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To give a complete rundown on the features and internals of Linux would
take a very very long time — it’s a large and complex operating system,
with many interesting features.
Instead, I’m going to give a bit of history of POSIX OSes leading up to
Linux, a (very brief) skim over the key abstractions and how they’re
implemented, and then talk about some things I’ve done over the last few
years to improve Linux scalability. I’ll also touch on Amdahl’s law and
Gunther’s more general ‘Universal Scalability Law’ in this section, and talk
about the way locking works for multi-processor support in the Linux kernel.
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A little bit of history

— MULTICS in the ’60s
— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD
— John Lions 1976–95
— Andrew Tanenbaum 1987
— Linus Torvalds 1991

2 Linux © Peter Chubb 2025, CC-BY-SA 4.0



The history of UNIX-like operating systems is a history of people being
dissatisfied with what they have and wanting to do something better. It
started when Ken Thompson got a bit burnt-out programming MULTICS
and wanted to port a computer game (Space Travel). He found a disused
PDP-7, and wrote an interactive operating system to run his game. The
main contribution at this point was the simple file-system abstraction. And
the key ingredients there were firstly that the OS did not interpret file
contents — an ordinary file is just an array of bytes. Semantics are
imposed by the user of the file. And secondly, a simple hierarchical naming
system that hid details of disc layout and disc volumes, and separated
names from file contents. The inode-based filesystem is the core of
POSIX-like OSes; it was sketched up over a lunchtime on a whiteboard by
Dennis Ritchie and Ken Thompson.
Other people found UNIX interesting enough to want to port it to other
systems, which led to the first major rewrite — from assembly to C. In some
ways UNIX was the first successfully portable OS.
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After Ritchie & Thompson (1974) was published, AT&T became aware of a
growing market for UNIX. They wanted to discourage it: it was common for
AT&T salesmen to say, ‘Here’s what you get: A whole lot of tapes, and an
invoice for $10 000’. Fortunately educational licences were (almost) free,
and universities around the world took up UNIX as the basis for teaching
and research.
John Lions and Ken Robinson here at UNSW read Ritchie & Thompson
(1974), and decided to try to use UNIX as a teaching tool. Ken sent off for
the tapes, the department put them on a PDP-11, and started exploring.
The licence that came with the tapes allowed disclosure of the source code
for ‘Education and Research’ — so John started his famous OS course,
which involved reading and commenting on the Edition 6 source code.
(It’s worth also looking at AUUGN 14(4)
https://www.tuhs.org/Archive/Documentation/AUUGN/
AUUGN-V14.4.pdf which was a special history issue that includes an
interview from Greg Rose, who was involved in implementing the first UNIX
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system at UNSW, and an article by Tony McGrath, who was involved in the
first port of UNIX at the University of Wollongong)
The University of California at Berkeley was another of those universities.
In 1977, Bill Joy (then a postgrad, later the co-founder of Sun
Microsystems) put together and released the first Berkeley Software
Distribution — in this instance, the main additions were a Pascal compiler
and Bill Joy’s ex editor (which later became vi). Later BSDs contained
contributed code from other universities, including UNSW. The BSD tapes
were freely shared between source licensees of AT&T’s UNIX.
In 1979, AT&T changed their source licence (it’s conjectured, in response
to the popularity of the Lions book), and future AT&T licensees were not
able to use the book legally any more. UNSW obtained an exemption of
some sort; but the upshot was that the Lions book was copied and copied
and studied around the world, samizdat. However, the licence change also
meant that an alternative was needed for OS courses.
Many universities stopped teaching OS at any depth. One standout was
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Andy Tanenbaum’s group in the Netherlands. He and his students wrote an
OS called ‘Minix’ which was (almost) system call compatible with Edition 7
UNIX, and ran on readily available PC hardware. Minix gained popularity
not only as a teaching tool but as a hobbyist almost ‘open source’ OS.
In 1991, Linus Torvalds decided to write his own OS — after all, how hard
could it be? — to fix what he saw as some of the shortcomings of Minix.
The rest is history.
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— Basic concepts well established
◦ User model
◦ Process model
◦ File system model
◦ IPC — pipes, MERT

— Additions:
◦ Paged virtual memory (3BSD, 1979)
◦ TCP/IP Networking (BSD 4.1, 1983)
◦ Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’, 1984)
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The UNIX core concepts have remained more-or-less the same since
Ritchie and Thompson published their CACM paper. The permissions
model, based on users and groups; and the process model — a single
thread of control in an address space — and the file system model have
remained the same. The IPC model (pipes, and the so called Sys V shared
memory, semaphores, and messages) (inherited from MERT, a different
real-time OS being developed in Bell Labs in the 70s) also is the same.
However there have been some significant additions.
The most important of these were Paged Virtual Memory (introduced when
UNIX was ported to the VAX), which also introduced the idea of
Memory-mapped files; TCP/IP networking, Graphical terminals, and
multiprocessing, in all variants: master-slave, SMP and NUMA. Most of
these improvements were from outside Bell Labs, and fed into AT&T’s
product via open-source-like patch-sharing.
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Interestingly, most of these ideas were already in MULTICS. The difference
is that in MULTICS they were designed in from the start (and delivered late)
as opposed to delivering something that worked early, and adding features
as they became desirable.
In the late 80s the core interfaces were standardised by the IEEE working
with USENIX, in the POSIX standards.
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As in any POSIX operating system, the basic idea is to abstract away
physical memory, processors and I/O devices (all of which can be arranged
in arbitrarily complex topologies in a modern system), and provide threads,
which are gathered into processes (a process is a group of threads sharing
an address space and a few other resources), that access files (a file is
something that can be read from or written to. Thus the file abstraction
incorporates most devices). There are some other features provided: the
OS tries to allocate resources according to some system-defined policies.
It enforces security (processes in general cannot see each others’ address
spaces, and files have owners). Unlike in a microkernel, some default
policy is embedded in the kernel; but the general principle is to provide
tools and mechanisms for an arbitrary range of policies.
Abstraction also occurs inside the kernel, to improve portability. Linux runs
on 22 different architectures, with multiple variants of each.
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Process model

— Root process (init)
— fork() creates (almost) exact copy

◦ Much is shared with parent — Copy-On-Write avoids overmuch copying
— exec() overwrites memory image from a file
— Allows a process to control what is shared
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The POSIX process model works by inheritance. At boot time, an initial
process (process 1) is hand-crafted and set running. It then sets up the
rest of the system in userspace.
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fork() and exec()

— A process can clone itself by calling fork().
— Most attributes copied:

◦ Address space (actually shared, marked copy-on-write)
◦ current directory, current root
◦ File descriptors
◦ permissions, etc.

