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Today’s Lecture

« Security Intro

» Access-Control Principles

« ACLs vs Capabilities

« Mandatory Access-Control Policies
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Computer Security

Protecting my interests (that are under computer control) from threats

* Inherently subjective
« Different people have different interests
« Different people face different threats

« Don’t expect one-size-fits-all solutions
» Grandma doesn’t need an air gap

» Windows insufficient for protecting Security claims onlv make sense
TOP SECRET (TS) classified data [t Objegt,-ves

on an Internet-connected machine

 while identifying threats
« and identifying secure states

vvvvvv
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State of OS Security

* Traditionally:

« Has not kept pace with evolving user demographics

» Focused on e.g. Defence and Enterprise
« Has not kept pace with evolving threats

* Much security work is reactive rather than proactive

Some things are getting better:

* more systematic hardening of OSes

« Better security models in smartphones
compared to desktops

Other things are getting worse:

* OS kernel sizes keep growing

« Fast growth in attacker capabilities

« Slow growth in defensive capabilities

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Kernel size [MSLOC]
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Standard Approach: Patch-and-Pray

A losing
proposition!

\ ML accelerates!

Patch
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Security Design Principles

Saltzer & Schroeder [SOSP 73, CACM '74]

« Economy of mechanisms — KISS

- Fail-safe defaults — as in any good engineering  Mainstream OSes

« Complete mediation — check everything violate most of them!
 Open design — no security by obscurity Especially KISS, POLA
« Separation of privilege — defence in depth

 Least privilege — aka principle of least authority (POLA)

* Least common mechanisms — minimise sharing

« Psychological acceptability — if it's hard to use it won't be
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Common OS Security Mechanisms

Fundamental

* Access Control Systems mechanism

 control what each process can access

 Authentication Systems
« confirm the identity on whose behalf a process is running

 Logging
« for audit, detection, forensics and recovery

 Filesystem Encryption
 Credential Management
« Automatic Updates

COMP9242 2025 T3 W07 Part 2: Security Fundamentals
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Security Policies

 Define what should be protected, and from whom

 Often in terms of common security goals ("CIA properties™).
« Confidentiality

« X should not be learnt by Low

* Integrity |
» Y should not be tampered with by Low High
+ Availability | }‘9
+ Z should not be made unavailable to High by Low write
Low

read
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Security vs Safety

Safety

Timeliness

Availability

Confidentiality

Integrity

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Fundamentally, OS-level
security & safety enforcement
is about isolation
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Assumptions

« All policies and mechanisms operate under certain assumptions

« e.g. TS-cleared users can be trusted not to write TS data into the
UNCLASS window

« some frusted entities behave as expected
* Problem: implicit or poorly understood assumption

Good assumptions are
 clearly identified
» verifiable!
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Trust

« Systems always have trusted entites
« whose misbehaviour can cause insecurity

« hardware, OS, sysadmin ... :
Trusted computing base (TCB):

The set of all trusted entities

« Secure systems require the TCB to be trustworthy

 achieved through assurance and verification
« shows that the TCB is unlikely to misbehave

Minimising the TCB is key for
ensuring correct behaviour

VVVVVV
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Assurance and Formal Verification

« Assurance:
 systematic evaluation and testing
 essentially an intensive and onerous form of quality assurance

« Formal verification: Assurance and formal verification
- mathematical proof aim to establish correctness of
* mechanism design

- Certification: independent examination IS 77 U9 ML

« confirming that the assurance or verification was done right
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Covert Channels: Bypassing Access Control

User Browser tab
Sensitive 4P Java
data
Trojan sends bit: L eak
create (“/tmp/covert<bit>");
Browser tab
Helper

Helper reads bit:

if (create (“/tmp/covert0”)) bit=0
else if (create (“/tmp/covertl”)) bit=l

Encryption Network

<4—P Secrver key <= Driver

Encryption
Attacker key

Covert storage channel:

« Uses attribute of shared resource
» Controlable by access control

else retry;
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Covert Channels: Bypassing Access Control

User Browser tab Encryption Network
Sensitive <+ Java <4 Server key <€ Driver
data

Leak

Trojan modulates
cache footprint :
P LN B Trojan modulates NW bandwidth
Helper monitors Browser tab Encryption
Helper Attacker key

Covert timing channel:

* Qutside access control
» Very hard to control/analyse!
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Covert Timing Channels

 Created by shared resource whose effect on timing can be monitored
« Cache, network bandwidth, CPU load...

