School of Computer Science & Engineering
COMP9242 Advanced Operating Systems

Australia’s
Global
SYDNEY UniVersity

2025 T3 Week 07 Part 1 : | | 250
Measuring and Analysing Performance s 1 100
@GernotHeiser s\ AV

0 5 10 15 20 25 30 35 40 45 50
lteration #

Million events

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

2

Today’s Lecture

* Principles of performance evaluation: why and how

« Benchmarking: assessing performance (how and how not)
* Profiling

« Performance analysis

« Understanding performance (establishing context)

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY
sl
=

3

Why Measure Performance?

« System performance is important in many cases
« Good performance is expected from systems

* Important: Don’t guess, measure!

« Don’t rely on models/assumptions/hearsay
« Validate your (performance) model of the system

Models are important, but you
need to confirm that your system
behaves according to the model!

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
al

vvvvvv

4

Performance Considerations

What is performance? bEng'C:cge |
rain first!

* |s there an absolute measure?

* |s there a baseline for relative comparison?

What are we comparing? Configuration matters:

: Hot cache — easy to
» Best case? Nice, but useful? do — or cold cache?

* Average case? What defines “average™? + What is most relevant
: . ?
» Expected case? What defines it? el in3 PUITIEEE:

* Worst case? Is it really “worst” or just “bad™?

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

=]
VVVVVV
A

Benchmarking

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

6

Lies, Damned Lies, Benchmarks

Considerations:

* Micro- vs macro-benchmarks

« Benchmark suites, use of subsets

« Completeness of results

« Significance of results

« Baseline for comparison

« Benchmarking ethics

* What is good? — Analysing the results

COMP9242 2025 T3 W07 Part 1: Performance

VVVVVV

7

Benchmarking in Research & Development

Must satisfy two criteria:
» Conservative: no significant degradation due to your work

* Progressive: actual & relevant performance improvement
 only needed if your work is actually about improving performance

Must analyse and explain results! o _
Objectivity and fairness:

 Discuss model of system Appropriate baseline
» Present hypothesis of behaviour 2y SUEILEE EErTElvER
» Results must test and confirm hypothesis

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

8

Micro- vs Macro-Benchmarks

Microbenchmark Macrobenchmark

« Exercise particular operation » Use realistic workload

« Aim to represent real-system
Micro-BMs are an analysis, performance

not an assessment tool!
 Drill down on performance

Benchmarking crime: Using micro-benchmarks only

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 H UNSW

YYYYYY

9

Standard vs Ad-Hoc Benchmarks

« Standard benchmarks are designed by experts
» Representative workloads, reproducible and comparable results

» Use them whenever possible!
« Examples: SPEC, EEMBC, YCSB,...

* Only use ad-hoc benchmarks when you have no choice
* no suitable standard
* limitations of experimental system
» for good reason interested in a specific performance aspect

Ad-hoc benchmarks reduce

reproducibility and generality
— need strong justification!

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

Obtaining an Overall Score for a BM Suite

Normalise to Normalise to
System X System Y

Abs Rel Abs Rel Abs Rel

20 1.00 10 0.50 40 2.00
2 40 1.00 80 2.00 20 0.50
mean 1.00 1.00 1.00

Does the mean
make sense?

Geometric
mean?

Arithmetic mean is meaningless for relative numbers

Invariant under
normalisation! Rule: arithmetic mean for raw numbers,

geometric mean for normalised! [Fleming & Wallace, ‘86]

10 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

Subsetting introduces bias,
makes score meaningless!

Benchmark Suite Abuse)

“We evaluate performance using SPEC
CPU2000. Fig 5 shows typical results.”

