
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2025 T3 Week 07 Part 2
Security Fundamentals
Gernot Heiser
Incorporating material from Toby Murray

Alice gcc Log fileWX

Subject
Deputy Object

© Gernot Heiser 2019–25 – CC BY 4.0

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

1 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019–25 – CC BY 4.0

Today’s Lecture
• Security Intro
• Access-Control Principles
• ACLs vs Capabilities
• Mandatory Access-Control Policies

2 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019–25 – CC BY 4.0

Computer Security
Protecting my interests (that are under computer control) from threats
• Inherently subjective

• Different people have different interests
• Different people face different threats

• Don’t expect one-size-fits-all solutions
• Grandma doesn’t need an air gap
• Windows insufficient for protecting

TOP SECRET (TS) classified data
on an Internet-connected machine

3 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Security claims only make sense
• wrt defined objectives
• while identifying threats
• and identifying secure states

© Gernot Heiser 2019–25 – CC BY 4.0

Other things are getting worse:
• OS kernel sizes keep growing
• Fast growth in attacker capabilities
• Slow growth in defensive capabilities

State of OS Security
• Traditionally:

• Has not kept pace with evolving user demographics
• Focused on e.g. Defence and Enterprise

• Has not kept pace with evolving threats
• Much security work is reactive rather than proactive

4 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Some things are getting better:
• more systematic hardening of OSes
• Better security models in smartphones

compared to desktops

© Gernot Heiser 2019–25 – CC BY 4.05 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Standard Approach: Patch-and-Pray

10M SLOC
10k unknown bugs

10M SLOC
10k-1 unknown bugs

1 known bug

10M SLOC
10k-1 unknown bugs

Hack

Patch

Maintain

A losing
proposition!

ML accelerates!

© Gernot Heiser 2019–25 – CC BY 4.0

Security Design Principles
Saltzer & Schroeder [SOSP ’73, CACM ’74]
• Economy of mechanisms – KISS
• Fail-safe defaults – as in any good engineering
• Complete mediation – check everything
• Open design – no security by obscurity
• Separation of privilege – defence in depth
• Least privilege – aka principle of least authority (POLA)
• Least common mechanisms – minimise sharing
• Psychological acceptability – if it’s hard to use it won’t be

6 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Mainstream OSes
violate most of them!
Especially KISS, POLA

© Gernot Heiser 2019–25 – CC BY 4.0

Common OS Security Mechanisms
• Access Control Systems

• control what each process can access
• Authentication Systems

• confirm the identity on whose behalf a process is running
• Logging

• for audit, detection, forensics and recovery
• Filesystem Encryption
• Credential Management
• Automatic Updates

7 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Fundamental
mechanism

© Gernot Heiser 2019–25 – CC BY 4.0

read

Security Policies
• Define what should be protected, and from whom

• Often in terms of common security goals (”CIA properties”):
• Confidentiality

• X should not be learnt by Low
• Integrity

• Y should not be tampered with by Low
• Availability

• Z should not be made unavailable to High by Low

8 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

High

XY Z

Low

write

© Gernot Heiser 2019–25 – CC BY 4.0

Safety

Security vs Safety

9 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Security
Availability

Timeliness Confidentiality

Integrity

Fundamentally, OS-level
security & safety enforcement

is about isolation

© Gernot Heiser 2019–25 – CC BY 4.0

Assumptions
• All policies and mechanisms operate under certain assumptions

• e.g. TS-cleared users can be trusted not to write TS data into the
UNCLASS window

• some trusted entities behave as expected
• Problem: implicit or poorly understood assumption

10 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Good assumptions are
• clearly identified
• verifiable!

© Gernot Heiser 2019–25 – CC BY 4.0

Trust
• Systems always have trusted entites

• whose misbehaviour can cause insecurity
• hardware, OS, sysadmin ...