— Some attributes shared:
◦ Memory segments marked MAP SHARED
◦ Open files
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First I want to review the UNIX process model. Processes clone
themselves by calling fork(). The only difference between the child and
parent process after a fork() is the return value from fork() — it is zero
in the child, and the value of the child’s process ID in the parent. Most
properties of the child are logical copies of the parent’s; but open files and
shared memory segments are shared between the child and the parent.
In particular, seek() operations by either parent or child will affect and be
seen by the other process.
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Each process has a file descriptor table. Logically this is an array indexed
by a small integer. Each entry in the array contains a flag (the
close-on-exec flag) and a pointer to an entry in an open file table.
When a process calls open(), the file descriptor table is scanned from 0,
and the index of the next available entry is returned. (In 5th edition UNIX
this was a linear scan of a fixed-size array; later Unices improved both the
data structure (to allow unlimited FDs) and the scanning (to replace O(n)
with a faster algorithm).
The pointer is instantiated to point to an open file descriptor which in turn
points to an in-kernel representation of an index node — an inode — which
describes where on disc the bits of the file can be found, and where in the
buffer cache can in memory bits be found. (Remember, this is only a logical
view; the implementation is a lot more complex.)
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A process can duplicate a file descriptor by calling dup() or dup2(). All
dup does is find the lowest-numbered empty slot in the file descriptor table,
and copy its target into it. All file descriptors that are dups share the open
file table entry, and so share the current position in the file for read and
write.
When a process fork()s, its file descriptor table is copied. Thus it too
shares its open file table entry with its parent, and its open files have the
same close-on-exec flags as those in its parent.
You can think of a file descriptor as a capability to an object. A file
descriptor can be created by any process that has the appropriate rights on
an object, and then can be passed around, either by inheritance, or
through interprocess communication (pipe() on System-V, UNIX-domain
sockets on other systems). The rights to the object can be dropped after
creating the file descriptor. Such capabilities cannot however be revoked.
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switch (kidpid = fork()) {
case 0: /* child */

close(0); close(1); close(2);
dup(infd); dup(outfd); dup(outfd);
execve("path/to/prog", argv, envp);
_exit(EXIT_FAILURE);

case -1:
/* handle error */

default:
waitpid(kidpid, &status, 0);

}

8 Linux © Peter Chubb 2025, CC-BY-SA 4.0



So a typical chunk of code to start a process looks something like this.
fork() returns 0 in the child, and the process id of the child in the parent.
The child process closes the three lowest-numbered file descriptors, then
calls dup() to populate them again from the file descriptors for input and
output. It then invokes execve(), one of a family of exec functions, to run
prog. One could alternatively use dup2(), which says which target file
descriptor to use, and closes it if it’s in use. Be careful of the calls to close
and dup as order is significant!
Some of the exec family functions do not pass the environment explicitly
(envp); these cause the child to inherit a copy of the parent’s environment.
Any file descriptors marked close on exec will be closed in the child after
the exec; any others will be shared.
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Other attributes of the process can also be changed (e.g., changing the
owner by setuid()). Most state-changing system calls operate on the
current process; the fork()/exec() model allows all these to be used
without having to either create a massively complex system call that
specifies everything about a new task (as VMS and systems derived from it
do) or having the locking complexity of being able to operate on a different
process.
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Standard File Descriptors

0 Standard Input
1 Standard Output
2 Standard Error

— Inherited from parent
— On login, all are set to controlling tty
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There are three file descriptors with conventional meanings. File descriptor
0 is the standard input file descriptor. Many command line utilities expect
their input on file descriptor 0.
File descriptor 1 is the standard output. Almost all command line utilities
output to file descriptor 1.
File descriptor 2 is the standard error output. Error messages are output on
this descriptor so that they don’t get mixed into the output stream. Almost
all command line utilities, and many graphical utilities, write error messages
to file descriptor 2.
As with all other file descriptors, these are inherited from the parent.
When you first log in, or when you start an X terminal, all three are set to
point to the controlling terminal for the login shell. When certain special
characters are typed (typically ˆC, ˆ\, and ˆZ), the controlling terminal’s
driver generates signals to the foreground process instead of passing
through the character.
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The problem with fork()

— Almost perfect in original system
◦ Implemented in a few lines of assembly
◦ Alowed re-use of system calls for changing state
◦ Fast for segment-style (not paged) MMU

— But:
◦ Address spaces now bigger and managed with pages

• Slow to copy page tables
◦ Multi-threading breaks semantics

• Child no longer an exact copy — only one thread fork()ed
• Much more per-process state, not all inheritable
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In the first Unix systems, the MMU used sets of base limit registers to
create segements. Because the 16-bit address space was small, and main
memory was typically at most 256k, swapping of entire programs to
secondary storage was (for the time) fast, and common. The initial
implementation of fork() just caused a swapped copy to be made,
adjusted the return value to 0 and continued.
Originally, on 16-bit machines with 16-bit words, the entire address space
was copied. This took only a few hundreds of cycles. When 32-bit systems
came along, along with bloat from added layers of abstraction, shared
libraries, etc., it started to take too long. Two competing mechanisms were
implemented: in UCB-derived kernels, vfork() was implemented, that
copied the process control information, but shared the address space. It
was expected that the only things a process would (usually) do between
vfork() and calling either exit() or exec() was fiddle around with file
descriptors. The parent was paused after vfork() until the child called
exit() or exec()
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AT&T kernels instead implemented copy-on-write for the address spaces.
Only pagetable information was copied, a much smaller job than copying
an entire address spce. All pages in both parent and child were then set
read-only; the first time a write occurred, the page was cloned and made
writeable.
But nowadays, processes have grown huge. A significant amount of time is
spent copying page tables on fork(); for the common case where there
are a few system calls then exec() replaces them all this is mostly wasted
work. What’s more, as multicore systems are now common, so are
multi-threaded processes. Only one thread is copied into the child; but the
states of all locks are inherited because they’re just values in the (copied)
address space.
In addition, modern POSIX proceses have many more attributes: memory
locks, SIGIO, containerisation state, sockets, message queues, timers,
etc., etc. Some of these sometimes make sense to inherit, but many do
not. So the simple fork+exec model doesn’t work as well as it used to.