Benchmarking crime: Using a subset of a suite

Sometimes unavoidable (incomplete system)
* handle with care
« document

- justify! N

Results will have
limited validity

11 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

Beware Partial Data

. What degrades
Frequently seen: Measurements h s
show 10% throughput degradation. roughput:

Authors conclude “10% overhead”. CPU
limited
Consider:
1. 100 Mb/s, 100% CPU — 90 Mb/s, 100% CPU
2. 100 Mb/s, 20% CPU — 90 MB/s, 40% CPU
Proper figure of merit is processing cost per unit data Latency
1. 10 ps/kb — 11 ps/kb: 10% overhead limited?
2. 2 pus/kb — 4.4 us/kb: 120% overhead

Benchmarking crime: Throughput degradation = overhead!

12 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

13

Profiling

COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 — CC BY 4.0

(]

«

14

Profiling

Run-time collection of execution statistics
* invasive (requires some degree of instrumentation)

« affects the execution it's trying to analyse
« Good profiling approaches minimise this interference

Avoid with HW

debuggers, cycle-
accurate simulators

|dentify targets for performance tuning
— complementary to microbenchmarks

gprof:
« compiles tracing code into program

« uses statistical sampling with post-
execution analysis

COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 — CC BY 4.0

UNSW

el

Example gprof output

Each sample counts as 0.01 seconds.

self

o

[¢]

time

33.
16.
16.
16.
16.

0.

0
0.
0

34
6’/
6’/
6’/
6’/
00

.00

00

.00

o O O o o o

cumulative
seconds
0.
0.
0.
.05
.06
.06
.06
.06
.06

02
03
04

o O O O o o o o

seconds
0.
.01
.01
.01
.01
.00
.00
.00
.00

02

calls
7208
244

8

7

236
192
477
45

self

ms/call

0.
0.
.25
.43

1
1

0
0
0
0

00
04

.00
.00
.00
.00

Source: http://sourceware.org/binutils/docs-2.19/gprof

15 COMP9242 2025 T3 W07 Part 1: Performance

total

ms/call

0.
.12
.25
.43

0
1
1

o O O O

00

.00
.00
.00
.00

© Gernot Heiser 2019 — CC BY 4.0

name
open
offtime
memccpy
write
mcount
tzset
tolower
strlen

strchr

UNSW

2

Example gprof output

granularity: each sample hit covers 2 byte(s)

called

for 20.00% of 0.05 seconds

name
<spontaneous>
start [1]
main [2]
on exit [28]

exit [59]

start [1]
main [2]

report [3]

main [2]
report [3]

timelocal [6]

index % time self children
[1] 100.0 0.00 0.05
0.00 0.05
0.00 0.00
0.00 0.00
0.00 0.05
[2] 100.0 0.00 0.05
0.00 0.05
0.00 0.05
[3] 100.0 0.00 0.05
0.00 0.03
16 COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 — CC BY 4.0

UNSW

2

17

Performance Monitoring Unit (PMU)

* Collects certain events at run time

« Supports many events, small number of event counters

« Events refer to hardware (micro-architectural) features
« Typically relating to instruction pipeline or memory hierarchy
* Dozens or hundreds

» Counter can be bound to a particular event
* via some configuration register, typically 2—4

« Counters can trigger exception on exceeding threshold

* OS can sample counters
Linux PMU interface: oprof

Can profile kernel and userland

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

Example oprof Output

$ opreport --exclude-dependent

CPU: PIII,

speed 863.195 MHz

Performance counter used

(estimated)

Counted CPU CLK UNHALTED events (clocks processor 1s not halted) with a ..

450385 75.6634 cclplus
60213 10.1156 1lyx Percentage
Count 29313 4.9245 XFreess
11633 1.9543 as
10204 1.7142 oprofiled
7289 1.2245 vmlinux Profiler
7066 1.1871 bash
6417 1.0780 oprofile
6397 1.0747 vim
3027 0.5085 wineserver Source: http://oprofile.sourceforge.net/examples/
1165 0.1957 kdeinit
18 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

UNSW

Example oprof Output

$ opreport
CPU: PIII, speed 863.195 MHz (estimated)
Counted CPU CLK UNHALTED events (clocks processor 1s not halted) with a ..
506605 54.0125 cclplus
450385 88.9026 cclplus® @ ®
28201 5.5667 libc-2.3.2.s0
27194 5.3679 vmlinux
677 0.1336 uhci hcd

Drill down of top
consumers

163209 17.4008 lyx
60213 36.8932 lyx
23881 14.6322 libc-2.3.2.s0
21968 13.4600 libstdc++.s0.5.0.1
13676 8.3794 libpthread-0.10.so0

=]

19 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

2

Call
stack

20

PMU Support on seL4 Microkit/LionsOS!

