
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2025 T3 Week 08 Part 2

Microkernel Design & Implementation
The 25-year quest for the right API
@GernotHeiser

© Gernot Heiser 2019 – CC BY 4.0

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

1 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

L4 Microkernels – Deployed by the Billions

2 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Today’s Lecture
• Towards real microkernels: The history of L4 microkernels
• Implementation highlights
• Virtualisation: Microkernel as hypervisor
• Lessons and principles

3 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

L4: The Quest for a
Real Microkernel

4 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Microkernel Evolution

5

IPC, MMU abstr.
Scheduling

Kernel memory
Devices

Low-level FS,
Swapping

Memory Objects

IPC, MMU abstr.
Scheduling

Memory-
mangmt
library

IPC, MMU abstr.
Scheduling

Kernel memory

First generation
Mach [’87], Chorus

Third generation
seL4 [’09]

Second generation
L4 [’95], PikeOS,
INTEGRITY, Minix 3,
QNX

~3 syscalls, ~10 kSLOC
0.1–0.3 µs IPC (faster HW)
Capabilities
Design for isolation

180 syscalls, 100 kSLOC
100 µs IPC

~ 7 syscalls, ~ 10 kSLOC
~ 1 µs IPC (L4)
~ 10 µs IPC (others)

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

1993 “Microkernel”: IPC Performance

6

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mac
[µ

0

100

200

300

400

0 2000 4000 6000
Message Length [B]

Mac

L

[µ

115 µs

5 µs

i486 @
50 MHz

L4

raw copy

Mach
[µs]

Culprit:
Cache footprint
[Liedtke’95]

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Remember: Microkernel Minimality Principle

• Small trusted computing base
• Easier to get right
• Small attack surface

• Challenges:
– API design: generality despite small code base
– Kernel design and implementation for high performance

A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e. permitting competing
implementations, would prevent the implementation of
the system’s required functionality. [Liedtke SOSP’95]

7 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Needs policy-
freedom!

© Gernot Heiser 2019 – CC BY 4.0

L4: 25 Years High Performance Microkernels

8

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

NOVA
GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Commercial Clone

OK Labs

API Inheritance

Code Inheritance

iOS secure
enclave

First L4 kernel
with capabilities

Qualcomm
modem chips

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

L4 1-Way IPC Performance Over the Years

9

Name Year Processor MHz Cycles µs
Original 1993 i486 50 250 5.00
Original 1997 Pentium 160 121 0.75
L4/MIPS 1997 MIPS R4700 100 86 0.86
L4/Alpha 1997 Alpha 21064 433 45 0.10
Hazelnut 2002 Pentium 4 1,400 2,000 1.38
Pistachio 2005 Itanium 1,500 36 0.02
OKL4 2007 Arm XScale 255 400 151 0.64
NOVA 2010 x86 i7 Bloomfield (32-bit) 2,660 288 0.11
seL4 2013 ARM11 532 188 0.35
seL4 2018 x86 i7 Haswell (64-bit) 3,400 442 0.13
seL4 2018 Arm Cortex A9 1,000 303 0.30
seL4 2020 RISC-V HiFive (64-bit, no ASID) 1,500 500 0.33

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Cost seL4 Fiasco.OC Zircon

IPC RT latency (cycles) 986 2717 8157

Mand. HW cost (cycles) 790 790 790

Abs. overhead (cycles) 196 1972 7367

Rel. overhead (%) 25 240 930

Cost seL4 Fiasco.OC Zircon

IPC RT latency (cycles) 986 2717 8157

Mand. HW cost (cycles) 790 790 790

Abs. overhead (cycles) 196 1972 7367

Cost seL4 Fiasco.OC Zircon

IPC RT latency (cycles) 986 2717 8157

Independent Comparison [Mi et al., 2019]

10 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Round-trip, cross-
address-space IPC
on x64 (Intel Skylake)