10 Linux © Peter Chubb 2025, CC-BY-SA 4.0



Because of the constrained semantics of vfork() modern POSIX
systems use only the Copy-On-Write fork— if vfork() is provided, it is an
alias for fork(). However, even COW fork() on 64-bit systems is
beginning to be a bottleneck, so maybe vfork() will become popular
again. And on multithreaded programs, fork() itself has restrictions: only
async-signal-safe functions can be called between fork() and exec().
Recent Linux kernels (in the last ten years) have had a clone() system
call as well, that allows fairly fine grain control over what is inherited. In
particular, by inheriting (rather than marking as COW) the address space,
one can implement multiple threads in one process.
And there is a posix spawn() call nowadays for creating and initialising a
process. It is harder to use than fork(), in my opinion, and its current
implementation works by calling fork() and exec() so is no faster.
See Baumann et al. (2019) for a nice rant on fork().
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Permissions Model

— Processes are proxies for authenticated real people
— UID, GID, Other — rwx

— Mainly for File access.
— A process can signal any other process with the same UID
— A process with UID 0 can signal any process, operate on any file∗

* Conditions apply
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The first use of UNIX was to play a video game, single user. It’s amazing
that any permission model at all was in the filesystem — MSDOS and
similar never had any. UNIX was very early on used at AT&T corporate for
document processing. The permissions model fits well for mostly
cooperative work: people who collaborate are in the same group, and so
can read/write files that’re marked group read/write. Each process acts as
a proxy for its (real person) owner.
One user id is special: uid 0 is ‘root’, the super-user. Root can do (almost)
anything. The one exception is it cannot act on files securely exported via
NFS — the file server does not trust root on any client; accesses by root
are mapped onto a special user id, ’nobody’ that has no privilege.
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Some things have to be done at an elevated privilege by ordinary users.
For example, in the early UNIX, mkdir() was not a system call. A
directory was just a file (like any other) whose structure was understood by
the kernel. So setting the ’This is a directory’ bit in an inode was a
privileged operation and writing directories was privileged. A user-mode
helper lived in /etc — but it had to run at an elevated privilege. Enter the
’setuid’ permission bit: when an executable in a file with ’setuid’ is execed,
its UID is set to that of the owner of the file. Of course, this only works if the
code in that executable is trustworthy. But the early setuid programs were
very simple and easy to see they were correct.
The notion of groups has changed since the original. It used to be that a
process was only a member of one group at a time; the newgrp() system
call could be used to move to any group the UID was marked as member
of.
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The BSD UNIX variants introduced the idea that a process could be in a set
of groups at once, and apply group permission to files in accordance with
any of the groups a process is in.
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File model

— Separation of names from content.
— ‘regular’ files ‘just bytes’ → structure/meaning supplied by userspace
— Devices represented by files.
— Directories map names to index node indices (inums)
— Simple permissions model based on who you are.
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The file model is very simple. In operating systems before UNIX, the OS
was expected to understand the structure of all kinds of files: typically files
were organised as fixed (or variable) length records with one or more
indices into them. One very common organisation was essentially an
image of a punched-card deck! By contrast, UNIX regular files are just a
collection of bytes, indexed from zero.
Originally in UNIX directories were also just files, albeit with a structure
understood by the kernel. To give more flexibility, they are now opaque to
userspace, and managed by each individual filesystem. The added
flexibility makes directory operations more expensive, but allows Linux to
deal with over thirty different filesystems, with varying naming models and
on-disk structures.
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The diagram shows how the kernel finds a file.
If it gets a file name that starts with a slash (/), it starts at the root of the
directory hierarchy for the current process (otherwise it starts at the current
process’s current directory). The first link in the pathname is extracted
("bin") by calling into the filesystem code, and searched for in that root
directory.
That yields an inode number, that can be used to find the contents of the
directory. The next pathname component is then extracted from the name
and looked up. In this case, that’s the end, and inode 301 contains the
metadata for "/bin/ls".
Every process has a ‘current root directory’ — the privileged chroot()
system call allows a process to change its root directory to any directory it
can see. This is a necessary feature to provide containers, as it provides
namespace isolation for files.
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namei

— translate name → inode
— abstracted per filesystem in VFS layer
— Can be slow: extensive use of caches to speed it up dentry cache —

becomes SMP bottleneck
— hide filesystem and device boundaries
— walks pathname, translating symbolic links
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Linux has many different filesystem types. Each has its own directory
layout. Pathname lookup is abstracted in the Virtual FileSystem (VFS)
layer. Traditionally, looking up the name to inode (namei) mapping has
been slow (done naively, it involves reading a block from the disk for each
pathname component); Linux currently uses a cache to speed up lookup.
This cache in turn has become a scalability bottleneck for large SMP
systems.
At any point in the hierarchy a new filesystem can be grafted in using
mount; namei() hides these boundaries from the rest of the system.
Symbolic links haven’t been mentioned yet. A symbolic link is a special file
that holds the name of another file. When the kernel encounters one in a
search, it replaces the name it’s parsing with the contents of the symbolic
link. Some filesystems encode the symbolic name into the directory entry,
rather than having a separate file; this speeds lookup.
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Also, because of changes in the way that pathname lookups happen, there
is no longer a function called namei(); however the files containing the
path lookup are still called namei.[ch].
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Evolution
KISS

— Simplest possible algorithm used at first
◦ Easy to show correctness
◦ Fast to implement

— As drawbacks and bottlenecks are found, replace with faster/more
scalable alternatives
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This leads to a general principle: start with KISS. Many of the utilities that
are common on UNIX started out as much simpler programs wrapped in
shell scripts; as people elaborated the scripts to provide more functionality,
they became less maintainable or too slow, and eventually were refactored
into a compiled language.
(Multics used the opposite approach, with around 3000 pages of complex
design documents developed and reviewed before a line of code was
written. Many of the early design decisions had to be reversed when
hardware became available and implementation started).

