School of Computer Science & Engineering
COMP9242 Advanced Operating Systems
UNSW

SYDNEY

Australia’s
Global
University

2025 T3 Week 07 Part 2 Subieat Deputy Object
ubjec
Security Fundamentals :

X W -
_ gcc =——p | g file
Gernot Heiser @ g

Incorporating material from Toby Murray

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

=

Today’s Lecture

« Security Intro

» Access-Control Principles

« ACLs vs Capabilities

« Mandatory Access-Control Policies

2 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019-25 — CC BY 4.0

=]

UNSW

Computer Security

Protecting my interests (that are under computer control) from threats

* Inherently subjective
« Different people have different interests
« Different people face different threats

« Don’t expect one-size-fits-all solutions
» Grandma doesn’t need an air gap

» Windows insufficient for protecting Security claims onlv make sense
TOP SECRET (TS) classified data [t Objegt,-ves

on an Internet-connected machine

 while identifying threats
« and identifying secure states

vvvvvv

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

4

State of OS Security

* Traditionally:

« Has not kept pace with evolving user demographics

» Focused on e.g. Defence and Enterprise
« Has not kept pace with evolving threats

* Much security work is reactive rather than proactive

Some things are getting better:

* more systematic hardening of OSes

« Better security models in smartphones
compared to desktops

Other things are getting worse:

* OS kernel sizes keep growing

« Fast growth in attacker capabilities

« Slow growth in defensive capabilities

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Kernel size [MSLOC]

25
20
15
10

Linux kernel version

© Gernot Heiser 2019-25 — CC BY 4.0 UNSW

VVVVVV

5

Standard Approach: Patch-and-Pray

A losing
proposition!

\ ML accelerates!

Patch

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0

ssssss

6

Security Design Principles

Saltzer & Schroeder [SOSP 73, CACM '74]

« Economy of mechanisms — KISS

- Fail-safe defaults — as in any good engineering Mainstream OSes

« Complete mediation — check everything violate most of them!
 Open design — no security by obscurity Especially KISS, POLA
« Separation of privilege — defence in depth

 Least privilege — aka principle of least authority (POLA)

* Least common mechanisms — minimise sharing

« Psychological acceptability — if it's hard to use it won't be

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

7

Common OS Security Mechanisms

Fundamental

* Access Control Systems mechanism

 control what each process can access

 Authentication Systems
« confirm the identity on whose behalf a process is running

 Logging
« for audit, detection, forensics and recovery

 Filesystem Encryption
 Credential Management
« Automatic Updates

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

VVVVVV

Security Policies

 Define what should be protected, and from whom

 Often in terms of common security goals ("CIA properties™).
« Confidentiality

« X should not be learnt by Low

* Integrity |
» Y should not be tampered with by Low High
+ Availability | }‘9
+ Z should not be made unavailable to High by Low write
Low

read

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

VVVVVV

9

Security vs Safety

Safety

Timeliness

Availability

Confidentiality

Integrity

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Fundamentally, OS-level
security & safety enforcement
is about isolation

© Gernot Heiser 2019-25 — CC BY 4.0

Assumptions

« All policies and mechanisms operate under certain assumptions

« e.g. TS-cleared users can be trusted not to write TS data into the
UNCLASS window

« some frusted entities behave as expected
* Problem: implicit or poorly understood assumption

Good assumptions are
 clearly identified
» verifiable!

10 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Trust

« Systems always have trusted entites
« whose misbehaviour can cause insecurity

« hardware, OS, sysadmin ... :
Trusted computing base (TCB):

The set of all trusted entities

« Secure systems require the TCB to be trustworthy

 achieved through assurance and verification
« shows that the TCB is unlikely to misbehave

Minimising the TCB is key for
ensuring correct behaviour

VVVVVV

11 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Assurance and Formal Verification

« Assurance:
 systematic evaluation and testing
 essentially an intensive and onerous form of quality assurance

« Formal verification: Assurance and formal verification
- mathematical proof aim to establish correctness of
* mechanism design

- Certification: independent examination IS 77 U9 ML

« confirming that the assurance or verification was done right

12 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

VVVVVV

Covert Channels: Bypassing Access Control

User Browser tab
Sensitive 4P Java
data
Trojan sends bit: L eak
create (“/tmp/covert<bit>");
Browser tab
Helper

Helper reads bit:

if (create (“/tmp/covert0”)) bit=0
else if (create (“/tmp/covertl”)) bit=l

Encryption Network

<4—P Secrver key <= Driver

Encryption
Attacker key

Covert storage channel:

« Uses attribute of shared resource
» Controlable by access control

else retry;

13 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019-25 — CC BY 4.0 UNSW

VVVVVV

Covert Channels: Bypassing Access Control

User Browser tab Encryption Network
Sensitive <+ Java <4 Server key <€ Driver
data

Leak

Trojan modulates
cache footprint :
P LN B Trojan modulates NW bandwidth
Helper monitors Browser tab Encryption
Helper Attacker key

Covert timing channel:

* Qutside access control
» Very hard to control/analyse!