Samples: 13K of event 'cycles:HG', Event count (approx.): 16069200000

Children Self Command
dummy prog.elf
dummy prog2.elf
dummy prog2.elf
echo.elf

Firefox Full Range (362ms)

3/ 3 tracks v

Process 0

dummy_prog2.elf

echo.elf
1

Call Tree Flame Graph Stack Chart Marker Chart

© Al frames JavaScript Native

mplete “echo.elf”

enqu...
interf... tcp_pbuf preal...
pbuf f... tcp_write
Iwip_tcp_recv_callback
tcp_input
ip4_input

d... ethemet_input

process_rx_queue

notified

main

deq... en...
Iwip_eth_send
ip4_output_if
tcp_output

echo.elf

COMP9242 2025 T3 W07 Part 1: Performance

Marker Table

Shared Object
dummy prog.elf
dummy prog2.elf
dummy prog2.elf
echo.elf

Symbol

[.] init
notified
main
main

[-]
[-]

@ Profile Info &, Upload Local Profile Docs (2

Filter stacks: | Q. Enter filter terms

te.
tcp_...

echo.eLr
echo.elf

L.] pPDUT_reaLLocC
[.] dequeue_used
[.] tcp_seg free

echo.elf

© Gernot Heiser 2019 — CC BY 4.0

Time

PMU Event Examples: ARM11 (Armvo)

Ev # Definition Definition Ev # Definition

0x00 I-cache miss Ox0b D-cache miss 0x22

0x01 Instr. buffer stall 0x0c D-cache write-back 0x23 Funct. call

0x02 Data depend. stall 0x0d PCchanged by SW 0x24 Funct. return

0x03 Instr. micro-TLB miss 0xOf Main TLB miss Ox25 Funct. ret. predict
0x04 Data micro-TLB miss 0x10 Ext data access 0x26 Funct. ret. mispred.
0x05 Branch executed 0x11 Load-store unit stall 0x30

0x06 Branch mis-predicted 0x12 Write-buffer drained 0x38

0x07 Instr. executed 0x13 Cycles FIRQ disabled Oxff Cycle counter

0x09 D-cache acc. cacheable 0x14 Cycles IRQ disabled

OxOa D-cache access any 0x20 o leop;?

21 COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 — CC BY 4.0

best friend!

Performance Analysis

22 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

D)

23

All measurements

are subject to
random errors

Significance of Measurements

« Standard approach: repeat & collect stats

« Computer systems are highly deterministic

» Usually variances are tiny,
except across WAN

Watch for divergence from this

Benchmarking crime: No indication of significance of data!

Always show standard deviations,
or clearly state they are tiny!

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

How to Measure and Compare Performance

Bare-minimum statistics:

* At least report the mean (u) and standard deviation (o)

« Don't believe any effect that is less than a standard deviation
* 10.2+1.5 is not significantly different from 11.5

 Be highly suspicious if it is less than two standard deviations

« often don’t have a Gaussian distribution Standard deviation is meaning-
* 10.2+0.8 may not be significantly &

different from 11.5 less for small samples!
 Okif effect > o

i Do |
For systems work, must be very use t-test if in doubt!

suspicious if o is not small!