* Requires access to a time source
* Anything that allows processes to synchronise  BESETRHEREESRPrre
« Generally any relative occurrence of two events distinction is not deep!

Usually based on some
hidden state (e.g. caches)

Channel bandwidth may matter: is 1b/s ok?

 Leaking a video vs

 Leaking a server’'s SSL key Other physical channels:
« Power

« Temperature (fan speed)
» Electromagnetic emanation
« Acoustic emanation...

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 - CC BY 4.0 ) UNSW
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Covert Channels vs Side Channels

Covert Channel

Attacker

« Trojan intentionally creates signal

through targeted resource use

 Worst-case bandwidth

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Side Channel

Attacker

J

Victim
" T

L

« Attacker uses signal created
by victim’s innocent operations

« Much lower bandwidth

UNSW
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Summary of Introduction

« Security is very subjective, needs well-defined objectives

« OS secuirity:
 provide good security mechanisms

* that support users’ policies

« Security depends on establishing trustworthiness of trusted entities

* TCB: set of all such entities
» should be as small as possible

« Main approaches: assurance and verification

The OS is necessarily
part of the TCB
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Access-Control Principles
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Access Control

Who can access what in which ways

* The “who” are called subjects (or agents)\mw
* €.g. users, processes etc.

* The “what” are called objects
* e.g. individual files, sockets, proces
* includes all subjects

« The “ways” are called permissions
* e.g. read, write, execute etfc.
« are usually specific to each kind of object

* include those meta-permissions that allow modification of the
protection state
* e.g. own

High
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Access Control Mechanisms & Policies

» Access Control Policy
« Specifies allowed accesses
« And how these can change over time

e Access Control Mechanism
« Used to implement the policy

Certain mechanisms led
the selves to some

policies but not others Some policies cannot

be expressed with the
OS’s mechanisms!
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Defines system’s protection state at a
particular time instance [Lampson 71]

Obj1 (Obj2 |Obj3 [Subj2
Subj1 |R RW send
Subj 2 RX control
RWX
Subj 3 |RW recv
own

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Protection State: Access-Control Matrix

Subjects are
also objects!
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Representing Protection State

Storing full matrix is infeasible
* huge but sparse
* highly dynamic

%bj 1\(Obj 2 |Obj3 [Subj2
Subj1 R RW send
Subj 2 RX control
RWX
Subj 3 \RW recv
own

Columns are access-
control lists (ACLS)

COMP9242 2025 T3 W07 Part 2: Security Fundamentals
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Access Control Lists (ACLs)

« Subjects usually aggregated into classes
 e.g. UNIX: owner, group, everyone
* more general lists in Windows, recent Linux
« Can have negative rights
eg. to overwrite group rights
« Meta-permissions (e.g. own)
« control class membership
« allow modifying the ACL

Obj 1

Used by all mainstream OSes

VVVVVV
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Representing Protection State

How about
rows?

Set of rights a subject has —
the subject’s protection domain

24 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Obj 1

Obj 2

Obj 3

Subj 2

¢

Subj 1

Subj 2

Subj 3

R

RW

RW

RWX

own

send

Goal [ [
RX control
>

recv

© Gernot Heiser 2019-25 — CC BY 4.0

“Object capability”

Subj 3

’
Obj3: RWX, own

Subj2: recv

Represented as a
capability list (Clist)
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(Object) Capabillities (aka Ocaps, Caps)

E.g. thread,
Capability = Access Token address space _ o
Prima facie evidence of privilege Linux “capabilities”
do not have these

properties (not
object capabilities)!

* Fine-grained access control

* Delegation of rights
» Reasoning about information flow

E.g. read, write,

send, execute... _ _
Used in very few commercial systems:

IBM System/38—AS/400—i-Series
KeyKOS [Bomberger et al, 1992]
L4 microkernels, Google Fuchsia

Any operation is invoking a capability:

err = cap.method( args );
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Implementing Ocaps: Hardware

» Cap can be copied like data = “delegation”
» Tag is reset when modifying word

« CPU has capability registers _
i-node #,base Revocation

address, ... is hard!
r,w,c,d, ...