14 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

VVVVVV

15

Covert Timing Channels

 Created by shared resource whose effect on timing can be monitored
« Cache, network bandwidth, CPU load...

* Requires access to a time source
* Anything that allows processes to synchronise BESETRHEREESRPrre
« Generally any relative occurrence of two events distinction is not deep!

Usually based on some
hidden state (e.g. caches)

Channel bandwidth may matter: is 1b/s ok?

 Leaking a video vs

 Leaking a server’'s SSL key Other physical channels:
« Power

« Temperature (fan speed)
» Electromagnetic emanation
« Acoustic emanation...

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 - CC BY 4.0) UNSW

16

Covert Channels vs Side Channels

Covert Channel

Attacker

« Trojan intentionally creates signal

through targeted resource use

 Worst-case bandwidth

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Side Channel

Attacker

J

Victim
" T

L

« Attacker uses signal created
by victim’s innocent operations

« Much lower bandwidth

UNSW

el

© Gernot Heiser 2019-25 — CC BY 4.0

Summary of Introduction

« Security is very subjective, needs well-defined objectives

« OS secuirity:
 provide good security mechanisms

* that support users’ policies

« Security depends on establishing trustworthiness of trusted entities

* TCB: set of all such entities
» should be as small as possible

« Main approaches: assurance and verification

The OS is necessarily
part of the TCB

17 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Access-Control Principles

18 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

SYDNEY

Access Control

Who can access what in which ways

* The “who” are called subjects (or agents)\mw
* €.g. users, processes etc.

* The “what” are called objects
* e.g. individual files, sockets, proces
* includes all subjects

« The “ways” are called permissions
* e.g. read, write, execute etfc.
« are usually specific to each kind of object

* include those meta-permissions that allow modification of the
protection state
* e.g. own

High

19 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Access Control Mechanisms & Policies

» Access Control Policy
« Specifies allowed accesses
« And how these can change over time

e Access Control Mechanism
« Used to implement the policy

Certain mechanisms led
the selves to some

policies but not others Some policies cannot

be expressed with the
OS’s mechanisms!

20 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

ssssss
el

21

Defines system’s protection state at a
particular time instance [Lampson 71]

Obj1 (Obj2 |Obj3 [Subj2
Subj1 |R RW send
Subj 2 RX control
RWX
Subj 3 |RW recv
own

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Protection State: Access-Control Matrix

Subjects are
also objects!

VVVVVV

22

Representing Protection State

Storing full matrix is infeasible
* huge but sparse
* highly dynamic

%bj 1\(Obj 2 |Obj3 [Subj2
Subj1 R RW send
Subj 2 RX control
RWX
Subj 3 \RW recv
own

Columns are access-
control lists (ACLS)

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

© Gernot Heiser 2019-25 — CC BY 4.0

=

UNSW

Access Control Lists (ACLs)

« Subjects usually aggregated into classes
 e.g. UNIX: owner, group, everyone
* more general lists in Windows, recent Linux
« Can have negative rights
eg. to overwrite group rights
« Meta-permissions (e.g. own)
« control class membership
« allow modifying the ACL

Obj 1

Used by all mainstream OSes

VVVVVV

23 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Representing Protection State

How about
rows?

Set of rights a subject has —
the subject’s protection domain

24 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Obj 1

Obj 2

Obj 3

Subj 2

¢

Subj 1

Subj 2

Subj 3

R

RW

RW

RWX

own

send

Goal [[
RX control
>

recv

© Gernot Heiser 2019-25 — CC BY 4.0

“Object capability”

Subj 3

’
Obj3: RWX, own

Subj2: recv

Represented as a
capability list (Clist)

UNSW

(Object) Capabillities (aka Ocaps, Caps)

E.g. thread,
Capability = Access Token address space _ o
Prima facie evidence of privilege Linux “capabilities”
do not have these

properties (not
object capabilities)!

