
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2025 T3 Week 07 Part 1

Measuring and Analysing Performance
@GernotHeiser

© Gernot Heiser 2019 – CC BY 4.0

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

1 COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 – CC BY 4.0

Today’s Lecture
• Principles of performance evaluation: why and how
• Benchmarking: assessing performance (how and how not)
• Profiling
• Performance analysis
• Understanding performance (establishing context)

2 COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 – CC BY 4.0

Why Measure Performance?
• System performance is important in many cases
• Good performance is expected from systems
• Important: Don’t guess, measure!

• Don’t rely on models/assumptions/hearsay
• Validate your (performance) model of the system

3 COMP9242 2025 T3 W07 Part 1: Performance

Models are important, but you
need to confirm that your system
behaves according to the model!

© Gernot Heiser 2019 – CC BY 4.0

Performance Considerations
What is performance?
• Is there an absolute measure?
• Is there a baseline for relative comparison?

What are we comparing?
• Best case? Nice, but useful?
• Average case? What defines “average”?
• Expected case? What defines it?
• Worst case? Is it really “worst” or just “bad”?

4 COMP9242 2025 T3 W07 Part 1: Performance

Configuration matters:
• Hot cache – easy to

do – or cold cache?
• What is most relevant

for the purpose?

Engage
brain first!

© Gernot Heiser 2019 – CC BY 4.0

Benchmarking

5COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 – CC BY 4.0

Lies, Damned Lies, Benchmarks
Considerations:
• Micro- vs macro-benchmarks
• Benchmark suites, use of subsets
• Completeness of results
• Significance of results
• Baseline for comparison
• Benchmarking ethics
• What is good? — Analysing the results

6 COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 – CC BY 4.0

Benchmarking in Research & Development
Must satisfy two criteria:
• Conservative: no significant degradation due to your work
• Progressive: actual & relevant performance improvement

• only needed if your work is actually about improving performance

Must analyse and explain results!
• Discuss model of system
• Present hypothesis of behaviour
• Results must test and confirm hypothesis

7 COMP9242 2025 T3 W07 Part 1: Performance

Objectivity and fairness:
• Appropriate baseline
• Fairly evaluate alternatives

© Gernot Heiser 2019 – CC BY 4.0

Micro- vs Macro-Benchmarks
Microbenchmark
• Exercise particular operation

Macrobenchmark
• Use realistic workload
• Aim to represent real-system

performance

8 COMP9242 2025 T3 W07 Part 1: Performance

Micro-BMs are an analysis,
not an assessment tool!
• Drill down on performance

Benchmarking crime: Using micro-benchmarks only

© Gernot Heiser 2019 – CC BY 4.0

Standard vs Ad-Hoc Benchmarks
• Standard benchmarks are designed by experts

• Representative workloads, reproducible and comparable results
• Use them whenever possible!
• Examples: SPEC, EEMBC, YCSB,...

• Only use ad-hoc benchmarks when you have no choice
• no suitable standard
• limitations of experimental system
• for good reason interested in a specific performance aspect

9 COMP9242 2025 T3 W07 Part 1: Performance

Ad-hoc benchmarks reduce
reproducibility and generality
– need strong justification!

© Gernot Heiser 2019 – CC BY 4.0

Benchmark System X System Y System Z

1 20 10 40

2 40 80 20

Total 60 90 60

Benchmark System X System Y System Z

1 20 10 40

2 40 80 20

Total 60 90 60

Mean 30 45 30

Benchmark
System X System Y System Z
Abs Rel Abs Rel Abs Rel

1 20 1.00 10 0.50 40 2.00

2 40 1.00 80 2.00 20 0.50

Mean 30 1.00 45 1.25 30 1.25

Benchmark
System X System Y System Z
Abs Rel Abs Rel Abs Rel

1 20 2.00 10 1.00 40 4.00

2 40 0.50 80 1.00 20 0.25

Mean 30 1.25 45 1.00 30 2.13

Benchmark
System X System Y System Z
Abs Rel Abs Rel Abs Rel

1 20 2.00 10 1.00 40 4.00

2 40 0.50 80 1.00 20 0.25

Geom. mean 1.00 1.00 1.00

Benchmark
System X System Y System Z
Abs Rel Abs Rel Abs Rel

1 20 1.00 10 0.50 40 2.00

2 40 1.00 80 2.00 20 0.50

Geom. mean 1.00 1.00 1.00

Arithmetic mean is meaningless for relative numbersArithmetic mean is meaningless for relative numbers
Rule: arithmetic mean for raw numbers,
geometric mean for normalised! [Fleming & Wallace, ‘86]

Obtaining an Overall Score for a BM Suite

10 COMP9242 2025 T3 W07 Part 1: Performance

Does the mean
make sense?