24 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

&~/ sYDNEY
el

Example from SPEC CPU2000

. Cache
Observations:

warmup

* First iteration is special Clock
: resolution
« 20 Hz timer: accuracy 0.1 s! = o
E
é 2I0 25_ 30
Iteration #
Lesson: Need mental model
of system, look for hidden
parameters if model fails!
25 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 Uj)@vN

How To Measure and Compare Performance

Not always
possible!

Noisy data:
* Eliminate sources of noise, re-run from same initial state

* single-user mode
 dedicated network

» Possible ways out:
* ignore highest & lowest values

* ignore above threshold in bi-modal distribution
resulting from interference

* take floor of data * Proceed with extreme care!
* maybe minimum is what matters . Document and justify!

26 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

Real-World Example: selL4 Syscall Latency

Interference
from test rig

i) o [en | <
120 0

Null 120
IPC Call 313 314 1
Signal->low 139 139 0

Signal->high 377 486

Platform: Sabre (Armv7-a Cortex-A9)

Real syscall cost:
377 cy

27 COMP9242 2025 T3 W07 Part 1: Performance

1600

1400 A

1200 A

Clock Cycles

600 ~

400 A

Signalling a Notification

=

o

o

o
1

800 A

Signal to high prio thread
Signal to low prio thread

One way IPC microbenchmarks

Hardware null_syscall thread

20

40

60 80
Iteration

Courtesy Shane Kadish

© Gernot Heiser 2019 — CC BY 4.0

100

Problem: Benchmarking Methodology

t0 = time(); Write stalls on
for (1=0; i++;i<n) { = platform with
syscall(...) low memory
b1 = time(); bandwidth!
buffer[i] = t1-t0;
t0 =t1;
}
/* now compute mean,
std deviation ... */
Buffer 709 1770 933 195

Sum in loop 695 770 730 15

Platform: Sabre Courtesy Nataliya Korovkina

different syscall!

28 COMP9242 2025 T3 W07 Part 1: Performance

t0 = time();
for (i=0; i++; i<n) {
syscall(...)
t1 = time();
t =1t110;
sum_t +=t;
sum_sq += t*t;
t0 =t1;
}
/* now compute mean,
std deviation ... */
mean = sum_t/n;
st_sq = sum_t*sum_t;
stdev = sqrt((n*sum_sq — st_sq) / (n*(n-1)));

All data in
registers!

VVVVVV

How To Measure and Compare Performance

Vary inputs, check outputs! Beware optimisations!
- Vary data and addresses! * compilers eliminating code
. . e disks pre-fetching, de-duplicating
* eg time-stamp or randomise inputs

 be careful with sequential patterns!

» Check outputs are correct
 read back after writing and compare

« Complete checking infeasible?

» do spot checks
* run with checking on/off

* True randomness may affect reproducibility

e Use speudo-random with same seed

29 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

Real-World Example: SPEC on Linux

Benchmark:
e 300.twolf from SPEC CPU2000 suite

Platform:

* Dell Latitude D600

Pentium M @ 1.8GHz

32KiB L1 cache, 8-way

1MiB L2 cache, 8-way

DDR memory @ effective 266MHz

e Linux kernel version 2.6.24

Methodology:
« Multiple identical runs for statistics...

30 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

el

twolf on Linux — What's Going On?

Performance
240 — 400 counters are your
| H |
20% performance s | L2 misses o ¢ best friends!
: Time - 221cy/mi 1
difference between _ e T eeTemes |
“identical” runs! { 300
225 |]
% 220 |] 250 42
= \ 2
5 215 ¢ ol | {200 2
= / I o
= i i =
@ 210 I 1 =
= I llh.,;l 1 150
205 | AT]
- AV | . 110 Lesson: Check system
Subtract 221 cycles AV NAYNZE: behaves according to
195 + | v“-.J o } v ‘|' v
(123ns) for each *“f—--—— — AR your model — large o
; - 190 Lb—ei L 0 :
EEEEEE Tl 0 5 10 15 20 25 30 35 4 4 s | Wasthe giveaway!
lteration #
31 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

32

A Few More Performance Evaluation Rules

« Vary one parameter at a time
» Record & date all configurations!
* Measure as directly as possible

 Avoid incorrect conclusions from pathological data

 sequential vs random access may mess with prefetching
« 2" vs 2"-1, 2"+1 sizes may mess with caching

What is pathological
depends a lot on
circumstances!