* Fine-grained access control

* Delegation of rights
» Reasoning about information flow

E.g. read, write,

send, execute... _ _
Used in very few commercial systems:

IBM System/38—AS/400—i-Series
KeyKOS [Bomberger et al, 1992]
L4 microkernels, Google Fuchsia

Any operation is invoking a capability:

err = cap.method(args);

25 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 - CC BY 4.0 8y

ssssss

Implementing Ocaps: Hardware

» Cap can be copied like data = “delegation”
» Tag is reset when modifying word

« CPU has capability registers _
i-node #,base Revocation

address, ... is hard!
r,w,c,d, ...

Tag Object ID Permissions

Special bit
in memory » Historic capability machines:
* IBM System/38 — AS/400 — i-Series

* Hydra
* Revived with CHERI

vvvvvv

26 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Implementing Ocaps: Software-Usermode

Object ID Signature

Revocation
is hard!

« “Sparse capabilities”
« Cap can be copied like data = delegation
« Signature mismatch when modifying cap
» OS has object table,

holds signatures and permissions

 Amoeba [Tanenbaum ‘81]
* Monash Password Capability System [Anderson ‘86]

* Mungi [Heiser ‘98]

27 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 - CCBY 4.0 # UNSW

ssssss

Implementing Ocaps: Software-Kernel

User holds

cap reference * “Partitioned” or

“segregated” caps
* Delegation is system call
* Revocation is easy

Object ID Permissions Kernel

Object ID Permissions

Object ID Permissions

Object ID Permissions Per-pr.c_)ce§s

Object ID Permissions capability list

Object ID Permissions

Object ID Permissions
Mach [Accetta '86]
EROS [Shapiro ‘99]
Modern L4 kernels
Unix file descriptors

28 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 - CC BY 4.0) UNSW

ACLs vs Capabillities

29 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

SYDNEY

ACLs & Object Capabilities — Duals?

* In theory dual representations of access control matrix

 Practical differences:
« Naming and namespaces
« Ambient authority
» Deputies
 Evolution of protection state
* Process creation

 Auditing of protection state

30 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

ssssss

31

Duals: Naming and Name Spaces

 ACLs:

* objects referenced by name

* requires separate (global) name space
» e.g. open(“/etc/passwd”,O_RDONLY)

* require a subject (class) namespace
* e.g. UNIX users and groups
« Capabilities: Least common
* objects referenced by capability mechanisms!

* no further namespace required —
object discovery orthogonal to access control

e cannot even name object without access

Covert storage channel?

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

VVVVVV

Duals: Confused Deputy

Unix:
_ * Log file is group admin
Deputy Object « Alice not member of admin

Subject gccis set-GID admin

@—X' gee —Ly Log file
alice$ gcc -o Log file source.c

static char* log = “/var/gcc/log”;

int gcc (char *src, *dest) ({ * ACLs separate naming apd permiss_ions
int s = open (src, RDONLY) ; * Deputy depends on ambient authority:
int 1 = open (log, APPEND) ; Uses own privileges for access
int d = open (dest, WRONLY) ;
’ inherent problem of ACLS!
Clobber log!
32 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Deputy With Ocaps

Object capability (Ocaps) system:
* gcc holds w cap for log file
* Alice holds r cap for source,

w cap for destination

X RW , . :
@—* gcc — Logfile * Alice holds no cap for log file
alice$ gcc -o Log file source.c

static cap_t log = <cap>; « Caps are both names and permissions
int gzct(cap_t src,(dest;D ({)NLY) * Presentation is explicit, not ambient
. €T s = open src, ’ o ’ : . ’ |
£t 1 = open (log, APPEND); Can’t name object if don’t have access!
df t d = open (dest, WRONLY) ;

write (d, ..);

Linux “capabilities” don’t help!

Open fails!

33 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Duals: Evolution of Protection State

ACLs: Protection state changes by modifying ACLs
« Requires certain meta-permissions on the ACL

Capabilities: Protection state changes by delegating and revoking caps

* Read No write,
« Write execute,
« Execute Object delegation
* Delegate

VVVVVV

34 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

35

Duals: Evolution of Protection State

ACLs: Protection state changes by modifying ACLs
« Requires certain meta-permissions on the ACL

Capabilities: Protection state changes by delegating and revoking caps

Caps support reasoning about information flow:

« A can send message to B only if A holds cap to B

« A can obtain access to C only if it receives
message with cap to C

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

VVVVVV

Duals: Process Creation — Child Permissions

i Child
ACLs: \9

» Permissions defined by child’s subject ACL
« Generally inherit all of parent’s rights system Spawn()
Parent
Max privilege \a
Caps:
- Child is created with no rights Cap lspawn()
« Parent gets cap to child, system
can delegate as needed Child

Least privilege

36 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

VVVVVV

Duals: Auditing of Protection State

* Who has permission to access a particular object (right now)?
« ACLs: Just look at the ACL
« Caps:
« sparse or tagged caps: hard/impossible without full memory scan
« partitioned caps: doable (maintain derivation tree)
« What objects can a particular subject access (right now)?
« Capabilities: Just look at its capabilities
« ACLs: may be impossible to determine without full scan

“Who can access my stuff?”
VS
“How much damage can X do?”

