeOS)

["93 T9a T'o5 [96 [97 198 [99 [0o To1 To2 To3 Toa Tos Toe 07 To8 Too [10 T141 T12 T 13

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UNSW

2

L4 Microkernels — Deployed by the Billions

eBookMan

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

YYYYYY

3

Today’s Lecture

 Towards real microkernels: The history of L4 microkernels
* Implementation highlights

* Virtualisation: Microkernel as hypervisor

* Lessons and principles

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

4

L4: The Quest for a
Real Microkernel

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 — CC BY 4.0

UNSW

5

Microkernel Evolution

First generation Second generation
Mach ['87], Chorus L4 ['95], PikeOS,
INTEGRITY, Minix 3,
Memory Objects QNX
Low-level FS,
Swapping

~ Devices
Kernel memory

Scheduling

Kernel memory
Scheduling

180 syscalls, 100 kSLOC ~ 7 syscalls, ~ 10 kSLOC

100 us IPC ~ 1 us IPC (L4)
~ 10 us IPC (others)

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Third generation
selL4 ['09]

Memory-
mangmt
library

Scheduling

~3 syscalls, ~10 kSLOC
0.1-0.3 us IPC (faster HW)
Capabilities

Design for isolation

© Gernot Heiser 2019 — CC BY 4.0 H UNSW

YYYYYY

6

1993 “Microkernel”: IPC Performance

[bs]
Culprit: 400 Mach
Cache footprint i486 @
[Liedtke’'95] 300 50 MHz
115 ps 200
L4
S US
raw copy
0 2000 4000 6000
Message Length [B]
COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0

UNSW

el

Remember: Microkernel Minimality Principle

A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e. permitting competing
implementations, would prevent the implementation of
the system’s required functionality. [Liedtke SOSP’95]

i 4 « Small trusted computing base
- [Easier to get right _
. Small attack surf Needs policy-
mall attack surface freedom!

« Challenges:

— API design: generality despite small code base
— Kernel design and implementation for high performance

7 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UNSW

L4: 25 Years High Performance Microkernels

First L4 kernel
with capabilities

IOS secure
enclave

API Inheritance
>

=> L4/MIPS

OKL4 Microvisor

Code Inheritance

OKL4 pKernel []

)

Qualcomm
.

modem @Qs_/

L4/Alpha

Codezero

L3 —> L4 “x” Hazelnut Pistachio

UNSW/NICTA
GMD/IBM/Karlsruhe

Dresden [OK Labs]

Commercial Clone P4 — PikeOS

Fiasco Fiasco.OC

>

| o3 1 94 | 95 | 96 1 97 | 98 | 99 | 00 [01 T 02 [03 1 04 1 05 06 | 07 1 08 1090 1 10 [114 [12 | 13

8 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UNSW

g

L4 1-Way IPC Performance Over the Years

Name
Original
Original
L4/MIPS
L4/Alpha
Hazelnut
Pistachio
OKL4
NOVA
selL4
selL4
selL4
selL4

Year
1993
1997
1997
1997
2002
2005
2007
2010
2013
2018
2018
2020

Processor

1486

Pentium

MIPS R4700

Alpha 21064

Pentium 4

Itanium

Arm XScale 255

x86 i7 Bloomfield (32-bit)
ARM11

x86 i7 Haswell (64-bit)
Arm Cortex A9

RISC-V HiFive (64-bit, no ASID)

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

MHz
50
160
100
433
1,400
1,500
400
2,660
532
3,400
1,000
1,500

Cycles
250
121

86

45
2,000
36
151
288
188
442
303
500

MS
5.00
0.75
0.86
0.10
1.38
0.02
0.64
0.11
0.35
0.13
0.30
0.33

VVVVVV

Independent Comparison [Mi et al., 2019]

IPC RT latency (cycles) 986 2717 8157
Mand. HW cost (cycles) 790 790 790
Abs. overhead (cycles) 196 1972 7367
Rel. overhead (%) 25 240 930

Hardw.are SW overheads
cost dominates dominate

Source: Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen: “SkyBridge: Fast
and Secure Inter-Process Communication for Microkernels”, EuroSys, April 2019

10 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Operation
SYSCALL 82 164

SWAPGS 2x26 104
Switch PT 186 372
SYSRET 75 150
Total 395 790

VVVVVV

© Gernot Heiser 2019 — CC BY 4.0 UNSW

11

Minimality: Source Lines of Code (SLOC)

Original 486
L4/Alpha Alpha
L4/MIPS MIPS64
Hazelnut x86
Pistachio x86
L4-embedded ARMvV5
OKL4 3.0 ARMv6
Fiasco.OC x86
selL4 ARMv6