• Secure systems require the TCB to be trustworthy
• achieved through assurance and verification
• shows that the TCB is unlikely to misbehave

11 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Trusted computing base (TCB):
The set of all trusted entities

Minimising the TCB is key for
ensuring correct behaviour

© Gernot Heiser 2019–25 – CC BY 4.0

Assurance and Formal Verification
• Assurance:

• systematic evaluation and testing
• essentially an intensive and onerous form of quality assurance

• Formal verification:
• mathematical proof

• Certification: independent examination
• confirming that the assurance or verification was done right

12 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Assurance and formal verification
aim to establish correctness of
• mechanism design
• mechanism implementation

© Gernot Heiser 2019–25 – CC BY 4.0

Covert Channels: Bypassing Access Control

13 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

User
Sensitive
data

Browser tab
Java

Network
Driver

Trojan sends bit:
create (“/tmp/covert<bit>”);

Encryption
Server key

Browser tab
Helper

Encryption
Attacker key

Helper reads bit:
if (create (“/tmp/covert0”)) bit=0
else if (create (“/tmp/covert1”)) bit=1
else retry;

Leak

Covert storage channel:
• Uses attribute of shared resource
• Controlable by access control

Confinement
[Lampson ‘73] Violated!

© Gernot Heiser 2019–25 – CC BY 4.0

Covert Channels: Bypassing Access Control

14 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

User
Sensitive
data

Browser tab
Java

Network
Driver

Trojan modulates NW bandwidth

Encryption
Server key

Browser tab
Helper

Encryption
Attacker key

Trojan modulates
cache footprint Leak

Covert timing channel:
• Outside access control
• Very hard to control/analyse!

Leak

Helper monitors
execution speed

© Gernot Heiser 2019–25 – CC BY 4.0

Covert Timing Channels
• Created by shared resource whose effect on timing can be monitored

• Cache, network bandwidth, CPU load...
• Requires access to a time source

• Anything that allows processes to synchronise
• Generally any relative occurrence of two events

15 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Usually based on some
hidden state (e.g. caches)
⇒ timing/storage channel

distinction is not deep!

Other physical channels:
• Power
• Temperature (fan speed)
• Electromagnetic emanation
• Acoustic emanation…

Channel bandwidth may matter: is 1b/s ok?
• Leaking a video vs
• Leaking a server’s SSL key

© Gernot Heiser 2019–25 – CC BY 4.0

Covert Channels vs Side Channels

16 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Victim Attacker

• Attacker uses signal created
by victim’s innocent operations

• Much lower bandwidth

Side Channel

• Trojan intentionally creates signal
through targeted resource use

• Worst-case bandwidth

Covert Channel

AttackerTrojan

© Gernot Heiser 2019–25 – CC BY 4.0

Summary of Introduction
• Security is very subjective, needs well-defined objectives
• OS security:

• provide good security mechanisms
• that support users’ policies

• Security depends on establishing trustworthiness of trusted entities
• TCB: set of all such entities

• should be as small as possible
• Main approaches: assurance and verification

17 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

The OS is necessarily
part of the TCB

© Gernot Heiser 2019–25 – CC BY 4.0

Access-Control Principles

18 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019–25 – CC BY 4.0

Access Control
Who can access what in which ways
• The “who” are called subjects (or agents)

• e.g. users, processes etc.
• The “what” are called objects

• e.g. individual files, sockets, processes etc.
• includes all subjects

• The “ways” are called permissions
• e.g. read, write, execute etc.
• are usually specific to each kind of object
• include those meta-permissions that allow modification of the

protection state
• e.g. own

19 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

High

XY Z

Low

write

© Gernot Heiser 2019–25 – CC BY 4.0

Access Control Mechanisms & Policies
• Access Control Policy

• Specifies allowed accesses
• And how these can change over time

• Access Control Mechanism
• Used to implement the policy

20 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Certain mechanisms led
the selves to some
policies but not others Some policies cannot

be expressed with the
OS’s mechanisms!

© Gernot Heiser 2019–25 – CC BY 4.0

Protection State: Access-Control Matrix

21 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Obj 1 Obj 2 Obj 3 Subj 2

Subj 1 R RW send

Subj 2 RX control

Subj 3 RW
RWX

own
recv

Subjects are
also objects!