16 Linux © Peter Chubb 2025, CC-BY-SA 4.0



Linux C Dialect

— Extra keywords:
◦ Section IDs: init, exit, percpu etc
◦ Info Taint annotation user, rcu, kernel, iomem
◦ Locking annotations acquires(X), releases(x)
◦ extra typechecking (endian portability) bitwise
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The kernel is written in C, but with a few extras. Code and data marked
init is used only during initialisation, either at boot time, or at module

insertion time. After it has finished, it can be (and is) freed.
Code and data marked exit is used only at module removal time. If it’s
for a built-in section, it can be discarded at link time. The build system
checks for cross-section pointers and warns about them.
percpu data is either unique to each processor, or replicated.

The kernel build system can do some fairly rudimentary static analysis to
ensure that pointers passed from userspace are always checked before
use, and that pointers into kernel space are not passed to user space. This
relies on such pointers being declared with user or kernel. It can also
check that variables that are intended as fixed shape bitwise entities are
always used that way—useful for bi-endian architectures like ARM, and for
ensuring that appropriate conversions happen between on-disk, or
on-the-wire, and host endianness.
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— Extra iterators
◦ type name foreach()

— Extra O-O accessors
◦ container of()

— Macros to register Object initialisers
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Object-oriented techniques are used throughout the kernel, but
implemented in C.
Almost every aggregate data structure, from lists through trees to page
tables has a defined type-safe iterator.
And there’s a new built-in, container of that, given a struct pr union
type and a member, returns a typed pointer to its enclosing object.
In addition there is a family of macros to register initialisation functions.
These are ordered (early, console, devices, then general), and will run in
parallel across all available processors within each class.
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— Massive use of inline functions
— Quite a big use of CPP macros
— Little #ifdef use in code: rely on optimiser to elide dead code.
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The kernel is written in a style that attempts not to use #ifdef in C files.
Instead, feature test constants are defined that evaluate to zero if the
feature is not desired; the GCC optimiser will then eliminate any resulting
dead code.
Because the kernel is huge, but not all files are included in every build,
there has to be a way to register initialisation functions for the various
components. The Linux kernel is quite object-oriented internally; but
because it runs on the bare metal, functions that would usually be provided
by language support have to be provided by the OS, or open coded. The
container of() macro is a way to access inheritance; and the
xxx initcall() macros are a way to handle initialisation. Obviously,
initialisation has to be ordered carefully; but after interrupts are set up, all
the processors are on line, and the system has a console, the remaining
device initialisers are run; then all the general initialisers.
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Internal Abstractions

— MMU
— Memory consistency model
— Device model

19 Linux © Peter Chubb 2025, CC-BY-SA 4.0



Linux has many internal abstractions for portability. The two biggest are the
MMU, where differences in page table layout are largely hidden from most
of the code, using per-architecture macros to walk and update them; and
the memory consistency model that the Linux kernel provides.
The Linux kernel runs on architectures with very different underlying
consistency models, the weakest being DEC Alpha, the strongest X86.
Code that runs on all of these is expected to include memory barriers, and
acquire/release instructions, that allow it to work correctly on all
architectures. Linux thus provides its own memory consistency model. It’s
worth taking a look in tools/memory-model in the kernel source, to see
an executable version of the model, that allows one to check if any
particular outcome can occur, given a sequence of loads, stores, and
memory-consistency-affecting operations (such as atomic operations,
fences, barriers, aquire/release macros, etc).
For more detail on memory models, see McKenney (2010).
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I’ll cover the device model later. Essentially, it treats all devices as being
available via a run-time bus enumeration even where the underlying buses
are not enumerable.
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Scheduling
Goals

— dispatch O(1) in number of runnable processes, number of processors
◦ good uniprocessor performance

— ‘fair’
— Good interactive response
— topology-aware
— O(log n) in number of runnable processes for scheduling.
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Because Linux runs on machines with up to 4096 processors, any
scheduler must be scalable, and preferably O(1) in the number of runnable
processes. It should also be ‘fair’ — by which I mean that processes with
similar priority should get similar amounts of time, and no process should
be starved. In addition, it should not load excessively a low-powered
system with only a single processor (for example, in your wireless access
point); and, at a higher level, applications should not be able to get more
CPU by spawning more threads/processes.
Because Linux is used by many for desktop/laptop use, it should give good
interactivity, and respond ‘snappily’ to mouse/keyboard even if that
compromises absolute throughput.
And finally, the scheduler should be aware of the caching, packaging, and
memory topology of the system, so it when it migrates tasks, it can keep
them close to the memory they use, and also attempt to save power by
keeping whole packages idle where possible.
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— Changes from time to time.
— Currently ‘CFS’ by Ingo Molnar.
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Linux has had several different schedulers since it was first released. The
first was a very simple scheduler similar to the MINIX scheduler. As Linux
was deployed to larger, shared, systems it was found to have poor fairness,
so a very simple dual-entitlement scheduler was created.
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Dual Entitlement Scheduler

0.5 0.7 0.1

0 0

Expired

Running

22 Linux © Peter Chubb 2025, CC-BY-SA 4.0



The idea here was that there were two queues: a deserving queue, and an
undeserving queue. New and freshly woken processes were given a
timeslice based on their ‘nice’ value. When a process’s timeslice was all
used up, it was moved to the ‘undeserving’ queue. When the ‘deserving’
queue was empty, a new timeslice was given to each runnable process,
and the queues were swapped. (A very similar scheduler, but using a
weight tree to distribute time slice, was used in Irix 6)
The main problem with this approach was that it was O(n) in the number of
runnable and running processes—and on the big iron with 1024 or more
processors, that was too slow. So it was replaced in the early 2.6 kernels
with an O(1) scheduler, that was replaced in turn (when it gave poor
interactive performance on small machines) with the current so-called
‘Completely Fair Scheduler’
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CFS