Geometric
mean?

Normalise to
System X

Invariant under
normalisation!

Normalise to
System Y

© Gernot Heiser 2019 – CC BY 4.0

Benchmark Suite Abuse

11 COMP9242 2025 T3 W07 Part 1: Performance

Benchmarking crime: Using a subset of a suite

Sometimes unavoidable (incomplete system)
• handle with care
• document
• justify!

Subsetting introduces bias,
makes score meaningless!

Results will have
limited validity

“We evaluate performance using SPEC
CPU2000. Fig 5 shows typical results.”

© Gernot Heiser 2019 – CC BY 4.0

Beware Partial Data

12 COMP9242 2025 T3 W07 Part 1: Performance

Frequently seen: Measurements
show 10% throughput degradation.
Authors conclude “10% overhead”.

What degrades
throughput?

Consider:
1. 100 Mb/s, 100% CPU → 90 Mb/s, 100% CPU
2. 100 Mb/s, 20% CPU → 90 MB/s, 40% CPU

CPU
limited

Latency
limited?

Proper figure of merit is processing cost per unit data
1. 10 µs/kb → 11 µs/kb
2. 2 µs/kb → 4.4 µs/kb

Proper figure of merit is processing cost per unit data
1. 10 µs/kb → 11 µs/kb: 10% overhead
2. 2 µs/kb → 4.4 µs/kb: 120% overhead

Benchmarking crime: Throughput degradation = overhead!

© Gernot Heiser 2019 – CC BY 4.0

Profiling

13 COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 – CC BY 4.0

Profiling
Run-time collection of execution statistics
• invasive (requires some degree of instrumentation)
• affects the execution it's trying to analyse
• Good profiling approaches minimise this interference

14 COMP9242 2025 T3 W07 Part 1: Performance

Avoid with HW
debuggers, cycle-

accurate simulators

Identify targets for performance tuning
– complementary to microbenchmarks

gprof:
• compiles tracing code into program
• uses statistical sampling with post-

execution analysis

© Gernot Heiser 2019 – CC BY 4.0

Example gprof output

15 COMP9242 2025 T3 W07 Part 1: Performance

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 33.34 0.02 0.02 7208 0.00 0.00 open

 16.67 0.03 0.01 244 0.04 0.12 offtime

 16.67 0.04 0.01 8 1.25 1.25 memccpy

 16.67 0.05 0.01 7 1.43 1.43 write

 16.67 0.06 0.01 mcount

 0.00 0.06 0.00 236 0.00 0.00 tzset

 0.00 0.06 0.00 192 0.00 0.00 tolower

 0.00 0.06 0.00 47 0.00 0.00 strlen

 0.00 0.06 0.00 45 0.00 0.00 strchr

Source: http://sourceware.org/binutils/docs-2.19/gprof

© Gernot Heiser 2019 – CC BY 4.0

Example gprof output

16 COMP9242 2025 T3 W07 Part 1: Performance

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

 index % time self children called name

 <spontaneous>

 [1] 100.0 0.00 0.05 start [1]

 0.00 0.05 1/1 main [2]

 0.00 0.00 1/2 on_exit [28]

 0.00 0.00 1/1 exit [59]

 0.00 0.05 1/1 start [1]

 [2] 100.0 0.00 0.05 1 main [2]

 0.00 0.05 1/1 report [3]

 0.00 0.05 1/1 main [2]

 [3] 100.0 0.00 0.05 1 report [3]

 0.00 0.03 8/8 timelocal [6]

© Gernot Heiser 2019 – CC BY 4.0

Performance Monitoring Unit (PMU)
• Collects certain events at run time
• Supports many events, small number of event counters

• Events refer to hardware (micro-architectural) features
• Typically relating to instruction pipeline or memory hierarchy
• Dozens or hundreds

• Counter can be bound to a particular event
• via some configuration register, typically 2–4