Tag Object ID Permissions

Special bit
in memory » Historic capability machines:
* IBM System/38 — AS/400 — i-Series

* Hydra
* Revived with CHERI

vvvvvv
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Implementing Ocaps: Software-Usermode

Object ID Signature

Revocation
is hard!

« “Sparse capabilities”
« Cap can be copied like data = delegation
« Signature mismatch when modifying cap
» OS has object table,

holds signatures and permissions

 Amoeba [Tanenbaum ‘81]
* Monash Password Capability System [Anderson ‘86]

* Mungi [Heiser ‘98]
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Implementing Ocaps: Software-Kernel

User holds

cap reference * “Partitioned” or

“segregated” caps
* Delegation is system call
* Revocation is easy

Object ID Permissions Kernel

Object ID Permissions

Object ID Permissions

Object ID Permissions Per-pr.c_)ce§s

Object ID Permissions capability list

Object ID Permissions

Object ID Permissions
Mach [Accetta '86]
EROS [Shapiro ‘99]
Modern L4 kernels
Unix file descriptors
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ACLs vs Capabillities
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ACLs & Object Capabilities — Duals?

* In theory dual representations of access control matrix

 Practical differences:
« Naming and namespaces
« Ambient authority
» Deputies
 Evolution of protection state
* Process creation

 Auditing of protection state

30 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW
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Duals: Naming and Name Spaces

 ACLs:

* objects referenced by name

* requires separate (global) name space
» e.g. open(“/etc/passwd”,O_RDONLY)

* require a subject (class) namespace
* e.g. UNIX users and groups
« Capabilities: Least common
* objects referenced by capability mechanisms!

* no further namespace required —
object discovery orthogonal to access control

e cannot even name object without access

Covert storage channel?

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW
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Duals: Confused Deputy

Unix:
_ * Log file is group admin
Deputy Object « Alice not member of admin

Subject  gccis set-GID admin

@—X' gee —Ly Log file
alice$ gcc -o Log file source.c

static char* log = “/var/gcc/log”;

int gcc (char *src, *dest) ({ * ACLs separate naming apd permiss_ions
int s = open (src, RDONLY ) ; * Deputy depends on ambient authority:
int 1 = open (log, APPEND) ; Uses own privileges for access
int d = open (dest, WRONLY) ;
’ inherent problem of ACLS!
Clobber log!
32  COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW



Deputy With Ocaps

Object capability (Ocaps) system:
* gcc holds w cap for log file
* Alice holds r cap for source,

w cap for destination

X RW , . :
@—* gcc — Logfile * Alice holds no cap for log file
alice$ gcc -o Log file source.c

static cap_t log = <cap>; « Caps are both names and permissions
int gzct(cap_t src,( dest;D ({)NLY ) * Presentation is explicit, not ambient
. €T s = open src, ’ o ’ : . ’ |
£t 1 = open (log, APPEND); Can’t name object if don’t have access!
df t d = open (dest, WRONLY) ;

write (d, ..);

Linux “capabilities” don’t help!

Open fails!
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Duals: Evolution of Protection State

ACLs: Protection state changes by modifying ACLs
« Requires certain meta-permissions on the ACL

Capabilities: Protection state changes by delegating and revoking caps

* Read No write,
« Write execute,
« Execute Object delegation
* Delegate

VVVVVV
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Duals: Evolution of Protection State

ACLs: Protection state changes by modifying ACLs
« Requires certain meta-permissions on the ACL

Capabilities: Protection state changes by delegating and revoking caps

Caps support reasoning about information flow:

« A can send message to B only if A holds cap to B

« A can obtain access to C only if it receives
message with cap to C

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW
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Duals: Process Creation — Child Permissions

i Child
ACLs: \9

» Permissions defined by child’s subject ACL
« Generally inherit all of parent’s rights system Spawn()
Parent
Max privilege \a
Caps:
- Child is created with no rights Cap lspawn()
« Parent gets cap to child, system
can delegate as needed Child

Least privilege

36 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW
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Duals: Auditing of Protection State

* Who has permission to access a particular object (right now)?
« ACLs: Just look at the ACL
« Caps:
« sparse or tagged caps: hard/impossible without full memory scan
« partitioned caps: doable (maintain derivation tree)
« What objects can a particular subject access (right now)?
« Capabilities: Just look at its capabilities
« ACLs: may be impossible to determine without full scan

“Who can access my stuff?”
VS
“How much damage can X do?”