VVVVVV

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

Most Important: Use a Model/Hypothesis

Model of the system that predicts system behaviour
« Benchmarking should aim to support or disprove that model

* Need to consider in selecting data, evaluating results, e.g:
* |/O performance dependent on FS layout, caching in controller...
» Cache sizes (HW & SW caches)
 Buffer sizes vs cache size

Always check your system behaves according to the model!

33 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

vvvvvv

Example: Memory Copy

Pipelining,
loop overhead

Hypothesis: Execution
time vs buffer size?

60\o — . 18
M time 16
500 || throughput
| 14 _
@ | @
o 40 1 |1 cache (32KiB) 2 3
= | 10 =
4] -
5 300 | 1g 2
3 | =3
© 200 | | {6 O
n i =
00 L2 cache (1MiB) 4 F Make sure you
1 2 understand all
0 : : — 0 results!
0 200 400 600 800 1000
Buffer size [KiB]
34 COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 — CC BY 4.0

35

Loop and Timing Overhead

 Ensure measurement overhead does not affect results!
 Eliminate by measuring in tight loop, subtract timer cost

 Eliminate cache effects by warm-up loops BEWélre
compiler
t0 = time () ; optimisations!

for (i=0; i<MAX; i++) {asm(nop);} /* overhead*,
tl = time () ;

for (i=0; i<10; i++) {asm(syscall);} /* warmup >ee
“Methodology”
t2 = time(); slide re stats

for (i=0; i<MAX; i++) {asm(syscall);} /* measure */
t3 = time () ;
printf (“Cost is %dus\n”, (t3-t2-(t1-t0))*1000000/MAX) ;

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

36

Relative vs Absolute Data ——

From a real paper [Armand&Gien, IEEE CCNC 69] f\ F

* No data other than this figure
* No figure caption

* Only explanation in text:
“The L4 overhead compared to VLX ranges

from a 2x to 20x factor depending on th
system call benchmark’

* No definition of “overhead factor”
 No native Linux data

Benchmarking crime: Relative numbers only!

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

YYYYYY

Data Range

Example: Scaling database load

250000 250000

200000 ¢} 200000 ¢
2 2
< 150000 | < 150000 |
3 3
o o
L L
S 100000 | S 100000 |
= =
- -
= =

50000 ¢t 50000 i

0 : : : : : : o
5 10 15 20 25 30 20 40 60 80 100 120 140 160 180 200
Load (concurrent Tx) Load (concurrent Tx)

Benchmarking crime: Selective data set hiding deficiencies!

37 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 :: YYYYYY

Benchmarking Ethics

Comparisons with prior work

« Sensible and necessary, but must be fair!

» Comparable setup/equipment

 Prior work might have different focus, must understand & acknowledge
« eg they optimised for multicore scalability, you for mobile-system energy

» Ensure you choose appropriate configuration
» Make sure you understand what’s going on!

Benchmarking crime: Unfair benchmarking of competitor!

38 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

39

Other Ways of Cheating with Benchmarks

« Benchmark-specific optimisations
- Recognise particular benchmark, insert BM-specific optimised code
- Popular with compiler writers

- Pioneered for smartphone performance by Samsung:
https://www.androidauthority.com/samsung-geekbench-ban-3129230/

* Benchmarking simulated system
» ... with simulation simplifications matching model assumptions

» Uniprocessor benchmarks to “measure” multicore scalability
* ... by running multiple copies of benchmark on different cores

» CPU-intensive benchmark to “measure” networking

performance : :
These are simply lies, and I've seen them all!