Operation 1-way RT

SYSCALL 82 164

SWAPGS 2×26 104

Switch PT 186 372

SYSRET 75 150

Total 395 790Source: Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen: “SkyBridge: Fast
and Secure Inter-Process Communication for Microkernels”, EuroSys, April 2019

Hardware
cost dominates

SW overheads
dominate

SW overheads
dominate

© Gernot Heiser 2019 – CC BY 4.0

Minimality: Source Lines of Code (SLOC)

11

Name Architecture C C++ asm total
Original i486 0 k 0 k 6.4 k 6.4 k
L4/Alpha Alpha 0 k 0 k 14.2 k 14.2 k
L4/MIPS MIPS64 6.0 k 0 k 4.5 k 10.5 k
Hazelnut x86 10.0 k 0 k 0.8 k 10.8 k
Pistachio x86 0 k 22.4 k 1.4 k 23.0 k
L4-embedded ARMv5 7.6 k 0 k 1.4 k 9.0 k
OKL4 3.0 ARMv6 15.0 k 0 k 0.0 k 15.0 k
Fiasco.OC x86 0 k 36.2 k 1.1 k 37.6 k
seL4 ARMv6 9.7 k 0 k 0.5 k 10.2 k

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Issues With 2G Microkernels
• L4 solved microkernel performance [Härtig et al, SOSP’97]
• Left a number of issues unsolved
• Problem: ad-hoc approach to security and resource management

• Global thread name space ⇒ covert channels [Shapiro’03]

• Threads as IPC targets ⇒ insufficient encapsulation

• No delegation of authority ⇒ impacts flexibility, performance

• Single kernel memory pool ⇒ DoS attacks

• Unprincipled management of time

12

Caps &
endpoints

seL4 memory
management

model
seL4 scheduling
contexts (MCS)

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Implementation Highlights

13 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.014

IPC Fastpath: Send Phase of Call
1) Prologue

§ Save minimal state, get args
2) Identify destination

§ Cap lookup;
get endpoint; check queue

3) Get receiver TCB
§ Check receiver can still run
§ Check receiver priority is ≥ ours

4) Mark sender blocked and enqueue
§ Block caller on reply object
§ Donate scheduling context

5) Switch to receiver
§ Copy virtual message registers

6) Epilogue (restore & return)

Running Wait to receive

Wait to receive
Running

≈ 150 cycles
on Arm A9

Direct process switch:
• no scheduler invocation
• SC donation

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Point of no return:
• no state

change before
• committed to

complete

© Gernot Heiser 2019 – CC BY 4.0

L4 Scheduler Optimisation: Lazy Scheduling

15

thread_t schedule() {
 foreach (prio in priorities) {
 foreach (thread in runQueue[prio]) {
 if (isRunnable(thread))
 return thread;
 else
 schedDequeue(thread);
 }
 }
 return idleThread;
}

• Frequent blocking/unblocking in IPC-
based systems

• Many ready-queue manipulations

Idea: leave blocked
threads in ready
queue, scheduler

cleans up

Call()
Client

ReplyWait()
Server

BLOCKEDBLOCKED

Problem: Unbounded
scheduler execution time!

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

thread_t schedule() {
 foreach (prio in priorities) {
 foreach (thread in runQueue[prio]) {
 if (isRunnable(thread))
 return thread;
 else
 schedDequeue(thread);
 }
 }
 return idleThread;
}

16

Scheduler: Benno Scheduling
thread_t schedule() {
 foreach (prio in priorities) {
 foreach (thread in runQueue[prio]) {
 if (thread=head(runQueue[prio]))
 return thread;
 else
 schedDequeue(thread);
 }
 }
 return idleThread;
}

Call()
Client

ReplyWait()
Server

BLOCKEDBLOCKED

• Frequent blocking/unblocking in IPC-
based systems

• Many ready-queue manipulations

Idea: Lazy on
unblocking instead

on blocking

Only current thread
needs fixing up at
preemtion time!