• Counters can trigger exception on exceeding threshold
• OS can sample counters

17 COMP9242 2025 T3 W07 Part 1: Performance

Linux PMU interface: oprof
Can profile kernel and userland

© Gernot Heiser 2019 – CC BY 4.0

Example oprof Output

18 COMP9242 2025 T3 W07 Part 1: Performance

Performance counter used

ProfilerProfiler

Count
Percentage

$ opreport --exclude-dependent

CPU: PIII, speed 863.195 MHz (estimated)

Counted CPU_CLK_UNHALTED events (clocks processor is not halted) with a ...
 450385 75.6634 cc1plus

 60213 10.1156 lyx

 29313 4.9245 XFree86

 11633 1.9543 as

 10204 1.7142 oprofiled

 7289 1.2245 vmlinux

 7066 1.1871 bash

 6417 1.0780 oprofile

 6397 1.0747 vim

 3027 0.5085 wineserver

 1165 0.1957 kdeinit

Source: http://oprofile.sourceforge.net/examples/

© Gernot Heiser 2019 – CC BY 4.0

Example oprof Output

19 COMP9242 2025 T3 W07 Part 1: Performance

$ opreport

CPU: PIII, speed 863.195 MHz (estimated)

Counted CPU_CLK_UNHALTED events (clocks processor is not halted) with a ...
 506605 54.0125 cc1plus

 450385 88.9026 cc1plus

 28201 5.5667 libc-2.3.2.so

 27194 5.3679 vmlinux

 677 0.1336 uhci_hcd

 …

 163209 17.4008 lyx

 60213 36.8932 lyx

 23881 14.6322 libc-2.3.2.so

 21968 13.4600 libstdc++.so.5.0.1

 13676 8.3794 libpthread-0.10.so

Drill down of top
consumers

© Gernot Heiser 2019 – CC BY 4.020

PMU Support on seL4 Microkit/LionsOS!

COMP9242 2025 T3 W07 Part 1: Performance

Call
stack Time

© Gernot Heiser 2019 – CC BY 4.0

PMU Event Examples: ARM11 (Armv6)

21 COMP9242 2025 T3 W07 Part 1: Performance

Ev # Definition Ev # Definition Ev # Definition

0x00 I-cache miss 0x0b D-cache miss 0x22 …

0x01 Instr. buffer stall 0x0c D-cache write-back 0x23 Funct. call

0x02 Data depend. stall 0x0d PC changed by SW 0x24 Funct. return

0x03 Instr. micro-TLB miss 0x0f Main TLB miss 0x25 Funct. ret. predict

0x04 Data micro-TLB miss 0x10 Ext data access 0x26 Funct. ret. mispred.

0x05 Branch executed 0x11 Load-store unit stall 0x30 …

0x06 Branch mis-predicted 0x12 Write-buffer drained 0x38 …

0x07 Instr. executed 0x13 Cycles FIRQ disabled 0xff Cycle counter

0x09 D-cache acc. cacheable 0x14 Cycles IRQ disabled

0x0a D-cache access any 0x20 … Developer’s
best friend!

© Gernot Heiser 2019 – CC BY 4.0

Performance Analysis

22 COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 – CC BY 4.0

Significance of Measurements
• Standard approach: repeat & collect stats
• Computer systems are highly deterministic

• Usually variances are tiny,
except across WAN

23 COMP9242 2025 T3 W07 Part 1: Performance

All measurements
are subject to
random errors

Watch for divergence from this
hypothesis, could indicate

hidden parameters!

Benchmarking crime: No indication of significance of data!

Always show standard deviations,
or clearly state they are tiny!

© Gernot Heiser 2019 – CC BY 4.0

How to Measure and Compare Performance
Bare-minimum statistics:
• At least report the mean (µ) and standard deviation (σ)

• Don't believe any effect that is less than a standard deviation
• 10.2±1.5 is not significantly different from 11.5

• Be highly suspicious if it is less than two standard deviations
• often don’t have a Gaussian distribution
• 10.2±0.8 may not be significantly

different from 11.5

24 COMP9242 2025 T3 W07 Part 1: Performance

Standard deviation is meaning-
less for small samples!
• Ok if effect ≫ 𝜎
• use t-test if in doubt!For systems work, must be very

suspicious if 𝜎 is not small!

© Gernot Heiser 2019 – CC BY 4.0

Example from SPEC CPU2000
Observations:
• First iteration is special
• 20 Hz timer: accuracy 0.1 s!