1. Keep tasks ordered by effective CPU runtime weighted by nice in
red-black tree

2. Always run left-most task.
Devil’s in the details:

— Avoiding overflow
— Keeping recent history
— multiprocessor locality
— handling too-many threads
— Sleeping tasks
— Group hierarchy
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The scheduler works by keeping track of run time for each task. Assuming
all tasks are cpu bound and have equal priority, then all should run at the
same rate. On a sufficiently parallel machine, they would always have
equal runtime.
The scheduler keeps a period during which all runnable tasks should get a
go on the processor — this period is by default 6ms scaled by the log2 of
the number of available processors. Within a period, each task gets a time
quantum (the period divided by the number of tasks) weighted by its nice.
However there is a minimum quantum; if the machine is overloaded, the
period is stretched so that the minimum quantum is 0.75ms.
To avoid overflow, the scheduler tracks ‘virtual runtime’ (vruntime)
instead of actual; virtual runtime is normalised to the number of running
tasks. It is also adjusted regularly to avoid overflow (this adjustment means
the algorithm isn’t totally fair: CPU-bound processes end up being
penalised with respect to I/O-bound processes, but this is probably what is
wanted for good interactivity)
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Tasks are kept in vruntime order in a red-black tree. The leftmost node
then has the least vruntime so far; newly activated entities also go
towards the left — short sleeps (less than one period) don’t affect
vruntime; but after awaking from a long sleep, the vruntime is set to the
current minimum vruntime if that is greater than the task’s current
vruntime. Depending on how the scheduler has been configured, the new
task will be scheduled either very soon, or at the end of the current period.
In any case, the scheduler forces child processes to run before their
parents immediately after a fork(), to minimise the amount of page
duplication for copy-on-write.
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Your typical system has hardware threads as its bottom layer. These share
functional units, and all cache levels. Hardware threads share a core, and
there can be more than one core in a package or socket. Depending on the
architecture, cores within a socket may share memory directly, or may be
connected via separate memory buses to different regions of physical
memory. Typically, separate sockets will connect to different regions of
memory.
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— Best to reschedule on same
processor (don’t move cache
footprint, keep memory close)

◦ Otherwise schedule on a ‘nearby’
processor

— Try to keep whole sockets idle (can
power them off)

— Somehow identify cooperating
threads, co-schedule ‘close by’?
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The rest of the complications in the scheduler are for hierarchical
group-scheduling, and for coping with non-uniform processor topology.
I’m not going to go into group scheduling here (even though it’s pretty
neat), but its aim is to allow schedulable entities (at the lowest level, tasks
or threads) to be gathered together into higher level entities according to
credentials, or cgroup, or whatever, and then schedule those entities
against each other.
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Locality, however, is really important. You’ll recall that in a NUMA system,
physical memory is spread so that some is local to any particular
processor, and other memory can be a long way off (in terms of access
time). To get good performance, you want as much as possible of a
process’s working set in local memory. Similarly, even in an SMP situation,
if a process’s working set is still (partly) in-cache it should be run on a
processor that shares that cache. It turns out from some recent work
(Lepers et al. (2015)) that bandwidth between nodes should also be taken
into account for optimal performance, but this hasn’t yet made it into the
Linux kernel.
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Linux currently uses a ‘first touch’ policy: the first processor to write to a
page causes the frame for the page to be allocated from that processor’s
nearest memory. On fork(), the new process’s memory is allocated from
the same node as its parent, and it runs on the same node (although not
necessarily on the same core). exec() doesn’t change this (although
there is an API to allow a process to migrate before calling exec(). So
how do processors other than the boot processor ever get to run anything?
The answer is in runqueue balancing.
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— One queue per processor (or hyperthread)
— Processors in hierarchical ‘domains’
— Load balancing per-domain, bottom up
— Aims to keep whole domains idle if possible (power savings)
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There is one runqueue for each lowest schedulable entity (hyperthread or
processor). These are grouped into ‘domains’. Each domain has its ‘load’
updated at regular intervals (where load is essentially (sum of
vruntime)/number of processors).
One of the idle processors is nominated the ‘idle load balancer’. When a
processor notices that rebalancing is needed (for example, because it is
overloaded), it kicks the idle load balancer. The idle load balancer finds the
busiest domains, and tries to move tasks around to fill up idle processors
near the busiest domain. It needs more imbalance to move a task to a
completely idle node than to a partly idle node.
Solving this problem perfectly is NP-hard — it’s equivalent to the
bin-packing problem — but the heuristic approach seems to work well
enough most of the time.
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Some of Linux’s memory handling is to account for peculiarities in the PC
architecture. To make things simple, as much memory as possible is
mapped at a fixed offset, at least on X86-derived processors. Because of
legacy devices that could only do DMA to the lowest 16M or memory, the
lowest 16M are handled specially as ZONE DMA — drivers for devices that
need memory in that range can request it. (Some architectures have no
physical memory in that range; either they have IOMMUs or they do not
support such devices).
The Linux kernel maps itself in, and has access to all of user virtual
memory. In addition, as much physical memory as possible is mapped in
with a simple offset. This allows easy access for in-kernel use of physical
memory (e.g., for page tables or DMA buffers).
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Any physical memory that cannot be mapped (e.g., because there is more
than 4G of RAM on a 32-bit machine) is termed ‘Highmem’ and is mapped
in on an ad-hoc basis. It is possible to compile the kernel with no ‘Normal’
memory, to allow all of the 4G 32-bit virtual address space to be allocated
to userspace, but this comes with a performance hit.
The boundary between user and kernel can be set at configuration time; for
64-bit x86 64 systems it’s at 263 – i.e., all addresses with the highest bit set
are for the kernel.
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— Direct mapped pages become logical addresses
◦ pa() and va() convert physical to virtual for these

— small memory systems have all memory as logical
— More memory: change kernel to refer to memory by struct page
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Direct mapped pages can be referred to by logical addresses; there are a
simple pair of macros for converting between physical and logical
addresses for these. Anything not mapped must be referred to by a
struct page and an offset within the page. There is a struct page for
every physical memory frame (and for some frames that aren’t memory,
such as MMIO regions).