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Scheduler Optimisation: Direct Process Switch

17

• Sender was running ⇒ had highest prio
• If receiver prio ≥ sender prio ⇒ run receiver

Call()

Client

ReplyWait()

Server

Note:
• Only works if server can run

on client’s time slice
• MCS passive server with

scheduling-context donation
• Donate on Call()
• Return on ReplyWait()

• Frequent context switches in
IPC-based systems

• Many scheduler invocations

Idea: Don’t invoke
scheduler if you know

who’ll be chosen

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Unprincipled time-
slice donation in
earlier L4/seL4

© Gernot Heiser 2019 – CC BY 4.018

Fastpath Coding Tricks

slow = cap_get_capType(en_c) != cap_endpoint_cap ||
 !cap_endpoint_cap_get_capCanSend(en_c);
if (slow) enter_slow_path();

Common case: 0

Common case: 1• Reduces branch-prediction footprint
• Avoids mispredicts, stalls & flushes
• Uses ARM instruction predication (pre-v8)
• Slightly increases slow-path latency (very slightly)

• insignificant compared to basic slow-path cost

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

How About Real-Time Support?
• Kernel runs with interrupts disabled

• No concurrency control ⇒ simpler kernel
• Easier reasoning about correctness
• Better average-case performance

19

Lots of
concurrency in

kernel!

Most protected-mode RTOSes
are mostly/fully preemptible

How about long-
running system calls?

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.020

Incremental Consistency Paradigm
Kernel
entry

O(1)
operation

Long operation

Kernel
exit

Check pending
interrupts

O(1)
operation

O(1)
operation

O(1)
operation

Abort &
restart

Disable
interrupts

Enable
interrupts

No concurrency in (single-core) kernel!

Consistency,
 Restartability,

 Progress

Good fit for
event kernel!

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.021

Example: Destroying IPC Endpoint

Actions:
1. Disable EP cap (prevent new messages)
2. while message queue not empty do
3. remove head of queue (abort message)
4. check for pending interrupts
5. done

Client1 Server

Client2

Endpoint

Message
queue

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.022

Difficult Example: Revoking Badge

State to keep across preemptions
• Badge being removed
• Point in queue where preempted
• End of queue at time operation started
• Thread performing revocation

Need to squeeze into endpoint cap!

Client1 Server
Client1
state

Client2 Client2
state

Badge

Removing
orange
badge

Note: not yet
in mainline!

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Virtualisation:
Microkernel as a Hypervisor

23 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Microkernel as Hypervisor (NOVA, seL4)

24

Virtualisation-
specific

ARM x86
One per VM,
cannot break

isolation!

Guest

seL4

Guest
apps VMM

Syscall

Hypercall

Exception IPC

VM

EL0

EL1

EL2

Root
Non-Root

Guest seL4

Guest
apps VMM

Syscall

Hypercall

VM

Exception IPC

Ring 3

Ring 0

General-
purpose

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Hypervisors vs Microkernels
• Both contain all code executing at highest privilege level

• Although hypervisor may contain user-mode code as well
• privileged part usually called “hypervisor”
• user-mode part often called “VMM”

• Both need to abstract hardware resources
• Hypervisor: abstraction closely models hardware
• Microkernel: abstraction designed to support wide range of systems

25

Difference to
traditional

terminology!

To abstract:
• CPU
• Memory
• Communication
• I/O

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

What Is the Difference?

26

Resource Hypervisor Microkernel

Memory Virtual MMU (vMMU) Address space

CPU Virtual CPU (vCPU) Thread or
scheduler activation

Communication Virtual NIC, with device
driver and network stack

High-performance
message-passing IPC

I/O • Simplified virtual device
• Driver in hypervisor
• Virtual IRQ (vIRQ)

• IPC interface to
 user-mode driver
• Interrupt IPC

Just page tables
in disguise

Just kernel-
scheduled
activities

Modelled
on HW,

Re-uses SW

Minimal
overhead,

Custom API

Real
Difference?