25 COMP9242 2025 T3 W07 Part 1: Performance

Cache
warmup

Clock
resolution

Lesson: Need mental model
of system, look for hidden
parameters if model fails!

© Gernot Heiser 2019 – CC BY 4.0

How To Measure and Compare Performance
Noisy data:
• Eliminate sources of noise, re-run from same initial state

• single-user mode
• dedicated network

• Possible ways out:
• ignore highest & lowest values
• ignore above threshold in bi-modal distribution

resulting from interference
• take floor of data

• maybe minimum is what matters

26 COMP9242 2025 T3 W07 Part 1: Performance

• Proceed with extreme care!
• Document and justify!

Not always
possible!

© Gernot Heiser 2019 – CC BY 4.0

Real-World Example: seL4 Syscall Latency

27 COMP9242 2025 T3 W07 Part 1: Performance

Syscall (cy) Min Mean σ

Null 120 120 0

IPC Call 313 314 1

Signal→low 139 139 0

Signal→high 377 486 298

Real syscall cost:
377 cy

Interference
from test rig

Courtesy Shane Kadish

Platform: Sabre (Armv7-a Cortex-A9)

© Gernot Heiser 2019 – CC BY 4.0

Problem: Benchmarking Methodology

28 COMP9242 2025 T3 W07 Part 1: Performance

t0 = time();
for (i=0; i++; i<n) {
 syscall(…)
 t1 = time();
 buffer[i] = t1-t0;
 t0 = t1;
}
/* now compute mean,
 std deviation … */
…

Write stalls on
platform with
low memory
bandwidth!

t0 = time();
for (i=0; i++; i<n) {
 syscall(…)
 t1 = time();
 t = t1-t0;
 sum_t += t;
 sum_sq += t*t;
 t0 = t1;
}
/* now compute mean,
 std deviation … */
mean = sum_t/n;
st_sq = sum_t*sum_t;
stdev = sqrt((n*sum_sq – st_sq) / (n*(n-1)));

All data in
registers!

Method. Min Max Mean σ

Buffer 709 1770 933 195

Platform: Sabre
different syscall!

Method. Min Max Mean σ

Buffer 709 1770 933 195

Sum in loop 695 770 730 15

Courtesy Nataliya Korovkina

© Gernot Heiser 2019 – CC BY 4.0

How To Measure and Compare Performance
Vary inputs, check outputs!
• Vary data and addresses!

• eg time-stamp or randomise inputs
• be careful with sequential patterns!

• Check outputs are correct
• read back after writing and compare

• Complete checking infeasible?
• do spot checks
• run with checking on/off

29 COMP9242 2025 T3 W07 Part 1: Performance

Beware optimisations!
• compilers eliminating code
• disks pre-fetching, de-duplicating

• True randomness may affect reproducibility
• Use speudo-random with same seed

© Gernot Heiser 2019 – CC BY 4.0

Real-World Example: SPEC on Linux
Benchmark:
• 300.twolf from SPEC CPU2000 suite

Platform:
• Dell Latitude D600

• Pentium M @ 1.8GHz
• 32KiB L1 cache, 8-way
• 1MiB L2 cache, 8-way
• DDR memory @ effective 266MHz

• Linux kernel version 2.6.24

Methodology:
• Multiple identical runs for statistics...

30 COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 – CC BY 4.0

twolf on Linux – What’s Going On?

31 COMP9242 2025 T3 W07 Part 1: Performance

20% performance
difference between

“identical” runs!

Performance
counters are your

best friends!

Subtract 221 cycles
(123ns) for each

L2-cache miss

Lesson: Check system
behaves according to
your model – large 𝜎
was the giveaway!

© Gernot Heiser 2019 – CC BY 4.0

A Few More Performance Evaluation Rules
• Vary one parameter at a time
• Record & date all configurations!
• Measure as directly as possible
• Avoid incorrect conclusions from pathological data

• sequential vs random access may mess with prefetching
• 2n vs 2n-1, 2n+1 sizes may mess with caching

32 COMP9242 2025 T3 W07 Part 1: Performance

What is pathological
depends a lot on
circumstances!

© Gernot Heiser 2019 – CC BY 4.0

Most Important: Use a Model/Hypothesis
Model of the system that predicts system behaviour
• Benchmarking should aim to support or disprove that model
• Need to consider in selecting data, evaluating results, e.g:

• I/O performance dependent on FS layout, caching in controller...
• Cache sizes (HW & SW caches)
• Buffer sizes vs cache size

33 COMP9242 2025 T3 W07 Part 1: Performance

Always check your system behaves according to the model!