29 Linux © Peter Chubb 2025, CC-BY-SA 4.0



— Every frame has a struct page (up to 10 words)
— Track:

◦ flags
◦ backing address space
◦ offset within mapping or freelist pointer
◦ Reference counts
◦ Kernel virtual address (if mapped)
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A struct page lives on one of several lists, and is in an array from which
the physical address of the frame can be calculated.
Because there has to be a struct page for every frame, there’s
considerable effort put into keeping them small. Without debugging
options, for most architectures they will be 6 words long; with 4k pages and
64bit words that’s a little over 1% of physical memory in this table.
A frame can be on a free list. If it is not, it will be in an active list, which is
meant to give an approximation to LRU for the frames. The same pointers
are overloaded for keeping track of compound frames (for huge pages).
Free lists are organised per memory domain on NUMA machines, using a
buddy algorithm to merge pages into superpages as necessary.
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Some of the structures for managing memory are shown in the frame.
What’s not visible here are the structure for managing swapping out, NUMA
locality, huge pages, and transparent superpages.
There is one task struct for each thread of control. Each points to an
mm struct that describes the address space the thread runs in.
Processes can be multi-threaded; one, the first to have been created, is the
thread group leader, and is pointed to by the mm struct. The struct
mm struct also has a pointer to the page table for this process (the shape
of which is carefully abstracted out so that access to it is almost
architecture-independent, but it always has to be a tree to use the standard
abstractions), a set of mappings held both in a red-black tree (for rapid
access to the mapping for any address) and in a double linked list (for
traversing the space).
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Each VMA (virtual memory area, or struct vm area struct) describes
a contiguous mapped area of virtual memory, where each page within that
area is backed (again contiguously) by the same object, and has the same
permissions and flags. You could think of each mmap() call creating a new
VMA. Any munmap() calls that split a mapping, or mprotect() calls that
change part of a mapping can also create new VMAs.
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Memory Management
Address Space

— Misnamed: means collection of pages mapped from the same object
— Tracks inode mapped from, radix tree of pages in mapping
— Has ops (from file system or swap manager) to:

dirty mark a page as dirty
readpages populate frames from backing store
writepages Clean pages — make backing store the same as

in-memory copy
migratepage Move pages between NUMA nodes
Others. . . And other housekeeping
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Each VMA points into a struct address space which represents a
mappable object. An address space also tracks which pages in the page
cache belong to this object.
Most pages will either be backed by a file, or will be anonymous memory.
Anonymous memory is either unbacked, or is backed by one of a number
of swap areas.
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Page fault time

— Special case in-kernel faults
— Find the VMA for the address

◦ segfault if not found (unmapped area)
— If it’s a stack, extend it.
— Otherwise:

1. Check permissions, SIG SEGV if bad
2. Call handle mm fault():

• walk page table to find entry (populate higher levels if nec. until leaf found)
• call handle pte fault()
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When a fault happens, the kernel has to work out whether this is a normal
fault (where the page table entry just isn’t instantiated yet) or is a
userspace problem. Kernel faults are rare: they should occur only in a few
special cases, and when accessing user virtual memory. They are handled
specially.
The kernel first looks up the VMA in the red-black tree. If there’s no VMA,
then this is an unmapped area, and should generate a segmentation
violation, unless it’s next to a stack segment, and the faulting address is at
or near the current stack pointer, in which case the stack needs to be
extended.
If it finds the VMA, then it checks that the attempted operation is allowed —
for example, writes to a read-only operation will cause a Segmentation
Violation at this stage. If everything’s OK, the code invokes
handle mm fault() which walks the page table in an
architecture-agnostic way, populating ‘middle’ directories on the way to the
leaf. Transparent SuperPages are also handled on the way down.
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Finally handle pte fault() is called to handle the fault, now it’s
established that there really is a fault to handle.
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Page Fault Time
handle pte fault()

Depending on PTE status, can
— provide an anonymous page
— do copy-on-write processing
— reinstantiate PTE from page cache
— initiate a read from backing store.

and if necessary flushes the TLB.
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There are a number of different states the pte can be in. Each PTE holds
flags that describe the state.
The simplest case is if the PTE is zero — it has only just been instantiated.
In that case if the VMA has a fault handler, it is called via
do linear fault() to instantiate the PTE. Otherwise an anonymous
page is assigned to the PTE.
If this is an attempted write to a frame marked copy-on-write, a new
anonymous page is allocated and copied to.
If the page is already present in the page cache, the PTE can just be
reinstantiated – a ‘minor’ fault. Otherwise the VMA-specific fault handler
reads the page first — a ‘major’ fault.
If this is the first write to an otherwise clean page, its corresponding
struct page is marked dirty, and a call is made into the writeback
system — Linux tries to have no dirty page older than 30 seconds (tunable)
in the cache.
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Driver Interface

Three kinds of device:
A enumerable-bus device
B Non-enumerable-bus device
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There are essentially three kinds of devices that can be attached to a
computer system:

A Devices on a bus such as PCI or USB have unique identifiers that can
be used at run-time to hook up a driver to the device. It is possible to
enumerate all devices on the bus, and find out what’s attached.

B Devices on a bus such as SPI have no standard way to query what
they are. The operating system needs to be told what’s available and
which pins to use to talk to them.
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Driver Interface: Device Discovery
Enumerable buses

static DEFINE PCI DEVICE TABLE(cp pci tbl) = {
{ PCI DEVICE(PCI VENDOR ID REALTEK,

PCI DEVICE ID REALTEK 8139), },
{ PCI DEVICE(PCI VENDOR ID TTTECH,

PCI DEVICE ID TTTECH MC322), },
{ },

};
MODULE DEVICE TABLE(pci, cp pci tbl);

35 Linux © Peter Chubb 2025, CC-BY-SA 4.0



Each driver for a bus that identifies devices by some kind of ID declares a
table of IDs of devices it can driver. You can also specify device IDs to bind
against as a module parameter.
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Driver Interface
Driver interface

init called to register driver
exit called to deregister driver, at module unload time

probe() called when bus-id matches; returns 0 if driver claims device
open, close, etc as necessary for driver class
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All drivers have an initialisation function, that, even if it does nothing else,
calls a bus register driver() function to tell the bus subsystem which
devices this driver can manage, and to provide a vector of functions.
Most drivers also have an exit() function, that deregisters the driver.
When the bus is scanned (either at boot time, or in response to a hot-plug
event), these tables are looked up, and the ‘probe’ routine for each driver
that has registered interest is called.
The first whose probe is successful is bound to the device. You can see the
bindings in /sys
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Device Tree