• Similar abstractions
• Optimised for different use cases

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Closer Look at Communication and I/O

27

AppsAppsApps

Microkernel

Server Device
Driver

IPCHypervisor

Driver
VM

OS
Driver

VM1

OS Virtual
Driver

AppsAppsApps

Virtual NW

Communication is critical for I/O
• Highly-optimised microkernel IPC
• Inter-VM communication is frequently

a bottleneck in hypervisors

Huge
TCB!

COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Driver VM possible
for legacy re-use

© Gernot Heiser 2019 – CC BY 4.0

Client VM

Linux

Integration: VMs & Native

28 COMP9242 2025 T3 W03 Part 2: Virtual Machines

Client

IP Stack NIC

Driver

Copy

Copy

Rx
Virt

Tx
Virt

ARP

Client

IP Stack

Client
IP Stack

Copy

Copy

NIC

Driver

Copy

Copy

Tx

Rx
Rx
Virt

Tx
Virt

ARP

Client
IP Stack

Driver VM
Linux
Linux
Driver

Client VM appears
like native client Driver VM appears

like native driver

© Gernot Heiser 2019 – CC BY 4.0

LionsOS Driver VMs

29 COMP9242 2025 T3 W03 Part 2: Virtual Machines

Driver
VM

LinuxDriver

UIO driver
libuioUIO

mappings
0
1
2

…

mmap

VMM

Notific.
handler

ACK
handler

Signal

shared
regions

Signal

One setup per
device classInterface same as

for native driver

© Gernot Heiser 2019 – CC BY 4.0

Lessons & Principles

30 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Reflecting on Lessons of 2nd Generation
Original L4 design had two major shortcomings:
1. Insufficient/impractical resource control

• Poor/non-existent control over kernel memory use
• Inflexible & costly process hierarchies (policy!)
• Arbitrary limits on number of address spaces and threads (policy!)
• Poor information hiding (IPC addressed to threads)
• Insufficient mechanisms for authority delegation

2. Over-optimised IPC abstraction, mangles:
• Communication, incl bulk data copy
• Synchronisation
• Timed wait
• Memory management – sending mappings
• Scheduling – time-slice donation

31 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

© Gernot Heiser 2019 – CC BY 4.0

Synchronous IPC issues

32 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Thread1
Running Blocked

Initiate_IO(…,…)

IO_Wait(…,…)
Not

generally
possible

Worker_Th
Running Blocked

IO_Th
Blocked Running

Unblock (IO_Th) Call (IO,msg)…....

Sync(Worker_Th)

Sync(IO_Th) …....

• Sync IPC forces multi-threaded code or select()!
• Also poor choice for multi-core

seL4:
Notification binding

© Gernot Heiser 2019 – CC BY 4.0

L4 “Long” IPC

33 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Receiver address space

Sender address space

Kernel copy
Page fault!

• Not minimal
• Source of kernel complexity:

• nested exceptions
• concurrency in kernel
• must upcall PF handlers during IPC
• timeouts to prevent DOS attacks

seL4:
Removed

© Gernot Heiser 2019 – CC BY 4.0

Traditional L4: Recursive Address Spaces

34 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Map GrantUnmapX

Initial Address Space

Physical Memory

Mappings are
page → page,

sent by IPC

Magic initial AS to
anchor recursion

(map of PM)

Issues:
• Complex mapping DB
• Exhaustion of kernel memory
• Complex IPC semantics

seL4:
Map frame caps

© Gernot Heiser 2019 – CC BY 4.0

L4 Timeouts

35 COMP9242 2025 T3 W08 Part 2: Microkernel Design & Implementation

Thread1
Running Blocked

Thread2
Blocked Running

Send (dest, msg)

Wait (src, msg)….... Kernel copy

Limit IPC
blocking time

Thread1
Running Blocked

Rcv(NIL_THRD, delay)

…....

Timed
wait

• No theory/heuristics for determining timeouts
• Typically servers reply with zero T.O., else ∞
• Added complexity
• Can do timed wait with timer syscall

seL4:
Removed
timeouts