© Gernot Heiser 2019 – CC BY 4.0

Example: Memory Copy

34 COMP9242 2025 T3 W07 Part 1: Performance

L1 cache (32KiB)

Pipelining,
loop overhead

L2 cache (1MiB)

Hypothesis: Execution
time vs buffer size?

Make sure you
understand all
results!

© Gernot Heiser 2019 – CC BY 4.0

Loop and Timing Overhead
• Ensure measurement overhead does not affect results!
• Eliminate by measuring in tight loop, subtract timer cost
• Eliminate cache effects by warm-up loops

35 COMP9242 2025 T3 W07 Part 1: Performance

t0 = time();
for (i=0; i<MAX; i++) {asm(nop);} /* overhead*/
t1 = time();

for (i=0; i<10; i++) {asm(syscall);} /* warmup */

t2 = time();
for (i=0; i<MAX; i++) {asm(syscall);} /* measure */
t3 = time();
printf(“Cost is %dus\n”, (t3-t2-(t1-t0))*1000000/MAX);

Beware
compiler

optimisations!

See
“Methodology”

slide re stats

© Gernot Heiser 2019 – CC BY 4.0

Relative vs Absolute Data
From a real paper [Armand&Gien, IEEE CCNC’09]:
• No data other than this figure
• No figure caption
• Only explanation in text:

“The L4 overhead compared to VLX ranges
from a 2x to 20x factor depending on the Linux
system call benchmark”

• No definition of “overhead factor”
• No native Linux data

36 COMP9242 2025 T3 W07 Part 1: Performance

Linux on VLX

Linux on L4

Probably used default
L4 config, enables

debugging, profiling!

Benchmarking crime: Relative numbers only!

© Gernot Heiser 2019 – CC BY 4.0

Data Range

37 COMP9242 2025 T3 W07 Part 1: Performance

Example: Scaling database load

32-core
machine

Looking a bit further

Seems to
scale well?

Benchmarking crime: Selective data set hiding deficiencies!

© Gernot Heiser 2019 – CC BY 4.0

Benchmarking Ethics
Comparisons with prior work
• Sensible and necessary, but must be fair!

• Comparable setup/equipment
• Prior work might have different focus, must understand & acknowledge

• eg they optimised for multicore scalability, you for mobile-system energy
• Ensure you choose appropriate configuration
• Make sure you understand what’s going on!

38 COMP9242 2025 T3 W07 Part 1: Performance

Benchmarking crime: Unfair benchmarking of competitor!

© Gernot Heiser 2019 – CC BY 4.0

Other Ways of Cheating with Benchmarks
• Benchmark-specific optimisations

• Recognise particular benchmark, insert BM-specific optimised code
• Popular with compiler writers
• Pioneered for smartphone performance by Samsung:

https://www.androidauthority.com/samsung-geekbench-ban-3129230/

• Benchmarking simulated system
• … with simulation simplifications matching model assumptions

• Uniprocessor benchmarks to “measure” multicore scalability
• … by running multiple copies of benchmark on different cores

• CPU-intensive benchmark to “measure” networking
performance

39 COMP9242 2025 T3 W07 Part 1: Performance

These are simply lies, and I’ve seen them all!

https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/
https://www.androidauthority.com/samsung-geekbench-ban-3129230/

© Gernot Heiser 2019 – CC BY 4.0

Understanding Performance

40 COMP9242 2025 T3 W07 Part 1: Performance

© Gernot Heiser 2019 – CC BY 4.0

What is “Good” Performance?
• Easy if improving recognised state of the art

• E.g. improving best Linux performance (where optimised)

• Harder if no established best-of-class baseline:

• Evaluate best-of-breed system yourself
• Establish performance limits

• Theoretical optimal scenario
• Hardware-imposed performance limits

41 COMP9242 2025 T3 W07 Part 1: Performance

Remember: progressive
and conservative criteria!

Remember: BM ethics!

Most elegant,
but hardest!