— Describe board+peripherals
◦ replaces ACPI on embedded systems

— Names in device tree trigger driver instantiation
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Current kernels have moved away from putting platform devices into C
code, in favour of using a flattened device tree, which describes the
topology of buses, devices, clocks and regulators, so a single kernel can
run on more than one board.
Each node in a device tree (which you can find in
arch/arm/boot/dts/* for ARM processors) contains a ‘compatible’
field that says which driver to invoke, and other (node-specific) entries that
give the addresses, interrupts, clocks, etc., necessary to configure and use
the device the node represents.
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uart_A: serial@84c0
compatible = "amlogic,meson6-uart", "amlogic,meson-uart";
reg = <0x84c0 0x18>;
interrupts = <GIC_SPI 26 IRQ_TYPE_EDGE_RISING>;
status = "okay";

;
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This example from the Odroid C2’s device tree shows the main bits. The
compatible line both triggers the probe routine for drivers that register
for it, and is searched for by drivers to find the rest of the information. The
reg line gives the address and size of the registers for the UART. And so
on. This allows a single kernel to be compiled for many different boards
with the same base architecture.
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Debugging device discovery

Add debug initcalls to Linux boot args
— traces all calls to init() functions at boot time.

(See Documentation/admin-guide/kernel-parameters.txt in
the linux kernel source for other useful boot args)
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To be sure your init() function is being called, you can use
debug initcalls on the kernel command line to trace all calls to
init() routines. This can be helpful if the kernel is hanging during boot.
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Containers

— Namespace isolation
— Plus Memory and CPU isolation
— Plus other resources

In hierarchy of control groups
Used to implement, e.g., Docker
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chroot, which has been present in UNIX kernels since edition 7, and in
every Linux release, provides filesystem namespace isolation. Work
derived from UNSW and USyd’s fair share scheduler and Limits system
was sold to Sun in 2000, and was developed to provide ‘zones’. Each zone
could be assigned a proportion of the CPU and memory, and a part of the
process ID and user ID namespaces, in a way that was mostly transparent
to processes running in the zone.
In Linux kernel 3.8, the same kind of thing was implemented (the actual
implementation was independent), to provide Linux Containers.
Controllers can be configured separately for various resources, including
but not limited to, CPU, memory, user ID, socket namespace, and chroot
used for filesystem namespace. These have control files mounted in a
hierarchy under /sys/fs/cgroup, which can be manipulated directly; but
it is generally better to use either lxc, libvirt, or Docker as middleware
to manipulate more than one controller at a time.
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On a single socket system with a small NUMA factor, Linux containers
provide reasonable isolation at low overhead. Where there is significant
asymmetry in the NUMA topology, or where the NUMA factor is large,
containers can fail to isolate because of contention on communications
channels it doesn’t control (see Lepers et al. (2015) for details).
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Summary

— I’ve told you status today
◦ Next week it may be different

— I’ve simplified a lot. There are many hairy details

41 Linux © Peter Chubb 2025, CC-BY-SA 4.0



The linux kernel keeps changing really fast. However, core abstractions like
the ones mentioned have been reasonably stable for the last few years:
churn is mostly in new drivers, and new features (like containerisation and
RISC-V support)

42 Linux © Peter Chubb 2025, CC-BY-SA 4.0



Scalability
The Multiprocessor Effect

— Some fraction of the system’s cycles are not available for application
work:

◦ Operating System Code Paths
◦ Inter-Cache Coherency traffic
◦ Memory Bus contention
◦ Lock synchronisation
◦ I/O serialisation
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We’ve seen that because of locking and other issues, some portion of the
multiprocessor’s cycles are not available for useful work. In addition, some
part of any workload is usually unavoidably serial.
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If a process can be split such that σ of
the running time cannot be sped up,
but the rest is sped up by running on
p processors, then overall speedup is

p
1 + σ(p − 1)

T(1- σ ) Tσ

Tσ

T(1- σ )

T(1- σ )

T(1- σ )
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It’s fairly easy to derive Amdahl’s law: perfect speedup for p processors
would be p (running on two processors is twice as fast, takes half the time,
than running on one processor).
The time taken for the workload to run on p processors if it took 1 unit of
time on 1 processor is σ + (1 − σ)/p. Speedup is then 1/(σ + (1 − σ)/p)
which, multiplying by p/p gives p/(pσ + 1 − σ), or p/(1 + σ(p − 1))
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Scalability
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The general scalability curve looks something like the one in this frame.
The Y-axis is throughput, the X-axis, applied load. Under low loads, where
there is no bottleneck, throughput is determined solely by the load—each
job is processed as it arrives, and the server is idle for some of the time.
Latency for each job is the time to do the job.
As the load increases, the line starts to curve. At this point, some jobs are
arriving before the previous one is finished: there is queueing in the
system. Latency for each job is the time spent queued, plus the time to do
the job.
When the system becomes overloaded, the curve flattens out. At this point,
throughput is determined by the capacity of the system; average latency
becomes infinite (because jobs cannot be processed as fast as they arrive,
so the queue grows longer and longer), and the bottleneck resource is
100% utilised.
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When you add more resources, you want the throughput to go up.
Unfortunately, because of various effects we’ll talk about later that doesn’t
always happen...
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Scalability
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This graph shows the latency ‘hockey-stick’ curve. Latency is determined
by service time in the left-hand flat part of the curve, and by
service+queueing time in the upward sloping right-hand side.
When the system is totally overloaded, the average latency is infinite.
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Scalability
Gunther’s law