VVVVVV

37 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Interposing Access

Caps are opaque object references (pure names)

» Holder cannot tell which object a cap references nor the authority
» Supports transparent interposition (virtualisation)

Usage:

A invoke
E >

ref “B”

T []

e .
ref B

38 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

API virtualisation

Reference (security) monitor
— Security policy enforcement
— Info flow tracing
— Packet filtering...

Secure logging

Debugging

Lazy object creation

VVVVVV

Example: Lazy Object Construction

Server
Client
obj() {
= create...
substitute cap
}
meth() {
~ perfoperation
objl.meth(args); }
obl.meth(args);
39 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

40

Duals: Satzer & Schroeder Principles

Security Principle Capabilities

Economy of Mechanism
Fail-safe defaults
Complete mediation

Open design

Separation of privilege
Least privilege

Least common mechanism

Psychological acceptability

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Dubious

Generally not

Yes (if properly done)
Neutral

No

No

No

Neutral

Yes!

Yes!

Yes (if properly done)
Neutral

Doable

Yes

Yes, but...

Neutral

© Gernot Heiser 2019-25 — CC BY 4.0

ssssss

Mandatory AC Policies

41 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

SYDNEY

42

Mandatory vs Discretionary Access Control

Discretionary Access Control (DAC):
e Users can make access control decisions

* Delegate their access to other users etc. Can | stop my
browser leaking
Mandatory Access Control (MAC): secrets?

« System enforces administrator-defined policy

» Users can only make access control decisions subject to mandatory policy
« Can limit damage caused by untrusted applications

« Traditionally used in national security environments

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

MAC: Bell & LaPadula (BLP) Model [1966]

* MAC Policy/Mechanism
« Formalises national security classifications

 Every object assigned a classification (eg TS, S, C, U) TS
» orthogonal security compartments
- Classifications ordered in a lattice Need-to-know =
9. TS>S>C>U ret
« Every subject assigned a clearance / Confi- \
 Highest classification it's allowed to learn dential
Labelled security: Un-
« Subjects and objects are labelled classified

 Permitted accesses: relation over labels
allow(subject.label, object.label, operation)

43 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

=)
e

BLP: Rules

« Simple Security Property (“no read up”):
e scanread o iff clearance (s) >=class (0)
« S-cleared subject can read U,C,S but not TS
» standard confidentiality TS

_ Confinement
* %-Property (“no write down”):

E.Q.
logging

e scan write o iff clearance (s) <= class (0) kS é
« S-cleared subject can write TS,S, but not C,U & : ®
* to prevent accidental or malicious
leakage of data to lower levels Trend to CONE
* |[n practice need exceptions over-classify
« allow frusted entity to write down
* “de-classify/downgrade” — e.g. encryption UNCLASS

VVVVVV

44 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Web Browser Example

Trusted Untrusted Trusted Untrusted
Classified Browser Declassifier Internet
System — | (CryPto) —
SECRET/
SECRET SECRET UNCLASS UNCLASS

[¢ — ¢

Prevented by
* -property

45 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

MAC With Caps: Reference Monitor

A
send(B, cap)

= e
divert /

Reference
Monitor

46 COMP9242 2025 T3 W07 Part 2: Security Fundamentals

interpose_transfer(cap) {
if (A.clear > B.clear) {
¢ = mint(cap, -r);
send(B,c);
} else if (A.clear < B.clear) {
¢ = mint(cap, -w);
send(B,c);
} else {
send(B,cap);
}
}

© Gernot Heiser 2019-25 — CC BY 4.0

UNSW

el

MAC: Biba Integrity Model

 Bell-LaPadula enforces confidentiality
 Biba: Its dual, enforces integrity
« Objects now carry integrity classification Hi

« Subjects labelled by lowest level of data
each subject is allowed to learn

 BLP order is inverted:
e scanread o iff clearance (s) <= class (0) /

e scan write o iff clearance (s) >=class (0)