© Gernot Heiser 2019 – CC BY 4.0

Real-World Example: Virtualisation Overhead
Symbian null-syscall microbenchmark:
• Native: 0.24µs, virtualized (on OKL4): 0.79µs

• 230% overhead

• ARM11 processor runs at 368 MHz:
• Native: 0.24µs = 93 cy
• Virtualized: 0.79µs = 292 cy
• Overhead: 0.55µs = 199 cy
• Cache-miss penalty ≈ 20 cy

• Model:
• native: 2 mode switches, 0 context switches, 1 × save+restore state
• virt.: 4 mode switches, 2 context switches, 3 × save+restore state

42 COMP9242 2025 T3 W07 Part 1: Performance

Good or
bad?

Expected
overhead?

© Gernot Heiser 2019 – CC BY 4.0

Performance Counters Are Your Friends!

43 COMP9242 2025 T3 W07 Part 1: Performance

Counter Native Virtualized Difference

Branch miss-pred 1 1 0
D-cache miss 0 0 0
I-cache miss 0 1 1
D-µTLB miss 0 0 0
I-µTLB miss 0 0 0
Main-TLB miss 0 0 0
Instructions 30 125 95
D-stall cycles 0 27 27
I-stall cycles 0 45 45

Total Cycles 93 292 199

Good or
bad?

© Gernot Heiser 2019 – CC BY 4.0

More of the Same

44 COMP9242 2025 T3 W07 Part 1: Performance

Benchmark Native Virtualized

Context switch [1/s] 615,046 444,504
Create/close [µs] 11 15
Suspend [10ns] 81 154

First step:
improve

representation!

Second step:
overheads in

appropriate units!

Benchmark Native Virt. Diff [µs]

Context switch [µs] 1.63 2.25 0.62

Create/close [µs] 11 15 4

Suspend [µs] 0.81 1.54 0.73

Benchmark Native Virt. Diff [µs] Diff [cy] # sysc Cy/sysc

Context switch [µs] 1.63 2.25 0.62 230 1 230

Create/close [µs] 11 15 4 1472 2 736

Suspend [µs] 0.81 1.54 0.73 269 1 269

Further Analysis shows
guest dis- & enables IRQs

22 times!

© Gernot Heiser 2019 – CC BY 4.0

And Another One…

45 COMP9242 2025 T3 W07 Part 1: Performance

Benchmark Native [µs] Virt. [µs] Overhead
TDes16_Num0 1.2900 1.2936 0.28%

TDes16_RadixHex1 0.7110 0.7129 0.27%
TDes16_RadixDecimal2 1.2338 1.2373 0.28%

TDes16_Num_RadixOctal3 0.6306 0.6324 0.28%
TDes16_Num_RadixBinary4 1.0088 1.0116 0.27%

TDesC16_Compare5 0.9621 0.9647 0.27%
TDesC16_CompareF7 1.9392 1.9444 0.27%

TdesC16_MatchF9 1.1060 1.1090 0.27%

Benchmark Native [µs] Virt. [µs] Overhead Per tick
TDes16_Num0 1.2900 1.2936 0.28% 2.8 µs

TDes16_RadixHex1 0.7110 0.7129 0.27% 2.7 µs
TDes16_RadixDecimal2 1.2338 1.2373 0.28% 2.8 µs

TDes16_Num_RadixOctal3 0.6306 0.6324 0.28% 2.8 µs
TDes16_Num_RadixBinary4 1.0088 1.0116 0.27% 2.7 µs

TDesC16_Compare5 0.9621 0.9647 0.27% 2.7 µs
TDesC16_CompareF7 1.9392 1.9444 0.27% 2.7 µs

TdesC16_MatchF9 1.1060 1.1090 0.27% 2.7 µs

Good or
bad?

Timer interrupt
virtualization overhead!

© Gernot Heiser 2019 – CC BY 4.0

Lessons Learned
• Ensure stable results

• Get small variances, investigate if they are not

• Have a model of what to expect
• Investigate if behaviour is different
• Unexplained effects are likely to indications of problems – don't ignore!

• Tools are your friends
• Performance counters
• Simulators
• Traces
• Spreadsheets

46 COMP9242 2025 T3 W07 Part 1: Performance

Annotated list of benchmarking crimes:
https://gernot-heiser.org/benchmarking-crimes.html

https://gernot-heiser.org/benchmarking-crimes.html
https://gernot-heiser.org/benchmarking-crimes.html
https://gernot-heiser.org/benchmarking-crimes.html
https://gernot-heiser.org/benchmarking-crimes.html
https://gernot-heiser.org/benchmarking-crimes.html