C(N) =
N

1 + α(N − 1) + βN(N − 1)

where:
N is demand
α is the amount of serialisation: represents Amdahl’s law
β is the coherency delay in the system.
C is Capacity or Throughput
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Gunther (2002) captured this in his ‘Universal Scalability Law’, which is a
closed-form solution to the machine-shop-repairman queueing problem.
It has two parameters, α which is the amount of non-scalable work, and
beta which is to account for the degradation often seen in
system-performance graphs, because of cross-system communication
(‘coherency’ or ‘contention’, depending on the system).
The independent variable N can represent applied load, or number of
logic-units (if the work per logic-unit is kept constant).
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Here are some examples. If α and β are both zero, the system scales
perfectly—throughput is proportional to load (or to processors in the
system).
If α is slightly positive it indicates that part of the workload is not scalable.
Hence the curve plateaus to the right. Another way of thinking about this is
that some (shared) resource is approaching 100% utilisation.
If in addition β is slightly positive, it implies that some resource is
contended: for example, preliminary processing of new jobs steals time
from the main task that finishes the jobs.
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Scalability
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You can think of the system as in these diagrams. The second diagram has
an additional input queue; the same servers service both queues, so time
spent serving the input queue is stolen from time servicing the main queue.
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Scalability
Real examples
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These graphs are courtesy of Etienne Le Sueur, Adrian Danis, and the
Rapilog team. This is a throughput graph for TPC-C on an 8-way
multiprocessor using the ext3 filesystem with a single disk spindle. As you
can see, β > 0, indicating coherency delay as a major performance issue.
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Using R to fit the scalability curve, we get β = 0.017, α = 0.342 — you can
see the fit isn’t perfect, so fixing the obvious coherency issue isn’t going to
fix the scalability entirely.
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Moving the database log to a separate filesystem shows a much higher
peak, but still shows a β > 0. There is still coherency delay in the system,
probably the file-system log. From other work I’ve done, I know that ext3’s
log becomes a serialisation bottleneck on a busy filesystem with more than
a few cores — switching to XFS (which scales better) or ext2 (which has no
log) would be the next step to try.
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Scalability
Another example
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This shows the reaim-7 benchmark running on various numbers of cores
on an HP 12-way Itanium system. As you can see, the 12-way line falls
below the 8-way line — α must be greater than zero. So we need to look
for queuing in the system somewhere.
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SPINLOCKS HOLD WAIT
UTIL CON MEAN( MAX ) MEAN( MAX )(% CPU) TOTAL NOWAIT SPIN RJECT NAME
72.3% 13.1% 0.5us(9.5us) 29us( 20ms)(42.5%) 50542055 86.9% 13.1% 0% find lock page+0x30
0.01% 85.3% 1.7us(6.2us) 46us(4016us)(0.01%)1113 14.7% 85.3% 0% find lock page+0x130
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Lockmetering shows that a single spinlock in find lock page() is the
problem:
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struct page *find lock page(struct address space *mapping,
unsigned long offset)

{
struct page *page;
spin lock irq(&mapping->tree lock);

repeat:
page = radix tree lookup(&mapping->page tree, offset);
if (page) {

page cache get(page);
if (TestSetPageLocked(page)) {

spin unlock irq(&mapping->tree lock);
lock page(page);
spin lock irq(&mapping->tree lock);

. . .
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So replace the spinlock with a rwlock, and bingo:
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The scalability is much much better. Not only can we now extend to 16
processors, the raw performance is an order-of-magnitude better even on
single core.
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Tackling scalability problems

— Find the bottleneck
◦ not always easy

— fix or work around it
◦ not always easy

— check performance doesn’t suffer too much on the low end.
— Experiment with different algorithms, parameters
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Fixing a performance problem for your system can break someone else’s
system. In particular, algorithms that have good worst-case performance
on large systems may have poorer performance on small systems than
algorithms that do not scale. The holy grail is to find ways that work well for
two processor and two thousand processor systems.
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— Each solved problem uncovers
another

— Fixing performance for one
workload can worsen another

— Performance problems can
make you cry

58 Linux © Peter Chubb 2025, CC-BY-SA 4.0



Performance and scalability work is like peeling an onion. Solving one
bottleneck just moves the overall problem to another bottleneck.
Sometimes, the new bottleneck can be worse than the one fixed.
Just like an onion, performance problems can make you cry.
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Doing without locks
Avoiding Serialisation

— Lock-free algorithms
— Allow safe concurrent access without excessive serialisation
— Many techniques. We cover:

◦ Sequence locks
◦ Read-Copy-Update (RCU)
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If you can reduce serialisation you can generally improve performance on
multiprocessors. Two techniques are presented here.

60 Linux © Peter Chubb 2025, CC-BY-SA 4.0



— Readers don’t lock
— Writers serialised.
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If you have a data structure that is read-mostly, then a sequence lock may
be of advantage. The idea here is to speculate that a race doesn’t occur,
detect it, and retry if it does.
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Reader:
volatile seq;
do {
do {
lastseq = seq;

} while (lastseq & 1);
rmb();
reader body ....

} while (lastseq != seq);

Writer:
spinlock(&lck);
seq++; wmb()
writer body ...
wmb(); seq++;
spinunlock(&lck);
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The idea is to keep a sequence number that is updated (twice) every time a
set of variables is updated, once at the start, and once after the variables
are consistent again. While a writer is active (and the data may be
inconsistent) the sequence number is odd; while the data is consistent the
sequence is even.
The reader grabs a copy of the sequence at the start of its section,
spinning if the result is odd. At the end of the section, it rereads the
sequence, if it is different from the first read value, the section is repeated.
This is in effect an optimistic multi-reader lock. Writers need to protect
against each other, but if there is a single writer (which is often the case)
then the spinlocks can be omitted. A writer can delay a reader; readers do
not delay writers – there’s no need as in a standard multi-reader lock for
writers to delay until all readers are finished.
This is used amongst other places in Linux for protecting the variables
containing the current time-of-day.
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RCU

McKenney (2004), McKenney et al. (2002)

1. 2.

3. 4.
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Another way is so called read-copy-update. The idea here is that if you
have a data structure (such as a linked list), that is very very busy with
concurrent readers, and you want to remove an item in the middle, you can
do it by updating the previous item’s next pointer, but you cannot then free
the item just unlinked until you’re sure that there is no thread accessing it.
If you prevent preëmption while walking the list, then a sufficient condition
is that every processor is either in user-space or has done a context switch.
At this point, there will be no threads accessing the unlinked item(s), and
they can be freed.
Inserting an item without locking is left as an exercise for the reader.
Updating an item then becomes an unlink, copy, update, and insert the
copy; leaving the old unlinked item to be freed at the next quiescent point.
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