Defines system’s protection state at a
particular time instance [Lampson ‘71]

© Gernot Heiser 2019–25 – CC BY 4.0

Representing Protection State

22 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Obj 1 Obj 2 Obj 3 Subj 2

Subj 1 R RW send

Subj 2 RX control

Subj 3 RW
RWX

own
recv

Storing full matrix is infeasible
• huge but sparse
• highly dynamic

Obj 1
Subj1: R
Subj3: RW

Columns are access-
control lists (ACLs)

© Gernot Heiser 2019–25 – CC BY 4.0

Access Control Lists (ACLs)
• Subjects usually aggregated into classes

• e.g. UNIX: owner, group, everyone
• more general lists in Windows, recent Linux
• Can have negative rights

eg. to overwrite group rights
• Meta-permissions (e.g. own)

• control class membership
• allow modifying the ACL

23 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Used by all mainstream OSes

Obj 1
Subj1: R
Subj3: RW

© Gernot Heiser 2019–25 – CC BY 4.0

Representing Protection State

24 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Obj 1 Obj 2 Obj 3 Subj 2

Subj 1 R RW send

Subj 2 RX control

Subj 3 RW
RWX

own
recv

Subj 3
Obj1: RW
Obj3: RWX, own
Subj2: recv

Represented as a
capability list (Clist)

How about
rows?

“Object capability”

Set of rights a subject has –
the subject’s protection domain

© Gernot Heiser 2019–25 – CC BY 4.0

(Object) Capabilities (aka Ocaps, Caps)

25 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Any operation is invoking a capability:
err = cap.method(args);

Obj reference
Access rights

E.g. read, write,
send, execute…

Object

E.g. thread,
address spaceCapability = Access Token

Prima facie evidence of privilege

• Fine-grained access control
• Delegation of rights
• Reasoning about information flow

Used in very few commercial systems:
• IBM System/38→AS/400→i-Series
• KeyKOS [Bomberger et al, 1992]
• L4 microkernels, Google Fuchsia

Linux “capabilities”
do not have these
properties (not
object capabilities)!

© Gernot Heiser 2019–25 – CC BY 4.0

Implementing Ocaps: Hardware

26 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

PermissionsObject IDTag

i-node #,base
address, …

r, w, c, d, …

Special bit
in memory

• Cap can be copied like data ⇒ “delegation”
• Tag is reset when modifying word
• CPU has capability registers

Revocation
is hard!

• Historic capability machines:
• IBM System/38 → AS/400 → i-Series
• Hydra

• Revived with CHERI

© Gernot Heiser 2019–25 – CC BY 4.0

Implementing Ocaps: Software-Usermode

27 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Object ID Signature

• “Sparse capabilities”
• Cap can be copied like data ⇒ delegation
• Signature mismatch when modifying cap
• OS has object table,

holds signatures and permissions

Revocation
is hard!

• Amoeba [Tanenbaum ‘81]
• Monash Password Capability System [Anderson ‘86]
• Mungi [Heiser ‘98]

© Gernot Heiser 2019–25 – CC BY 4.0

Implementing Ocaps: Software-Kernel

28 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Per-process
capability list

• “Partitioned” or
“segregated” caps

• Delegation is system call
• Revocation is easy

PermissionsObject ID
PermissionsObject ID
PermissionsObject ID
PermissionsObject ID
PermissionsObject ID
PermissionsObject ID
PermissionsObject ID

Kernel

User

Subj1
cap-ref

• Mach [Accetta ’86]
• EROS [Shapiro ‘99]
• Modern L4 kernels
• Unix file descriptors

User holds
cap reference

© Gernot Heiser 2019–25 – CC BY 4.0

ACLs vs Capabilities

29 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019–25 – CC BY 4.0

ACLs & Object Capabilities – Duals?
• In theory dual representations of access control matrix
• Practical differences:

• Naming and namespaces
• Ambient authority
• Deputies

• Evolution of protection state
• Process creation
• Auditing of protection state

30 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019–25 – CC BY 4.0

Duals: Naming and Name Spaces
• ACLs:

• objects referenced by name
• requires separate (global) name space
• e.g. open(“/etc/passwd”,O_RDONLY)

• require a subject (class) namespace
• e.g. UNIX users and groups

• Capabilities:
• objects referenced by capability
• no further namespace required –

object discovery orthogonal to access control
• cannot even name object without access

31 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Covert storage channel?