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

0k
6.0 k
10.0 k
0k
7.6 k
15.0 k
0k
9.7 k

36.2 k
0 k

vvvvvv

Issues With 2G Microkernels

* L4 solved microkernel performance [Hartig et al, SOSP’97]

 Left a number of issues unsolved
* Problem: ad-hoc approach to security and resource management

» Global thread name space = covert channels [Shapiro’03] |
Caps &

» Threads as IPC targets = insufficient encapsulation endpoints

* No delegation of authority = impacts flexibility, performancel

[+ Single kernel memory pool = DoS attacks | S
management
— .] model
|- Unprincipled management of time I seL4 scheduling

contexts (MCS)

12 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UNSW

Implementation Highlights

13 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

IPC Fastpath: Send Phase of Call

= Save minimal state, get args

2) Identify destination
= Cap lookup;

et endpoint; check queue
Point of no return: & P a

e no state 3) Getreceiver TCB
change before . Check receiver can still run

e committed to > = Check receiver priority is > ours
complete 4) Mark sender blocked and enqueue

= Block caller on reply object
= Donate scheduling context

-0= = ==> \Wait to receive

= 150 cycles
on Arm A9

Direct process switch:

e SC donation

5) Switch to receiver
u Copy virtual message registers

Wait to receive 6) Epilogue (restore & return)

14 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

* no scheduler invocation

© Gernot Heiser 2019 — CC BY 4.0

YYYYYY

L4 Scheduler Optimisation: Lazy Scheduling

thread_t schedule() {
foreach (prio in priorities) { Problem: Unbounded
foreach (thread in runQueue[prio]) { scheduler execution time!
if (isRunnable(thread))
return thread;
else

schedDequeue(thread);

) Idea: leave blocked
} threads in ready
return idleThread; gueue, scheduler

} ® cleans up
O
* Frequent blocking/unblocking in IPC- Client
based systems Call()

* Many ready-queue manipulations
BLOCKED

15 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Scheduler: Benno Scheduling

thread_t schedule() { Only current thread
foreach (prio in priorities) { needs fixing up at
forggeh-Ctheeadin-punQuerepriel -l -
if (thread=head(runQueue[prio])) preemtion time:
return thread;
=alca
schedDegueuscthread).. Idea: Lazy on
} unblocking instead
) on blocking
return idleThread; O
) @
()
* Frequent blocking/unblocking in IPC- Client
based systems Call()

* Many ready-queue manipulations
BLOCKED

16 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Scheduler Optimisation: Direct Process Switch

 Sender was running = had highest prio

* |f receiver prio > sender prio = run receiver Note:

* Only works if server can run
on client’s time slice
e MCS passive server with

scheduling-context donation
* Donate on Call()

Idea: Don’t invoke
scheduler if you know
who’ll be chosen

\

S Unprincipled time- * Return on ReplyWait()
O slice donation in
® earlier L4/selL4
O
* Frequent context switches in Call !
IPC-based systems O ReplyWait()
* Many scheduler invocations Client
17 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UM&W

Fastpath Coding Tricks

Common case: 0

slow= cap_get_capType(en_c) !=cap_endpoint_cap | |
lcap_endpoint_cap_get_capCanSend(en_c);
if (slow) enter_slow_path();

 Reduces branch-prediction footprint Common case: 1
 Avoids mispredicts, stalls & flushes
« Uses ARM instruction predication (pre-v8)

« Slightly increases slow-path latency (very slightly)
* insignificant compared to basic slow-path cost

18 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

How About Real-Time Support?

 Kernel runs with interrupts disabled

* No concurrency control = simpler kernel

« Easier reasoning about correctness
» Better average-case performance

How about long-
running system calls?

WRONG
> WAY

Lots of
concurrency in
kernel!

GO BACK

19 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 - CC BY 4.0 #8s) UNSW

YYYYYY

Incremental Consistency Paradigm

Kernel S O(1) Kernel
entry operation exit
A

Enable
interrupts

Disable
interrupts

Abort &
restart

Check pending
interrupts

O(1) O(1) O(1)
operation " : operation operation
=

Long operation

Good fit for

nsisten
Consistency, event kernel!

Restartability,
Progress

o ©

(]

[No concurrency in (single-core) kernel! }

20 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0

(aelg Example: Destroying IPC Endpoint

Server

Message
queue

21 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 - CCBY 4.0 ##) UNSW

ssssss

(aeld Difficult Example: Revoking Badge

Server

22 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0

ssssss

Virtualisation:
Microkernel as a Hypervisor

COMP9242 2025 T3 W08 Part 2 : Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UM&W
=

2

Microkernel as Hypervisor (NOVA, selL4)

ARM x86

One per VM,
cannot break
isolation!