VVVVVV
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Interposing Access

Caps are opaque object references (pure names)

» Holder cannot tell which object a cap references nor the authority
» Supports transparent interposition (virtualisation)

Usage:

A invoke
E >

ref “B”

T [ ]

e .
ref B

38 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

API virtualisation

Reference (security) monitor
— Security policy enforcement
— Info flow tracing
— Packet filtering...

Secure logging

Debugging

Lazy object creation
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Example: Lazy Object Construction

Server
Client
obj() {
= create...
substitute cap
}
meth() {
~ perfoperation
objl.meth(args); }
obl.meth(args);
39 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW
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Duals: Satzer & Schroeder Principles

Security Principle Capabilities

Economy of Mechanism
Fail-safe defaults
Complete mediation

Open design

Separation of privilege
Least privilege

Least common mechanism

Psychological acceptability

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Dubious

Generally not

Yes (if properly done)
Neutral

No

No

No

Neutral

Yes!

Yes!

Yes (if properly done)
Neutral

Doable

Yes

Yes, but...

Neutral

© Gernot Heiser 2019-25 — CC BY 4.0
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Mandatory AC Policies
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Mandatory vs Discretionary Access Control

Discretionary Access Control (DAC):
e Users can make access control decisions

* Delegate their access to other users etc. Can | stop my
browser leaking
Mandatory Access Control (MAC): secrets?

« System enforces administrator-defined policy

» Users can only make access control decisions subject to mandatory policy
« Can limit damage caused by untrusted applications

« Traditionally used in national security environments

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW



MAC: Bell & LaPadula (BLP) Model [1966]

* MAC Policy/Mechanism
« Formalises national security classifications

 Every object assigned a classification (eg TS, S, C, U) TS
» orthogonal security compartments
- Classifications ordered in a lattice Need-to-know =
9. TS>S>C>U ret
« Every subject assigned a clearance / Confi- \
 Highest classification it's allowed to learn dential
Labelled security: Un-
« Subjects and objects are labelled classified

 Permitted accesses: relation over labels
allow(subject.label, object.label, operation)

43 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW
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BLP: Rules

« Simple Security Property (“no read up”):
e scanread o iff clearance (s) >=class (0)
« S-cleared subject can read U,C,S but not TS
» standard confidentiality TS

_ Confinement
* %-Property (“no write down”):

E.Q.
logging

e scan write o iff clearance (s) <= class (0) kS é
« S-cleared subject can write TS,S, but not C,U & : ®
* to prevent accidental or malicious
leakage of data to lower levels Trend to CONE
* |[n practice need exceptions over-classify
« allow frusted entity to write down
* “de-classify/downgrade” — e.g. encryption UNCLASS

VVVVVV
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Web Browser Example

Trusted Untrusted Trusted Untrusted
Classified Browser Declassifier Internet
System — | (CryPto) —
SECRET/
SECRET SECRET UNCLASS UNCLASS

[ ¢ — ¢

Prevented by
* -property
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MAC With Caps: Reference Monitor

A
send(B, cap)

= e
divert /

Reference
Monitor

46 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

interpose_transfer(cap) {
if (A.clear > B.clear) {
¢ = mint(cap, -r);
send(B,c);
} else if (A.clear < B.clear) {
¢ = mint(cap, -w);
send(B,c);
} else {
send(B,cap);
}
}

© Gernot Heiser 2019-25 — CC BY 4.0
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MAC: Biba Integrity Model

 Bell-LaPadula enforces confidentiality
 Biba: Its dual, enforces integrity
« Objects now carry integrity classification Hi

« Subjects labelled by lowest level of data
each subject is allowed to learn

 BLP order is inverted:
e scanread o iff clearance (s) <= class (0) /

e scan write o iff clearance (s) >=class (0)

4
Q
@

/9\\‘»“

Low
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Confidentiality + Integrity