Least common
mechanisms!

© Gernot Heiser 2019–25 – CC BY 4.0

alice$ gcc –o source.o source.c

Duals: Confused Deputy

32 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Alice gcc Log fileWX

static char* log = “/var/gcc/log”;
int gcc (char *src, *dest) {
 int s = open (src, RDONLY);
 int l = open (log, APPEND);
 int d = open (dest, WRONLY);
 …
 write (dest, …);
}

Clobber log!

• ACLs separate naming and permissions
• Deputy depends on ambient authority:

Uses own privileges for access

Confused deputy is
inherent problem of ACLs!

Unix:
• Log file is group admin
• Alice not member of admin
• gcc is set-GID admin

alice$ gcc –o Log_file source.c

Subject
Deputy Object

© Gernot Heiser 2019–25 – CC BY 4.0

alice$ gcc –o Log_file source.c

Deputy With Ocaps

33

Alice gcc Log fileRWX

static cap_t log = <cap>;
int gcc (cap_t src, dest) {
 fd_t s = open (src, RDONLY);
 fd_t l = open (log, APPEND);
 df_t d = open (dest, WRONLY);
 …
 write (d, …);
}

Open fails!

• Caps are both names and permissions
• Presentation is explicit, not ambient
• Can’t name object if don’t have access!

Object capability (Ocaps) system:
• gcc holds w cap for log file
• Alice holds r cap for source,
w cap for destination

• Alice holds no cap for log file

Invalid cap

Linux “capabilities” don’t help!

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019–25 – CC BY 4.0

Duals: Evolution of Protection State
ACLs: Protection state changes by modifying ACLs
• Requires certain meta-permissions on the ACL

Capabilities: Protection state changes by delegating and revoking caps

34 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Object

Subj1
x dr w

Subj2
- -r -

Delegate (-w, -x, -d)

rwx r
No write,
execute,

delegation

• Read
• Write
• Execute
• Delegate

© Gernot Heiser 2019–25 – CC BY 4.0

Duals: Evolution of Protection State
ACLs: Protection state changes by modifying ACLs
• Requires certain meta-permissions on the ACL

Capabilities: Protection state changes by delegating and revoking caps

35 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Caps support reasoning about information flow:
• A can send message to B only if A holds cap to B
• A can obtain access to C only if it receives

message with cap to C

© Gernot Heiser 2019–25 – CC BY 4.0

Duals: Process Creation – Child Permissions

36 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Parent

XY Z

Child

XY Z

Spawn()

Child

Spawn()

ACL
system

Cap
system

ACLs:
• Permissions defined by child’s subject
• Generally inherit all of parent’s rights

Caps :
• Child is created with no rights
• Parent gets cap to child,

can delegate as needed

Least privilege

Max privilege

© Gernot Heiser 2019–25 – CC BY 4.0

Duals: Auditing of Protection State
• Who has permission to access a particular object (right now)?

• ACLs: Just look at the ACL
• Caps:

• sparse or tagged caps: hard/impossible without full memory scan
• partitioned caps: doable (maintain derivation tree)

• What objects can a particular subject access (right now)?
• Capabilities: Just look at its capabilities
• ACLs: may be impossible to determine without full scan

37 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

“Who can access my stuff?”
vs

“How much damage can X do?”

© Gernot Heiser 2019–25 – CC BY 4.0

Interposing Access

38 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Caps are opaque object references (pure names)
• Holder cannot tell which object a cap references nor the authority
• Supports transparent interposition (virtualisation)

A
B

invoke

ref B

“B”

ref Bref “B”

Usage:
• API virtualisation
• Reference (security) monitor

– Security policy enforcement
– Info flow tracing
– Packet filtering…

• Secure logging
• Debugging
• Lazy object creation

© Gernot Heiser 2019–25 – CC BY 4.0

Server
Client

Example: Lazy Object Construction

39 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

obj1
obj2
obj3

obj1.meth(args);
…
ob1.meth(args);

obj() {
 = create…
 substitute cap
}

meth() {
 perf operation
}

© Gernot Heiser 2019–25 – CC BY 4.0

Duals: Satzer & Schroeder Principles

40 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Security Principle ACLs Capabilities
Economy of Mechanism Dubious Yes!
Fail-safe defaults Generally not Yes!
Complete mediation Yes (if properly done) Yes (if properly done)
Open design Neutral Neutral
Separation of privilege No Doable
Least privilege No Yes
Least common mechanism No Yes, but…
Psychological acceptability Neutral Neutral