Virtualisation-
specific

VM Non-Root

Root
Ring 3 VMM
Syscall Exception|IPC
Ring 0 S selL4
Hypercall
purpose
COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 ii: UNSW

25

Hypervisors vs Microkernels

» Both contain all code executing at highest privilege level
 Although hypervisor may contain user-mode code as well

* privileged part usually called “hypervisor” Difference to
« user-mode part often called “VMM” traditional
» Both need to abstract hardware resources terminology!

* Hypervisor: abstraction closely models hardware
« Microkernel: abstraction designed to support wide range of systems

To abstract:
CPU

Memory

Communication
/O

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0

VVVVVV

What /s the Difference? Just page tables

in disguise

CPU

Just kernel-
scheduled

Virtual CPU (VCPU) Thread or activities
scheduler activatio

Virtual MMU (vMMU) Address space

Communication

High-performance Minimal
message-passing IPC overhead,
Custom API

Virtual NIC, with device
driver and network stack

&

Modelled
on HW,

Re-uses SW

I/O * Simplified virtual device ¢ IPC interface to
* Driver in hypervisor user-mode driver

* Virtual IRQ (vIRQ) * Interrupt IPC

=F]
Difference?

e Similar abstractions

 Optimised for different use cases

26 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 - CC BY 4.0 #8s) UNSW
s

Closer Look at Communication and 1/0

VM, . Driver I:Irgg? Driver VM possible
for legacy re-use
- -
Driver Server Device
Driver

temel e

27 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0

ssssss

Integration: VMs & Native

Client VM appears
like native client Driver VM appears
like native driver

Client VM

>Copy | .
<> [Copy © K\‘ = Driver VM

Virt \
/ Rx L|nux
Virt
Client < » Copy L/ Drlver

IP Stack <> «—> Copy <>

28 COMP9242 2025 T3 W03 Part 2: Virtual Machines © Gernot Heiser 2019 — CC BY 4.0

vvvvvv

LionsOS Driver VMs

One setup per

Interface same as device class

for native driver
Driver 10 driver

I UIO mmap VM libuio
shared mappings ‘A

regions Driver/
I Signal : ACK YMM
handler Notific.
< I - handler
I Signal
Lions 1 &
29 COMP9242 2025 T3 W03 Part 2: Virtual Machines © Gernot Heiser 2019 — CC BY 4.0

UNSW

30

Lessons & Principles

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 — CC BY 4.0

@

«

Reflecting on Lessons of 2"d Generation

Original L4 design had two major shortcomings:

1. Insufficient/impractical resource control
« Poor/non-existent control over kernel memory use
Inflexible & costly process hierarchies (policy!)
Arbitrary limits on number of address spaces and threads (policy!)
Poor information hiding (IPC addressed to threads)
Insufficient mechanisms for authority delegation

2. Over-optimised IPC abstraction, mangles:
« Communication, incl bulk data copy

Synchronisation

Timed wait

Memory management — sending mappings

Scheduling — time-slice donation

31 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

Synchronous IPC issues

e Sync IPC forces multi-threaded code or select()!
* Also poor choice for multi-core

Thread,
Running Blocked

Worker_Th
Running Blocked

;

Unblock (10_Th)

Not
enerall
? generatly Sync(I0_Th)
possible
32 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

selL4:
Notification binding

|O_Th
Blocked Running

Call (10,msg)

Sync(Worker_Th)

© Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

L4 “Long” IPC

Sender address space

Kernel copy

Receiver address space

33 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 :,: UmN§:W
A

Traditional L4: Recursive Address Spaces

Issues:

* Complex mapping DB

* Exhaustion of kernel memory
 Complex IPC semantics

selL 4.
Map frame caps

Mappings are
page - page,
sent by IPC

Magic initial AS to
anchor recursion
(map of PM)

\

Physical Memory

34 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UNSW

L4 T|meOUtS Thread, Thread,

Running Blocked Blocked Running
Limit IPC
blocking time ?
Tirzas, Send (dest, msg) ?
Running Blocked v -
Ul | D ¢ Wait (sre, msg)
? wait gz, Kernel copy
Rcev(NIL_THRD, delay) ? ? 77 =
()v
v = | \) >,
~ ‘
I\) 4 * No theory/heuristics for determining timeouts
y ~ * Typically servers reply with zero T.O., else oo selL4:
3 * Added complexity Removed
 (Can do timed wait with timer syscall timeouts

35 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation © Gernot Heiser 2019 — CC BY 4.0 UNSW