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

vvvvvv

https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/

40

Understanding Performance

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

41

What is “Good” Performance?

« Easy if improving recognised state of the art

« E.g. improving best Linux performance (where op%

 Harder if no established best-of-class baseline:

 Evaluate best-of-breed system yourself

 Establish performance limits
« Theoretical optimal scenario
« Hardware-imposed performance limits

COMP9242 2025 T3 W07 Part 1: Performance

Remember: progressive
and conservative criteria!

Remember: BM ethics!

Most elegant,
but hardest!

VVVVVV

Real-World Example: Virtualisation Overhead

Symbian null-syscall microbenchmark: Good or

 Native: 0.24us, virtualized (on OKL4): 0.79us bad?
« 230% overhead

« ARM11 processor runs at 368 MHz:
 Native: 0.24us =93 cy
* Virtualized: 0.79us = 292 cy
« Overhead: 0.55us = 199 cy
« Cache-miss penalty = 20 cy

 Model:

* native: 2 mode switches, 0 context switches, 1 x save+trestore state
e virt.: 4 mode switches, 2 context switches, 3 x save+restore state

Expected
overhead?

42 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0 UNSW
al

Performance Counters Are Your Friends!

Counter Native Virtualized Difference

Branch miss-pred 1 1 0

D-cache miss 0 0 0

I-cache miss 0 1 1

D-uTLB miss 0 0 0

|-uTLB miss 0 0 0

Main-TLB miss 0 0 0 el ar
Instructions 30 125 95 bad?
D-stall cycles 0 27 27 :

I-stall cycles 0 45 45 - ®

Total Cycles 93 292 199 °

43 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

More of the Same

Fi . Benchmark Native Virtualized
irst step:
improve ® Context switch [1/s] 615,046 444,504
representation! “ Create/close [us] 11 15
Suspend [10ns] 81 154

Second step:
overheads in
appropriate units!

Further Analysis shows
guest dis- & enables IRQs
22 times!

O
O
Benchmark Native Virt. Diff[us] Diff[cy] #sysc Cy/sysc &

Context switch [ps] 1.63 2.25 0.62 230 1 230
Create/close [us] 11 15 4 1472 2 736 |
Suspend [us] 0.81 1.54 0.73 269 1 269

44 COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

45

Good or
bad?

And Another One...

Benchmark Native [ps] Virt. [us] Overheé&d Per tick
TDes16_NumO 1.2900 1.2936 0.28% 2.8 us

TDes16_ RadixHex1 0.7110 0.7129 0.27% 2.7 us

TDes16 RadixDecimal2 1.2338 1.2373 0.28% 2.8 us
TDes16_Num_RadixOctal3 0.6306 0.6324 0.28% 2.8 us
TDes16_Num_RadixBinary4 1.0088 1.0116 0.27% 2.7 us
TDesC16_Compare5 0.9621 0.9647 0.27% 2.7 us
TDesC16_CompareF7 1.9392 1.9444 0.27% 2.7 us
TdesC16_MatchF9 1.1060 1.1090 0.27% 2.7 us

COMP9242 2025 T3 W07 Part 1: Performance

Timer interrupt
virtualization overhead!

vvvvvv

46

Lessons Learned

* Ensure stable results
» Get small variances, investigate if they are not

« Have a model of what to expect

* Investigate if behaviour is different
» Unexplained effects are likely to indications of problems — don't ignore!

* Tools are your friends

 Performance counters

« Simulators
 Traces Annotated list of benchmarkmg crimes:

» Spreadsheets

COMP9242 2025 T3 W07 Part 1: Performance © Gernot Heiser 2019 — CC BY 4.0

YYYYYY

https://gernot-heiser.org/benchmarking-crimes.html
https://gernot-heiser.org/benchmarking-crimes.html
https://gernot-heiser.org/benchmarking-crimes.html
https://gernot-heiser.org/benchmarking-crimes.html
https://gernot-heiser.org/benchmarking-crimes.html