© Gernot Heiser 2019–25 – CC BY 4.0

Mandatory AC Policies

41 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019–25 – CC BY 4.0

Mandatory vs Discretionary Access Control
Discretionary Access Control (DAC):
• Users can make access control decisions

• Delegate their access to other users etc.

Mandatory Access Control (MAC):
• System enforces administrator-defined policy
• Users can only make access control decisions subject to mandatory policy
• Can limit damage caused by untrusted applications
• Traditionally used in national security environments

42 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Can I stop my
browser leaking

secrets?

© Gernot Heiser 2019–25 – CC BY 4.0

MAC: Bell & LaPadula (BLP) Model [1966]
• MAC Policy/Mechanism

• Formalises national security classifications
• Every object assigned a classification (eg TS, S, C, U)

• orthogonal security compartments
• Classifications ordered in a lattice

• e.g. TS > S > C > U
• Every subject assigned a clearance

• Highest classification it’s allowed to learn

43 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Un-
classified

Confi-
dential

Sec-
ret

TS

Labelled security:
• Subjects and objects are labelled
• Permitted accesses: relation over labels

allow(subject.label, object.label, operation)

Need-to-know

© Gernot Heiser 2019–25 – CC BY 4.0

Trend to
over-classify

BLP: Rules
• Simple Security Property (“no read up”):

• s can read o iff clearance(s) >= class(o)
• S-cleared subject can read U,C,S but not TS
• standard confidentiality

• ★-Property (“no write down”):
• s can write o iff clearance(s) <= class(o)
• S-cleared subject can write TS,S, but not C,U
• to prevent accidental or malicious

leakage of data to lower levels
• In practice need exceptions

• allow trusted entity to write down
• “de-classify/downgrade” – e.g. encryption

44 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

UNCLASS

CONF

S

TS

R
ea

d W
rite

E.g.
logging

Confinement

© Gernot Heiser 2019–25 – CC BY 4.0

Web Browser Example

45 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Trusted
Classified
System

SECRET

Untrusted
Browser

SECRET

Prevented by
★-property

Untrusted
Internet

UNCLASS

Trusted
Declassifier
(Crypto)

SECRET/
UNCLASS

© Gernot Heiser 2019–25 – CC BY 4.0

MAC With Caps: Reference Monitor

46 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

A
B

send(B, cap)

divert

Reference
Monitor

interpose_transfer(cap) {
 if (A.clear > B.clear) {
 c = mint(cap, -r);
 send(B,c);
 } else if (A.clear < B.clear) {
 c = mint(cap, -w);
 send(B,c);
 } else {
 send(B,cap);
 }
}

© Gernot Heiser 2019–25 – CC BY 4.0

MAC: Biba Integrity Model
• Bell-LaPadula enforces confidentiality
• Biba: Its dual, enforces integrity
• Objects now carry integrity classification
• Subjects labelled by lowest level of data

each subject is allowed to learn
• BLP order is inverted:

• s can read o iff clearance(s) <= class(o)
• s can write o iff clearance(s) >= class(o)

47 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Low

Hi

R
ea

d W
rite

© Gernot Heiser 2019–25 – CC BY 4.0

Confidentiality + Integrity
• BLP+Biba allows no information flow across classes
• Practicality requires weakening

• Assume high-classified subject to
treat low-integrity info responsibly

• Allow read-down
• Independent labelling for

confidentiality and integrity
• Strong *-Property (“matching writes only”):

• s can write o iff clearance(s) = class(o)
• Eg for logging, high reads low data and logs

48 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

UNCLASS

CONF

S

TS

R
ea

d W
rite

© Gernot Heiser 2019–25 – CC BY 4.0

Clark & Wilson Model

49 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Supplier Bank

Receiving

Accounts

Paymentsok(goods)

pay(invoice)

transfer($$)
goods

invoice

Integrity-critical
(trusted)