« BLP+Biba allows no information flow across classes

 Practicality requires weakening

« Assume high-classified subject to
treat low-integrity info responsibly TS

* Allow read-down

 Independent labelling for >
confidentiality and integrity Qé}r S

« Strong *-Property (“matching writes only”):
e scanwrite o iff clearance (s) =class (o)
CONF

 Eg for logging, high reads low data and logs
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Clark & Wilson Model

 In commercial settings integrity is more important than confidentiality

 Restrict possible operations to well-formed transactions
« eg payment issued only after goods and invoice received

Integrity-critical

(trusted)
g00ds Receiving
Supplier \LOK(gOOdS) Payments B transfor(39)s BESRK
invoic Accounts Jy(invoice)
Rights « Easy with caps
amplification » SetUID cesspit with ACLs

49 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW
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Chinese Walll (aka Brewer & Nash) Model

Actors Conflict Classes

communicate ﬁ- Mining
x Dynamic policy:
« Communication taints actor

» tainted actor cannot
communicate with other

Media entity in same conflict class
"W"' - — 9¢-> e
Seven : : :
Conflict-of-interest prevention
Finance « Law practices
%3 - JALE ANZ « Consultancies
BoQ

50 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW
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Boebert's Attack on Capability Machines

: _ _ Takeaway:
m_rEH% R . High Obj: hi * Need mechanism to
10_PC e limit cap propagation:
\RW L_r.read() take-grant model
L Low Obj: 1o *-Property . Zﬁbﬁgﬁgt fight on
lo_rww lo_rwit S violated!

rw_l.write(rw_l)
Works where caps

“On the inability of an are indistinguishable
unmodified capability from data (HW &
machine to enforce the sparse caps)

*-property” [Boebert'84]

VVVVVV
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Decidability

Safety: Given initial safe state s,
system will never reach unsafe state s’

Decidability: AC system is Equivalent to halting problem
decidable if safety can aways [Harrison, Ruzzo, Ullman ‘75]
be computationally determined

* Most capability systems are decidable
* Unclear for many common ACL systems

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gemot Heiser 201925 - CC BY 4.0 5] UNSW
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Summary: AC Principles

* ACLs and Capabilities:
« Capabilities tend to better support least privilege
« But ACLs can be better for auditing

« MAC good for global security requirements
* Not all mechanisms can enforce all policies
* e.g. X-property with sparse or HW capabilities
« AC systems should be decidable so we can reason about security

ssssss
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Reminders

« Honours theses at Trustworthy Systems
https://trustworthy.systems/students/theses

 John Lions CS Honours Award for thesis in OS
https://www.scholarships.unsw.edu.au/scholarships/id/1757
Deadline: 25 November for T1/25!
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Different things to different people:

What is Security?

( |

On June 8, as the investigation into the initial intrusion | _—

response team shared with relevant agencies that there vagsapﬁlgﬁoezlgn}ecec f D S’
of confidence that OPM systems containing information related to the N
background investigations of current, former, and prospective Federal
government employees, and those for whom a Federal background
investigation was conducted, may have been compromised.

COMP9242 2025 T3 W07 Part 2: Security Fundamentals



Good Security Mechanisms

« Are widely applicable
« Support general security principles
* Are easy to use correctly and securely

« Do not hinder non-security priorities (e.g. productivity, generativity)
* Principle of “do not pay for what you don’t need”

Good mechanisms lend themselves to
correct implementation and verification!

57 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW
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OS Security

« What is the role of the OS for security?
e Minimum:
 provide mechanisms to allow the construction of secure systems

« that are capable of securely implementing the intended
users’/administrators’ policies

» while ensuring these mechanisms cannot be subverted

=]
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Policy vs Mechanism

 Policies accompany mechanisms:
e access control policy
« who can access what?
 authentication policy
* is password sufficient to authenticate TS access?
* Policy often restricts the applicable mechanisms

* One person’s policy is another’s mechanism
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Risk Management

« Comes down to risk management
« There is no absolute security, what risks we are willing to tolerate?
 Cost & likelihood of violation vs. cost of prevention
 Gain vs cost for attacker

* Actions:
* mitigate — using security mechanisms
* transfer — e.g. by buying insurance

Good security policy will
identify appropriate action,
based on risk assessment
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