4
Q
@

/9\\‘»“

Low

47 COMP9242 2025 T3 W07 Part 2: Security Fundamentals ~ ©Gernot Heiser 2019-25-CC BY 4.0 @5 UINOV

Confidentiality + Integrity

« BLP+Biba allows no information flow across classes

 Practicality requires weakening

« Assume high-classified subject to
treat low-integrity info responsibly TS

* Allow read-down

 Independent labelling for >
confidentiality and integrity Qé}r S

« Strong *-Property (“matching writes only”):
e scanwrite o iff clearance (s) =class (o)
CONF

 Eg for logging, high reads low data and logs

48 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Clark & Wilson Model

 In commercial settings integrity is more important than confidentiality

 Restrict possible operations to well-formed transactions
« eg payment issued only after goods and invoice received

Integrity-critical

(trusted)
g00ds Receiving
Supplier \LOK(gOOdS) Payments B transfor(39)s BESRK
invoic Accounts Jy(invoice)
Rights « Easy with caps
amplification » SetUID cesspit with ACLs

49 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

VVVVVV

Chinese Walll (aka Brewer & Nash) Model

Actors Conflict Classes

communicate ﬁ- Mining
x Dynamic policy:
« Communication taints actor

» tainted actor cannot
communicate with other

Media entity in same conflict class
"W"' - — 9¢-> e
Seven : : :
Conflict-of-interest prevention
Finance « Law practices
%3 - JALE ANZ « Consultancies
BoQ

50 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW
S5

Boebert's Attack on Capability Machines

: _ _ Takeaway:
m_rEH% R . High Obj: hi * Need mechanism to
10_PC e limit cap propagation:
\RW L_r.read() take-grant model
L Low Obj: 1o *-Property . Zﬁbﬁgﬁgt fight on
lo_rww lo_rwit S violated!

rw_l.write(rw_l)
Works where caps

“On the inability of an are indistinguishable
unmodified capability from data (HW &
machine to enforce the sparse caps)

*-property” [Boebert'84]

VVVVVV

51 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

52

Decidability

Safety: Given initial safe state s,
system will never reach unsafe state s’

Decidability: AC system is Equivalent to halting problem
decidable if safety can aways [Harrison, Ruzzo, Ullman ‘75]
be computationally determined

* Most capability systems are decidable
* Unclear for many common ACL systems

COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gemot Heiser 201925 - CC BY 4.0 5] UNSW

YYYYYY

Summary: AC Principles

* ACLs and Capabilities:
« Capabilities tend to better support least privilege
« But ACLs can be better for auditing

« MAC good for global security requirements
* Not all mechanisms can enforce all policies
* e.g. X-property with sparse or HW capabilities
« AC systems should be decidable so we can reason about security

ssssss

53 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Reminders

« Honours theses at Trustworthy Systems
https://trustworthy.systems/students/theses

 John Lions CS Honours Award for thesis in OS
https://www.scholarships.unsw.edu.au/scholarships/id/1757
Deadline: 25 November for T1/25!

55 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

https://trustworthy.systems/students/theses

56

Different things to different people:

What is Security?

(|

On June 8, as the investigation into the initial intrusion | _—

response team shared with relevant agencies that there vagsapﬁlgﬁoezlgn}ecec f D S’
of confidence that OPM systems containing information related to the N
background investigations of current, former, and prospective Federal
government employees, and those for whom a Federal background
investigation was conducted, may have been compromised.

COMP9242 2025 T3 W07 Part 2: Security Fundamentals

Good Security Mechanisms

« Are widely applicable
« Support general security principles
* Are easy to use correctly and securely

« Do not hinder non-security priorities (e.g. productivity, generativity)
* Principle of “do not pay for what you don’t need”

Good mechanisms lend themselves to
correct implementation and verification!

57 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

=

OS Security

« What is the role of the OS for security?
e Minimum:
 provide mechanisms to allow the construction of secure systems

« that are capable of securely implementing the intended
users’/administrators’ policies

» while ensuring these mechanisms cannot be subverted

=]

58 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

ssssss

Policy vs Mechanism

 Policies accompany mechanisms:
e access control policy
« who can access what?
 authentication policy
* is password sufficient to authenticate TS access?
* Policy often restricts the applicable mechanisms

* One person’s policy is another’s mechanism

=]

59 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

Risk Management

« Comes down to risk management
« There is no absolute security, what risks we are willing to tolerate?
 Cost & likelihood of violation vs. cost of prevention
 Gain vs cost for attacker

* Actions:
* mitigate — using security mechanisms
* transfer — e.g. by buying insurance

Good security policy will
identify appropriate action,
based on risk assessment

VVVVVV

60 COMP9242 2025 T3 W07 Part 2: Security Fundamentals © Gernot Heiser 2019-25 — CC BY 4.0 UNSW