• In commercial settings integrity is more important than confidentiality
• Restrict possible operations to well-formed transactions

• eg payment issued only after goods and invoice received

Rights
amplification

• Easy with caps
• SetUID cesspit with ACLs

© Gernot Heiser 2019–25 – CC BY 4.0

Chinese Wall (aka Brewer & Nash) Model

50 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

communicateA1

Actors

A2

A3

Conflict Classes
MiningBHP
Rio

TintoFortescue

A1
Dynamic policy:
• Communication taints actor
• tainted actor cannot

communicate with other
entity in same conflict class

A2

A3

Conflict-of-interest prevention
• Law practices
• Consultancies

News

Nine

Seven

Media

NAB
ANZ

BoQ

Finance

A1

A2

taint

© Gernot Heiser 2019–25 – CC BY 4.0

Boebert’s Attack on Capability Machines

51 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Low Low Obj: lo

High High Obj: hi

RW

R

R

rw_l.write(rw_l)

lo_rw

lo_r
hi_r

lo_rw

l_r.read()

lo_rw

RW

★-Property
violated!

“On the inability of an
unmodified capability
machine to enforce the
★-property” [Boebert’84]

Works where caps
are indistinguishable

from data (HW &
sparse caps)

Takeaway:
• Need mechanism to

limit cap propagation:
take-grant model

• seL4 grant right on
endpoints

© Gernot Heiser 2019–25 – CC BY 4.0

Decidability

52 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Safety: Given initial safe state s,
system will never reach unsafe state s’

Decidability: AC system is
decidable if safety can aways

be computationally determined

Equivalent to halting problem
[Harrison, Ruzzo, Ullman ‘75]

• Most capability systems are decidable
• Unclear for many common ACL systems

© Gernot Heiser 2019–25 – CC BY 4.0

Summary: AC Principles
• ACLs and Capabilities:

• Capabilities tend to better support least privilege
• But ACLs can be better for auditing

• MAC good for global security requirements
• Not all mechanisms can enforce all policies

• e.g. ★-property with sparse or HW capabilities
• AC systems should be decidable so we can reason about security

53 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019–25 – CC BY 4.054 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019–25 – CC BY 4.0

Reminders
• Honours theses at Trustworthy Systems

https://trustworthy.systems/students/theses
• John Lions CS Honours Award for thesis in OS

https://www.scholarships.unsw.edu.au/scholarships/id/1757
Deadline: 25 November for T1/25!

55 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

https://trustworthy.systems/students/theses

© Gernot Heiser 2019–25 – CC BY 4.0

What is Security?

56 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Different things to different people:

By Laura Poitras / Praxis Films, CC BY 3.0

© Gernot Heiser 2019–25 – CC BY 4.0

Good Security Mechanisms
• Are widely applicable
• Support general security principles
• Are easy to use correctly and securely
• Do not hinder non-security priorities (e.g. productivity, generativity)

• Principle of “do not pay for what you don’t need”

57 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Good mechanisms lend themselves to
correct implementation and verification!

© Gernot Heiser 2019–25 – CC BY 4.0

OS Security
• What is the role of the OS for security?
• Minimum:

• provide mechanisms to allow the construction of secure systems
• that are capable of securely implementing the intended

users’/administrators’ policies
• while ensuring these mechanisms cannot be subverted

58 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019–25 – CC BY 4.0

Policy vs Mechanism
• Policies accompany mechanisms:

• access control policy
• who can access what?

• authentication policy
• is password sufficient to authenticate TS access?

• Policy often restricts the applicable mechanisms
• One person’s policy is another’s mechanism

59 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019–25 – CC BY 4.0

Risk Management
• Comes down to risk management

• There is no absolute security, what risks we are willing to tolerate?
• Cost & likelihood of violation vs. cost of prevention
• Gain vs cost for attacker

• Actions:
• mitigate – using security mechanisms
• transfer – e.g. by buying insurance

60 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Good security policy will
identify appropriate action,
based on risk assessment

